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On adaptive wavelet estimation
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Abstract

We investigate the estimation of a weighted density taking the form g = w(F )f , where f denotes
an unknown density, F the associated distribution function and w is a known (non-negative) weight.
Such a class encompasses many examples, including those arising in order statistics or when g is related
to the maximum or the minimum of N (random or fixed) independent and identically distributed
(i.i.d.) random variables. We here construct a new adaptive non-parametric estimator for g based
on a plug-in approach and the wavelets methodology. For a wide class of models, we show that it
attains fast rates of convergence under the Lp risk with p ≥ 1 (not only for p = 2 corresponding to
the mean integrated squared error) over Besov balls. Our estimator is also simple to implement and
fast. We also report an extensive simulation study to support our findings.

Key words and phrases: Reliability, weighted density, density estimation, plug-in approach,
wavelets, block thresholding, series system, parallel system.

1 Introduction

1.1 Problem statement

Let (Ω,A,P) be a probability space, X be a real random variable with unknown density f and Y be a
random variable having the unknown weighted density

g(x) = w(F (x))f(x), x ∈ R, (1.1)

where w denotes a known (of course non-negative) weight and F denotes the distribution function of f .
The goal we pursue here is to estimate g from a random number N of i.i.d. sample X1, . . . , XN of X .

Such an estimation problem arises in many situations, typically when g is related to the maximum1 of
N i.i.d. random variables, where N is a discrete random number in N

∗ which is independent of the Xi’s.
Application fields cover hydrology, meteorology, reliability, investment, management science, insurance
business, etc.. For example, when the Xi are non-negative, the random variable Y = max(X1, . . . , XN )
(or Y = min(X1, . . . , XN )) arises naturally in reliability theory as the lifetime of a parallel (series) system
with a random number N of identical components with lifetimes X1, . . . , XN .

To make things clearer to the reader, we next give some illustrative examples.

1.2 Motivating examples

Example 1.1 (Order statistics). Let X1, . . . , Xm be i.i.d. random variables with absolutely continuous
distribution function F and probability density function (pdf) f . Let X(1) ≤ . . . ≤ X(m) denote the
corresponding order statistics. Then, the pdf gX(j) of the j-th order statistic is

gX(j)(x) =
m!

(j − 1)!(m− j)!
(F (x))j−1(1− F (x))m−jf(x), x ∈ R.

Thus, X(m), for example, is the random variable representing the largest observation of a sample of n
and corresponds to the sample maximum and the density gX(m) of X(m) = max(X1, . . . , Xm) is given by

gX(m)(x) = m (F (x))
m−1

f(x), x ∈ R.

1Since min(X1, . . . ,XN ) = −max(−X1, . . . ,−XN ) the results can be easily reformulated for the sample minimum.
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The aim is to estimate gX(j) from a m i.i.d. sample X1, . . . , Xm of X .

Example 1.2 (Maximum of a random number N of i.i.d. random variables). Let X be a random
variable with density f , {Xn}n∈N∗ be a sequence of i.i.d. random variables with density f and N be a
discrete random variable taking values in N

∗ with a known probability mass function. Then the density
of Y = max(X1, . . . , XN) is

g(x) = w(F (x))f(x), x ∈ R, (1.2)

where

w(u) =

∞∑

k=1

kuk−1
P(N = k), u ∈ [0, 1].

The goal is again to estimate g from an n i.i.d. sample X1, . . . , Xn of X .

Example 1.3 (Pile-up model). Let us now present the “pile-up model”. Let {Yn}n∈N∗ be a sequence of
i.i.d. random variables with density g, N be a discrete random variable in N

∗ as in the previous example,
and let X = min(Y1, . . . , YN ) with density f . Then the density of Y1 is

g(x) = w(F (x))f(x), x ∈ R,

where

w(u) =
1

M ′(M−1(1 − u))
, u ∈ [0, 1],

M(u) = E(uN ) and M ′(u) = E(NuN−1). We are seeking an estimate of g from a n i.i.d. sample
X1, . . . , Xn of X .

