Overalgebras and separation of generic coadjoint orbits of $S L(n$,
Amel Zergane

To cite this version:

Amel Zergane. Overalgebras and separation of generic coadjoint orbits of $S L(n)$,.2012 . hal00710555

HAL Id: hal-00710555

https://hal.science/hal-00710555

Preprint submitted on 21 Jun 2012

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

OVERALGEBRAS AND SEPARATION OF GENERIC COADJOINT ORBITS OF $S L(n, \mathbb{R})$

AMEL ZERGANE *

Abstract

For the semi simple and deployed Lie algebra $\mathfrak{g}=\mathfrak{s l}(n, \mathbb{R})$, we give an explicit construction of an overalgebra $\mathfrak{g}^{+}=\mathfrak{g} \rtimes V$ of \mathfrak{g}, where V is a finite dimensional vector space. In such a setup, we prove the existence of a map Φ from the dual \mathfrak{g}^{\star} of \mathfrak{g} into the dual $\left(\mathfrak{g}^{+}\right)^{\star}$ of \mathfrak{g}^{+}such that the coadjoint orbits of $\Phi(\xi)$, for generic ξ in \mathfrak{g}^{\star}, have a distinct closed convex hulls. Therefore, these closed convex hulls separate 'almost' the generic coadjoint orbits of G.

1. Introduction

In this paper, we prove that, for $n>2$, the Lie algebra $\mathfrak{g}=\mathfrak{s l}(n, \mathbb{R})$ admits an overalgebra almost separating of dgree n, but \mathfrak{g} does not admit an overalgebra of degree 2 . More precisely:

There exist a Lie overalgebra $\mathfrak{g}^{+}=\mathfrak{s l}(n, \mathbb{R}) \rtimes V$ and an application Φ of degree n, $\Phi: \mathfrak{g}^{\star} \longrightarrow \mathfrak{g}^{+\star}$ such that:

1. $p \circ \Phi=i d_{\mathfrak{g}^{\star}}$, where p is the canonical projection $p: \mathfrak{g}^{+\star} \longrightarrow \mathfrak{g}^{\star}$,
2. $\Phi(\operatorname{Coad}(S L(n, \mathbb{R})) \xi)=\operatorname{Coad}\left(G^{+}\right) \Phi(\xi)$,
3. if ξ is generic, then $\overline{\operatorname{Conv}}(\Phi(\operatorname{Coad}(S L(n, \mathbb{R}) \xi)))=\overline{\operatorname{Conv}}\left(\Phi\left(\operatorname{Coad}(S L(n, \mathbb{R})) \xi^{\prime}\right)\right)$ if and only if $\operatorname{Coad}(S L(n, \mathbb{R})) \xi^{\prime}$ belongs to a finite set of coadjoint orbits of $\mathfrak{s l}(n, \mathbb{R})$ (here: a singleton if n is odd, a singleton or a set of two elements if n is even).
We identify $\left(\mathfrak{g}^{+}\right)^{\star}$ the dual of \mathfrak{g}^{+}with the space $\mathfrak{g}^{\star} \oplus V^{\star}$. The condition 1. means $\Phi(\xi)=\xi+\phi(\xi)$, where ϕ is a polynomial of degree n from \mathfrak{g}^{\star} to V^{\star}. We say that $\left(\mathfrak{g}^{+}, \phi\right)$ is an overalgebra almost separating of \mathfrak{g} (of degree n).

But there is no separating overalgebra of degree 2 , $\left(\mathfrak{g}_{2}^{+}, \phi\right)$, i.e there is neither a Lie overalgebra $\mathfrak{g}_{2}^{+}=\mathfrak{s l}(n, \mathbb{R}) \rtimes V_{2}$ nor $\phi: \mathfrak{g}^{\star} \longrightarrow V_{2}^{\star}$ of degree 2 such that:

1. $p \circ \Phi=i d_{\mathfrak{g}^{\star}}$, if p is the canonical projection $p: \mathfrak{g}_{2}^{+\star} \longrightarrow \mathfrak{g}^{\star}$,
2. $\Phi(\operatorname{Coad}(S L(n, \mathbb{R})) \xi)=\operatorname{Coad}\left(G^{+}\right) \Phi(\xi)$,
3. if ξ is generic then, $\overline{\operatorname{Conv}}(\Phi(\operatorname{Coad}(S L(n, \mathbb{R}) \xi)))=\overline{\operatorname{Conv}}\left(\Phi\left(\operatorname{Coad}(S L(n, \mathbb{R})) \xi^{\prime}\right)\right)$ if and only if $\operatorname{Coad}(S L(n, \mathbb{R})) \xi^{\prime}$ belongs to a finite family of coadjoint orbits.
[^0]Finally, we show that $\mathfrak{s l}(4, \mathbb{R})$ does not admit an overalgebra almost separating of degree 3.

