On adaptive wavelet estimation of a class of weighted densities - Archive ouverte HAL
Article Dans Une Revue Communications in Statistics - Simulation and Computation Année : 2014

On adaptive wavelet estimation of a class of weighted densities

Résumé

We investigate the estimation of a weighted density taking the form $g=w(F)f$, where $f$ denotes an unknown density, $F$ the associated distribution function and $w$ is a known (non-negative) weight. Such a class encompasses many examples, including those arising in order statistics or when $g$ is related to the maximum or the minimum of $N$ (random or fixed) independent and identically distributed (\iid) random variables. We here construct a new adaptive non-parametric estimator for $g$ based on a plug-in approach and the wavelets methodology. For a wide class of models, we prove that it attains fast rates of convergence under the $\mathbb{L}_p$ risk with $p\ge 1$ (not only for $p = 2$ corresponding to the mean integrated squared error) over Besov balls. The theoretical findings are illustrated through several simulations.
Fichier principal
Vignette du fichier
weigdensest.pdf (708.9 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00714507 , version 1 (04-07-2012)
hal-00714507 , version 2 (28-02-2013)
hal-00714507 , version 3 (30-06-2013)
hal-00714507 , version 4 (05-05-2015)

Identifiants

Citer

Fabien Navarro, Christophe Chesneau, Jalal M. Fadili. On adaptive wavelet estimation of a class of weighted densities. Communications in Statistics - Simulation and Computation, 2014, 12 p. ⟨10.1080/03610918.2013.851216⟩. ⟨hal-00714507v4⟩
386 Consultations
196 Téléchargements

Altmetric

Partager

More