1.3 Previous work

Some distributional properties of the maximum and minimum of random variables have been extensively
studied in the literature (see, e.g., Raghunandanan and Patil (1972), Shaked (1975) and Shaked and Wong
(1997)). In addition, the literature on order statistics contains a huge work about the maximum. In the
context of extreme value theory, various statistical properties and (real data) applications can be found
in Adamidis et al. (2005), Louzada et al. (2012) and the references therein.

The estimation of the density function of the maximum of two independent random variables has
been considered by Chen and Hsu (2004) via kernel methods. The Pile-up model has been considered
by Comte and Rebafka (2010) via model selection methods.

1.4 Contributions and relation to prior work

In this paper, we develop a new non-linear adaptive estimator for g in model (1.1) based on a plug-in
method, wavelets and the block thresholding rule introduced by Cai (1999). Wavelet-based thresholding
estimators are attractive for non-parametric function estimation because of their virtues from the view-
points of spatial adaptivity, computational efficiency and asymptotic optimality properties. In the case of
simple density estimation, wavelet thresholding is probably one of the most attractive nonlinear methods.
We refer to e.g., Antoniadis (1997), Härdle et al. (1998) and Vidakovic (1999) for a detailed discussion
of the performances of wavelet estimators and some of their advantages over traditional methods such as
kernel-based or projection estimators.

We here explore the theoretical performance of our estimator under the Lp risk with p ≥ 1 over a very
rich class of function spaces, namely Besov spaces. Sharp rates of convergence are obtained. Application
of our estimator to Example 1.2 above is described in detail. Finally, extensive simulation experiments
are carried out to illustrate the practical performance of our estimator. In particular, the numerical tests
indicate that our block thresholding estimator, which is simple to implement and fast, compares very
favorably to standard kernel-based methods.

1.5 Paper organization

The paper is structured as follows. Our wavelet estimator is described in Section 2. Section 3 presents
our estimator convergence rates. Simulations are detailed in Section 4.
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2 Wavelet estimators

First of all, we briefly recall some key facts on wavelets and Besov spaces that will be essential to us in
the sequel. Then we develop our nonlinear adaptive wavelet block thresholding estimator.

2.1 Wavelets and Besov balls

Let b > 0, p > 0 and Lp([−b, b]) =
{
h : [−b, b] → R; ‖h‖pp =

∫ b

−b
|h(x)|pdx < +∞

}
.

For the purposes of this paper, we use compactly supported wavelet bases on [−b, b]. More precisely,
we consider the Daubechies family db2R with the scaling and wavelet functions φ and ψ, where R ≥ 2 is
a fixed integer, see e.g., Mallat (2009). Define the scaled and translated version of the φ and ψ

φj,k(x) = 2j/2φ(2jx− k), ψj,k(x) = 2j/2ψ(2jx− k).

Then there exists an integer τ and a set of consecutive integers Λj such that Card(Λj) = C2j for a C > 0
and, for any integer ℓ ≥ τ , the collection

B = {φℓ,k, k ∈ Λℓ; ψj,k; j ∈ N− {0, . . . , ℓ− 1}, k ∈ Λj},

is an orthonormal basis of L2([−b, b]).
Consequently, for any integer ℓ ≥ τ , any h ∈ L2([−b, b]) can be expanded on B as

h(x) =
∑

k∈Λℓ

αℓ,kφℓ,k(x) +

∞∑

j=ℓ

∑

k∈Λj

βj,kψj,k(x),

where

αℓ,k =

∫ b

−b

h(x)φℓ,k(x)dx, βj,k =

∫ b

−b

h(x)ψj,k(x)dx. (2.1)

As is traditional in the wavelet estimation literature, we will investigate the performance of our
estimator by assuming that the unknown density f belongs to a Besov ball. The Besov norm for a
function can be related to a sequence space norm on its wavelet coefficients. More precisely, let M > 0,
s ∈ (0, R), q ≥ 1 and r ≥ 1. A function h ∈ Lp([−b, b]) belongs to Bs

q,r(M) if and only if there exists a
constant M∗ > 0 (depending on M) such that the associated wavelet coefficients (2.1) satisfy

(
∑

k∈Λτ

|ατ,k|
q

)1/q

+




∞∑

j=τ


2j(s+1/2−1/q)


∑

k∈Λj

|βj,k|
q




1/q



r


1/r

≤M∗,

with the usual modifications if q = ∞ or r = ∞.
In this expression, s is a smoothness parameter and q and r are norm parameters. They include many

traditional smoothness spaces such as Hölder and Sobolev spaces. A comprehensive account on Besov
spaces can be found in e.g., Devore and Popov (1988); Meyer (1992); Härdle et al. (1998).

