Overalgebras and separation of generic coadjoint orbits of $SL(n, \R)$
Résumé
For the semi simple and deployed Lie algebra $\mathfrak g=\mathfrak{sl}(n, \R)$, we give an explicit construction of an overalgebra $\mathfrak g^+=\mathfrak g\rtimes V$ of $\mathfrak g$, where $V$ is a finite dimensional vector space. In such a setup, we prove the existence of a map $\Phi$ from the dual $\mathfrak g^\star$ of $\mathfrak g$ into the dual $(\mathfrak g^+)^\star$ of $\mathfrak g^+$ such that the coadjoint orbits of $\Phi(\xi)$, for generic $\xi$ in $\mathfrak g^\star$, have a distinct closed convex hulls. Therefore, these closed convex hulls separate 'almost' the generic coadjoint orbits of $G$.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...