2.2 Plug-in block wavelet estimator

Let us consider the general statistical framework described in Section 1 with i.i.d. sample X1, · · · , Xn.
First of all, we investigate the estimation of f via the so-called wavelet block hard thresholding estimator.
We suppose that supp(f) ⊆ [−b, b] with b > 0.

Let p ≥ 1, and j1 and j2 be the integers corresponding to the finest and coarsest scales defined as

j1 = ⌊(max(p, 2)/2) log2(logn)⌋, j2 = ⌊log2(n/ logn)⌋,

where ⌊a⌋ denotes the whole number part of a ∈ R
+. For any j ∈ {j1, . . . , j2}, let Aj and Uj,K be given

such that ∪K∈AjUj,K = Λj, |Uj,K | = L = ⌊(log n)max(p,2)/2⌋ and Uj,K ∩ Uj,K′ = ∅ for any K 6= K ′ with
K, K ′ ∈ Aj . In a nutshell, at each scale j, each Uj,K is the set containing position indices of the wavelet
coefficients inside block K ∈ Aj .
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We define the wavelet block hard thresholding estimator of f by

f̂(x) =
∑

k∈Λj1

α̂j1,kφj1,k(x) +

j2∑

j=j1

∑

K∈Aj

∑

k∈Uj,K

β̂j,k1{(∑
k∈Uj,K

|β̂j,k|p/L
)
1/p

≥κn−1/2

}ψj,k(x), x ∈ [−b, b],

(2.2)
where 1{·} denotes the indicator function, and

α̂j1,k =
1

n

n∑

i=1

φj1,k(Xi), β̂j,k =
1

n

n∑

i=1

ψj,k(Xi)

and κ > 0 is a threshold parameter to be discussed later.
The estimator f̂ was initially developed by Cai (1999) for the regression model under the L2-risk with

equispaced deterministic samples. The Lp risk version was studied in Picard and Tribouley (2000) for the
standard density estimation problem and by Chesneau (2010) for the biased density estimation problem.

The idea underlying f̂ (2.2) is to operate a group/block selection: it keeps intact the large groups
of unknown wavelet coefficients of f (2.1) and removes the others. Wavelet block thresholding is one
of the most attractive non-linear thresholding methods, since it is both numerically straightforward to
implement and asymptotically optimal for a large variety of Sobolev or Besov classes. Detailed references
on the subject for various models include, but are not limited to, Cai (1999, 2002), Li and Xiao (2008);
Li (2008), Picard and Tribouley (2000) and Chesneau (2008, 2010).

The performance of Block thresholding estimators depends on the threshold level κ. In the non-
parametric regression setting, in order to choose this key parameter, Cai and Zhou (2009) proposed an
adaptive James-Stein block thresholding estimator whose parameters (including the threshold) minimize
the Stein’s unbiased risk estimate (SURE) and established its minimax rates of convergence under the
mean squared error over Besov balls. Other selection strategies have been developed in the literature (see
e.g. Nason (1996) which considered wavelet estimators based on cross-validation to choose the thresholding
parameter in practice). In this work, we focus on the universal threshold proposed by Donoho et al.
(1996). The reason for this choice is twofold. First, it is the one consistent with the theoretical convergence
rates established in Section 3. Secondly, it allows to remain fair when comparing to the other methods
of the literature tested in Section 4.

Finally, plugging (2.2) into (1.1) leads to the following estimator of g:

ĝ(x) = w(F̂ (x))f̂(x), x ∈ [−b, b], (2.3)

where

F̂ (x) =
1

n

n∑

i=1

1{Xi≤x}. (2.4)

The rest of the paper explores the theoretical and practical performances of ĝ.

3 Estimator convergence rates

In this section, we discuss the asymptotic properties of the proposed estimator. Rates of Lp convergence
are investigated under the following assumptions:

(A.1) Compact support: supp(f) ⊆ [−b, b] with b > 0.

(A.2) Uniform boundedness: there exists a constant C1 > 0 such that

sup
x∈[−b,b]

f(x) ≤ C1 . (3.1)

(A.3) Uniform Lipschitz continuity of w (with Lipschitz constant C2):

|w(u)− w(v)| ≤ C2|u− v|, for all (u, v) ∈ [0, 1]2, (3.2)

Assumption A.1 is a usual one in the wavelet density estimation framework (see e.g. Donoho et al.
(1996)). Extension to non-compactly supported densities might be possible and ideas from Juditsky and Lambert-Lacroix
(2004) might be inspiring, although these authors considered a model different from ours, and their re-
sults were valid only for the case where f is in the Hölder class. Such an extension is however beyond
the scope of this paper and we leave it for a future work.

Theorem 3.1 studies the Lp risk of ĝ (2.3) over Besov balls and Assumptions A.1-A.3 on f and w.
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Theorem 3.1. Consider the general statistical framework described in Section 1 (the estimation of g
(1.1) is of interest). Suppose that Assumptions A.1-A.3 hold. Let p ≥ 1 and ĝ be given by (2.3). Then,
for any f ∈ Bs

q,r(M), q ≥ 1, r ≥ 1 and s ∈ (1/q,R), there exists a constant C > 0 such that

E
(
‖ĝ − g‖pp

)
≤ Cϕn,p,

where

ϕn,p =





n−sp/(2s+1), if q ≥ p,
(
logn

n

)sp/(2s+1)

, if {p > q, qs > (p− q)/2},
(
logn

n

)(s−1/q+1/p)p/(2(s−1/q)+1)

, if qs < (p− q)/2 or {qs = (p− q)/2, p ≤ q/r},
(
logn

n

)(s−1/q+1/p)p/(2(s−1/q)+1)

(logn)p−q/r, if {qs = (p− q)/2, p > q/r}.

(3.3)

Note that the rate ϕn,p in (3.3) is the near optimal (or optimal in some regimes) one in the minimax
sense for f . See, e.g., Donoho et al. (1996) and Härdle et al. (1998). In plain words, the near optimality
of the estimator of f is transferred to that of g through the plug-in principle.

The proof of Theorem 3.1 uses a suitable decomposition of the Lp risk and capitalizes on results on

the performances of f̂ (2.2) and F̂ (2.4) established in Chesneau (2010).

Proof of Theorem 3.1. Observe that

ĝ(x)− g(x) = w(F̂ (x))(f̂ (x)− f(x)) + f(x)(w(F̂ (x)) − w(F (x))).

By Assumption A.3 implying supx∈[0,1]w(x) ≤ C, together with Assumptions 2, we have

|ĝ(x) − g(x)| ≤ C(|f̂(x) − f(x)|+ |w(F̂ (x)) − w(F (x))|)

≤ C(|f̂(x) − f(x)|+ |F̂ (x)− F (x)|).

By the Jensen inequality, we have

E(‖ĝ − g‖pp) ≤ C(E(‖f̂ − f‖pp) + E(‖F̂ − F‖pp)).

It follows from (Chesneau, 2010, Theorem 4.1 with w(x) = 1 = µ) that

E(‖f̂ − f‖pp) ≤ Cϕn,p,

where ϕn,p is given by (3.3).

Now note that

F̂ (x)− F (x) =
1

n

n∑

i=1

Ui(x),

with Ui(x) = 1{Xi≤x} − F (x). Since U1(x), . . . , Un(x) are i.i.d. with E(U1(x)) = 0, |U1(x)| ≤ 2 and
E((U1(x))

2) ≤ 4, the Rosenthal inequality (see Rosenthal (1970)) yields

E(‖F̂ − F‖pp) ≤ C sup
x∈R

E

(
(F̂ (x)− F (x))p

)
≤ C

1

np/2
≤ Cϕn,p.

Combining the inequalities above, we obtain the desired result i.e.,

E(‖ĝ − g‖pp) ≤ Cϕn,p.
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3.1 An illustrative application

Let’s recall Example 1.2, where {Xn}n∈N∗ is a sequence of i.i.d. random variables with pdf f and
N be a discrete random variable of values in N

∗ independent of this sequence. The density of Y =
max(X1, . . . , XN ) is given by (1.2).

Suppose that Assumptions A.1-A.2 hold. Thus, several examples for the distribution of N can be
considered.

(a) Degenerate distribution. P(N = m) = 1. Then

w(u) = mum−1, u ∈ [0, 1], (3.4)

(b) Geometric distribution. N ∼ G(η) (P(N = k) = η(1 − η)k−1, k ∈ N
∗). Then

w(u) =
η

(1− u(1− η))2
, u ∈ [0, 1], (3.5)

(c) Poisson plus 1 distribution. N = P + 1 with P ∼ P(λ) (P(N = k) = e−λ λk−1

(k−1)! , k ∈ N
∗). Then

w(u) = e−λeλu(1 + λu), u ∈ [0, 1].

Remark 3.2. In examples (a)–(c) above it is clear that Assumption 3 is satisfied; more precisely, in
example (a), we have C2 = m(m− 1); in example (b), we have C2 = 2(1− η)/η2; in example (c), we have
C2 = λ(2 + λ).

In this context, Theorem 3.1 can be applied. Let p ≥ 1 and ĝ be the estimator given in (2.3). Then,
for any f ∈ Bs

q,r(M), q ≥ 1, r ≥ 1 and s ∈ (1/q,R) there exists a constant C > 0 such that

E
(
‖ĝ − g‖pp

)
≤ Cϕn,p,

where ϕn,p is given by (3.3).

Remark 3.3. Taking m = 2, the obtained rate is similar to the one attained by the kernel estimators
developed by Chen and Hsu (2004); the only difference is the extra-logarithmic term (logn)2s/(2s+1).
However, unlike kernel estimators Chen and Hsu (2004), our procedure ĝ is adaptive and our rate of
convergence holds for a wider class of functions f including Hölder class, Sobolev class, etc..

4 Simulation results

We now illustrate these theoretical results by a simulation study within the context described in Section
3.1. That is, we consider the problem of estimating the density g of the maximum of a random number
N of i.i.d. random variables. From a reliability study standpoint, this problem corresponds to a parallel
system with N identical components. Thereby, we have considered two numerical examples. They
complement the asymptotic results of 3.1.

Computational aspects. In the sequel, we will refer to our adaptive wavelet estimator (2.3) simply as
Block. We have compared its performance to alternatives from the literature on several densities. We have
considered the uniform distribution, as well as a family of normal mixture densities (“SeparatedBimodal”,
“Kurtotic” and “StronglySkewed”, initially introduced in Marron and Wand (1992)) representing different
degrees of smoothness (see Figure 1). We assumed that the density function f of the Xi’s has a compact
support included in [−b, b]. We have used the formulae given by Marron and Wand (1992) to simulate
such densities so that

min
l
(µl − 3σl) = −3, max

l
(µl + 3σl) = 3,

where l = 1, . . . , d with d the number of densities in the mixture (see, (Marron and Wand, 1992, Section
4, Table 1), for the values of the parameters). Thereby, it is very unlikely to have values outside the
interval [−4, 4] and we loose little by assuming compact support . The same kind of assumption was made
in the context of wavelet density estimation by Vannucci and Vidakovic (1997). In order to simplify the
presentation of the results, one can simply rescale the data such that they fall into [−b, b] (which covered
the full range of all observed data). Thus, the density was evaluated at T = 2J equispaced points
ti = 2ib/T , i = −T/2, . . . , T/2− 1 between −b and b , where J is the index of the highest resolution level
and T is the number of discretization points. The primary level j1 = 3, T = 512 and the Symmlet wavelet
with 6 vanishing moments were used throughout all experiments. All simulations have been implemented
under Matlab.
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Figure 1: Test densities.
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Figure 2: Typical reconstructions from a single simulation with n = 1000 for the Kurtotic density. The
dashed line depicts the original density and the solid one depicts its wavelet block estimate. (a): f̂(x).

(b): F̂ (x). (c): w(F̂ (x)). (d): ĝ(x) = w(F̂ (x))f̂ (x)
.

Results and discussion. In order to illustrate Theorem 3.1, we study the influence of p on the numeri-
cal performances of the Block and the term-by-term (L = 1) thresholding estimator. Let us first consider
a parallel system with m = 2 identical independent components. Then, the corresponding weighted
function is (3.4) and the goal is to estimate g in (1.2) from X1, . . . , Xn sample simulated from one of the
test densities. A typical example of estimation for the Kurtotic density (for p = 2), with n = 1000 is

given in Figure 2. The mean Lp risk of ĝ i.e., Rp(ĝ, g) = (1/T )
∑T/2−1

i=−T/2 |ĝ(ti)− g(ti)|
p, is obtained with

10 samples for n = 1000, and it is plotted as a function of p in Figure 3. As predicted by Theorem 3.1,
the larger p, the smaller Lp risk of ĝ. We can see that our estimation procedure provides better results
than the term-by-term thresholding (L = 1) in all cases. In particular, the risk improvement achieved by
the block estimators upon the term-by-term estimator is significant for the non-smooth Uniform density.
This is in agreement with the predictions of our theoretical findings.

To conclude this first example, we illustrate from a single simulation, the fact that the parameters
dictated by the theory yield the expected performance. We display in Figure 4 the empirical L2 risk as a
function of the threshold level κ, where the vertical dashed line represents the universal threshold. One
can see that the minimum of the L2 risk is close to the universal threshold for all test densities, thus
supporting the choice dictated by our theoretical procedure, although derived in an asymptotic setting.

In our second example, the adaptive estimator described in Section 3.1 is tested when N follows a
Geometric distribution, so that the weight function is that given by (3.5). This example is devoted to a
simulation study comparing the performance of the block hard thresholding estimator with that of the
traditional kernel defined as follows

f̂h(x) =
1

nh

n∑

i=1

K

(
x−Xi

h

)
, (4.1)

where the positive kernel K satisfies
∫
K(x)dx = 1 and the smoothing parameter h is known as the

bandwidth.
Many procedures of bandwidth selection for kernel density estimation have been developed in the liter-

ature (see, e.g., Silverman (1986)). We use least-squares cross-validation (LSCV) (Rudemo (1982), Bowman
(1984)) where the bandwidth is defined as

hLSCV = argmin
h

∫ b

−b

f̂h(x)
2dx− 2n−1

n∑

i=1

f̂−i(Xi),
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Figure 3: The influence of p in the numerical values of the Lp risk (in a log-log scale) of Block (solid)
and term-by-term (dashed) thresholding (L = 1).
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Figure 4: L2 risk as a function of the threshold level κ (in a semi-log scale), the vertical dashed lines
represent the universal threshold.

and f̂−i is the leave-one out kernel estimator constructed from the data without the observation Xi. It
is motivated by the fact that for independent data

LSCV(h) =

∫ b

−b

f̂h(x)
2dx− 2n−1

n∑

i=1

f̂−i(Xi)

is an unbiased estimator of MISE(h) =
∫ b

−b
f2(x)dx. One frequently used cross-validation (CV) procedure

is the K-fold CV (as described e.g. in (Hastie et al., 2009, Section 7.10)) in which the data set X1, . . . , Xn

is randomly partitioned into K approximately equal-sized and non-overlapping subsets S1, . . . , SK . To
obtain the bandwidths hLSCV, we have performed a 10-fold CV, using a Gaussian kernel, with a simple
“rule-of-thumb” pilot bandwidth hROT. Figure 5(b) contains a plot of the LSCV function versus the
kernel bandwidth h and Figure 5(c) the estimated MISE as a function of h. For each density, it is clear
from this figure (Figure 5(b)), that the value of hLSCV is the unambiguous minimizer of LSCV(h). We see
that hLSCV provides a decent approximation, close to hMISE for all test densities. For the StronglySkewed
density, the bandwidth which minimizes MISE(h) in this case is hMISE = 0.039 and hLSCV = 0.044. In
this case, for the Uniform density, hMISE = hLSCV = 0.051.

We then compared the performance of the Block estimator ĝ with that of the plug-in kernel estimator,
say ĝLSCV, given by ĝLSCV = w(F̂ (x))f̂LSCV(x), where F̂ is defined by (2.4) and f̂LSCV is given by (4.1)
with hLSCV. Figure 6 shows the results of ĝ and ĝLSCV for N ∼ G(η), with η = 0.9, η = 0.5 and η = 0.1
respectively. Table 1 presents the MISE for samples sizes n = 1000, 2000 and 5000. For virtually all
cases, the Block estimator consistently showed lower L2 risk than ĝLSCV, with the exception of the (very
smooth) SeparatedBimodal density for which the kernel estimator performs slightly better. This comes
at no surprise given that this density is very smooth. Additionally, small discrepancies in the estimate of
f may lead to substantial discrepancies for the estimate of g at the locations overweighted by w(F̂ (·)).
It turns out that this is the case for the Geometric distribution where the weights evolve in O(1/η) at
high values of x, and thus the discrepancies in ĝ increase as η gets smaller. However, the kernel estimator
ĝLSCV seems to be more concerned (see, Figure 6(c)), confirming that Block generally provides a better
estimate of f . Furthermore, as expected, for both methods, and in all cases, the MISE is decreasing as
the sample size increases. Without any prior smoothness knowledge on the unknown density, the Block
estimator provides very competitive results in comparison to ĝLSCV.
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Figure 5: (a): Density estimates. (b): Graph of the the LSCV function versus the kernel bandwidth h for
each of the tested densities, the vertical dashed lines represent the value of h that minimizes LSCV(h). (c):
The solid line depicts the estimated MISE as a function of h, the vertical dashed-dotted lines represent
the true MISE-minimizing bandwidth hMISE and the vertical dotted lines represent the pilot bandwidth
hROT.

References

Adamidis, K., Dimitrakopoulou, T. and Loukas, S. (2005), “On an extension of the exponential-geometric
distribution,” Statist. Probab. Lett., 73(3),259–269.

Antoniadis, A. (1997), “Wavelets in statistics: a review (with discussion),” J. Italian Statistical Society,
6(2), 97–144.

Bowman, M. (1984), “An alternative method of cross-validation for the smoothing of density estimates,”
Biometrika, 71(2), 353–360.

Cai, T. (1999), “Adaptive wavelet estimation: a block thresholding and oracle inequality approach,” The
Annals of Statistics, 27(3), 898–924.

Cai, T. (2002), “On block thresholding in wavelet regression: Adaptivity, blocksize and threshold level,”
Statistica Sinica, 12, 1241–1273.

T. Cai and H. Zhou (2009), “A data-driven block thresholding approach to wavelet estimation,” Ann.
Stat., 37, 569–595.

Chen, S.-M. and Hsu, Y.-S. (2004), “Kernel Density Estimations for Maximum of Two Independent
Random Variables,” J. Nonparametr. Statist., 16(6), 901-924.

Chesneau, C. (2008), “Wavelet estimation via block thresholding : a minimax study under L
p risk,”

Statistica Sinica, 18(3), 1007–1024.

Chesneau, C. (2010), “Wavelet block thresholding for density estimation in the presence of bias,” Journal
of the Korean Statistical Society, 39(1), 43–53.



10 F. Navarro, C. Chesneau and M. J. Fadili

−4 −2 0 2 4
0

0.1

0.2

0.3

0.4

0.5

x

g
(x

)

 

 

Block
Original

−4 −2 0 2 4
0

0.1

0.2

0.3

0.4

x
g
(x

)

 

 

Block
Original

−4 −2 0 2 4
0

0.5

1

1.5

x

g
(x

)

 

 

Block
Original

−4 −2 0 2 4
0

0.5

1

x

g
(x

)

 

 

Block
Original

−4 −2 0 2 4
0

0.1

0.2

0.3

0.4

0.5

x

g
(x

)

 

 

Kernel
Original

−4 −2 0 2 4
0

0.1

0.2

0.3

0.4

x

g
(x

)

 

 

Kernel
Original

−4 −2 0 2 4
0

0.5

1

1.5

x

g
(x

)

 

 

Kernel
Original

−4 −2 0 2 4
0

0.5

1

x

g
(x

)

 

 

Kernel
Original

(a)

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

x

g
(x

)

 

 

Block
Original

−4 −2 0 2 4
0

0.1

0.2

0.3

0.4

0.5

x

g
(x

)

 

 

Block
Original

−4 −2 0 2 4
0

0.5

1

1.5

x

g
(x

)

 

 

Block
Original

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

x

g
(x

)

 

 

Block
Original

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

x

g
(x

)

 

 

Kernel
Original

−4 −2 0 2 4
0

0.1

0.2

0.3

0.4

0.5

x

g
(x

)

 

 

Kernel
Original

−4 −2 0 2 4
0

0.5

1

1.5

x

g
(x

)

 

 

Kernel
Original

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

x

g
(x

)

 

 

Kernel
Original

(b)

−4 −2 0 2 4
0

1

2

3

4

5

x

g
(x

)

 

 

Block
Original

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

x

g
(x

)

 

 

Block
Original

−4 −2 0 2 4
0

0.2

0.4

0.6

x

g
(x

)

 

 

Block
Original

−4 −2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

x

g
(x

)

 

 

Block
Original

−4 −2 0 2 4
0

1

2

3

4

5

x

g
(x

)

 

 

Kernel
Original

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

x

g
(x

)

 

 

Kernel
Original

−4 −2 0 2 4
0

0.2

0.4

0.6

x

g
(x

)

 

 

Kernel
Original

−4 −2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

x

g
(x

)

 

 

Kernel
Original

(c)

Figure 6: Original densities (dashed), Block thresholding estimator ĝ (solid) (1st row), kernel estimator
ĝLSCV (solid) (2nd row) from 50 replications of n = 1000 samples X1, . . . , Xn. From left to right Uniform,
SeparatedBimodal, Kurtotic and StronglySkewed. N ∼ G(η), with (a) η = 0.9, (b) η = 0.5 and (c)
η = 0.1.
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Table 1: 1000×MISE values from 50 replications of sample sizes n = 1000, 2000 and 5000, when N follows
a Geometric distribution of parameter η.

Uniform
1.0e-03× η = 0.9 η = 0.5 η = 0.1
n 1000 2000 5000 1000 2000 5000 1000 2000 5000
Block 10.49 7.03 4.18 11.15 7.61 4.85 19.15 15.05 13.39
Kernel 13.76 11.37 9.32 17.62 14.99 12.60 70.50 63.24 55.94

SeparatedBimodal
1.0e-03× η = 0.9 η = 0.5 η = 0.1
n 1000 2000 5000 1000 2000 5000 1000 2000 5000
Block 8.53 6.29 3.69 9.09 6.89 3.90 15.27 11.08 7.12
Kernel 6.30 4.98 3.54 7.00 5.32 3.82 13.26 10.86 7.79

Kurtotic
1.0e-03× η = 0.9 η = 0.5 η = 0.1
n 1000 2000 5000 1000 2000 5000 1000 2000 5000
Block 11.31 8.03 5.52 11.93 8.04 5.57 18.08 9.22 7.01
Kernel 12.27 8.00 5.83 13.03 8.44 6.13 21.97 13.04 9.66

StronglySkewed
1.0e-03× η = 0.9 η = 0.5 η = 0.1
n 1000 2000 5000 1000 2000 5000 1000 2000 5000
Block 9.91 7.78 5.12 8.69 7.02 4.70 10.12 9.03 5.93
Kernel 10.57 8.13 5.97 11.16 8.68 6.24 19.62 15.54 10.86
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