2. Description of orbits of $\mathfrak{s l}(n, \mathbb{R})$

2.1. Invariant functions of $\mathfrak{s l}(n, \mathbb{R})$.

Since the Lie algebra $\mathfrak{s l}(n, \mathbb{R})$ is simple, we can identify the adjoint action and coadjoint action of the Lie group $G=S L(n, \mathbb{R})$. More precisely, we consider the non degenerate bilinear invariant form on $\mathfrak{s l}(n, \mathbb{R})$ defined by:

$$
\langle X, Y\rangle=\operatorname{Tr}(X Y) .
$$

Denote ξ an element of the dual of $\mathfrak{s l}(n, \mathbb{R})$ and X an element of $\mathfrak{s l}(n, \mathbb{R})$. The functions defined on the dual $\mathfrak{g}^{*}=\mathfrak{s l}(n, \mathbb{R})$ of the Lie algebra \mathfrak{g} by:

$$
T_{k}(\xi)=\operatorname{Tr}\left(\xi^{k}\right), \quad 2 \leq k \leq n
$$

are invariant: $T_{k}\left(g \xi g^{-1}\right)=T_{k}(\xi)$ for all ξ and all g.
The ring of the polynomial invariant functions on \mathbb{C} is $\mathbb{C}\left[T_{2}, \ldots, T_{n}\right]$ (cf. [W]).

2.2. Description of $\Omega=\{\xi \in \mathfrak{s l}(n, \mathbb{R}), \# S p(\xi)=n\}$.

This is classic. We recall this only for completeness.
Denote Ω the set of matrices ξ of $\mathfrak{s l}(n, \mathbb{R})$ which are diagonalizable on \mathbb{C} and have n distinct eigenvalues. The spectrum of this matrix ξ is
$S p(\xi)=\left\{c_{1}, \ldots, c_{r}, a_{1} \pm i b_{1}, \ldots, a_{s} \pm i b_{s}, \quad\right.$ with $\left.c_{i}, a_{j}, b_{j} \in \mathbb{R}, b_{j}>0, r+2 s=n\right\}$.
Denote by $(a, b)<\left(a^{\prime}, b^{\prime}\right)$ the lexicographic order :

$$
(a, b)<\left(a^{\prime}, b^{\prime}\right) \Longleftrightarrow\left\{\begin{array}{l}
a<a^{\prime} \\
\text { or } \\
a=a^{\prime} \text { and } b<b^{\prime} .
\end{array}\right.
$$

We note also (the same if the eigenvalues are not stored in lexicographic order):

$$
D\left(c_{1}, \ldots, c_{r}, a_{1}+i b_{1}, \ldots, a_{s}+i b_{s}\right)=\left(\begin{array}{cccccccc}
c_{1} & & & & & & & \\
& \ddots & & & & & & \\
& & c_{r} & & & & & \\
& & & a_{1} & b_{1} & & & \\
& & & -b_{1} & a_{1} & & & \\
& & & & & \ddots & & \\
& & & & & & a_{s} & b_{s} \\
& & & & & & -b_{s} & a_{s}
\end{array}\right) .
$$

We fix r and s such that $r+2 s=n$. If $r>0$, we put:

$$
\Sigma_{r, s}=\left\{D\left(c_{j}, a_{k}+i b_{k}\right), c_{1}<c_{2}<\cdots<c_{r}, b_{k}>0,\left(a_{1}, b_{1}\right)<\left(a_{2}, b_{2}\right)<\cdots<\left(a_{s}, b_{s}\right)\right\}
$$

If $r=0$, we note :

$$
\Sigma_{0, s}^{+}=\left\{D\left(a_{k}+i b_{k}\right), b_{k}>0,\left(a_{1}, b_{1}\right)<\left(a_{2}, b_{2}\right)<\cdots<\left(a_{s}, b_{s}\right)\right\}
$$

and

$$
\Sigma_{0, s}^{-}=\left\{D^{-}\left(a_{k}+i b_{k}\right), b_{k}>0,\left(a_{1}, b_{1}\right)<\left(a_{2}, b_{2}\right)<\cdots<\left(a_{s}, b_{s}\right)\right\}
$$

where

$$
D^{-}\left(a_{1}+i b_{1}, \ldots, a_{s}+i b_{s}\right)=\left(\begin{array}{ccccccc}
a_{1} & -b_{1} & & & & & \\
b_{1} & a_{1} & & & & & \\
& & a_{2} & b_{2} & & & \\
& & -b_{2} & a_{2} & & & \\
& & & & \ddots & & \\
& & & & & a_{s} & b_{s} \\
& & & & & -b_{s} & a_{s}
\end{array}\right) \text {. }
$$

Finally, we put

$$
\Sigma= \begin{cases}\bigcup_{r>0, r+2 s=n} \Sigma_{r, s} \bigcup\left(\Sigma_{0, \frac{n}{2}}^{+} \cup \Sigma_{0, \frac{n}{2}}^{-}\right) & \text {if } n \text { is even } \\ \bigcup_{r>0, r+2 s=n} \Sigma_{r, s} & \text { if } n \text { is odd. }\end{cases}
$$

The set Ω is invariant since the spectrum $S p(\xi)$ of ξ coincides with the spectrum of $g \xi g^{-1}=A d(g)(\xi)(g \in S L(n, \mathbb{R}))$, or if we prefer, if C_{ξ} is the characteristic polynomial of the matrix ξ, then the adjoint orbit $G \cdot \xi_{0}$ of ξ_{0} is included in $\left\{\xi\right.$, such that $C_{\xi}=$ $\left.C_{\xi_{0}}\right\}$.

2.3. Adjoint orbits in Ω.

Lemma 2.1.

For all matrix ξ in Ω, the adjoint orbit $G \cdot \xi$ of the matrix ξ contains a point of Σ.
Proof.
Let ξ be a matrix in Ω, ξ is diagonalizable on \mathbb{C}, with eigenvalues all distinct. If $S p(\xi)=\left\{c_{j}, a_{k} \pm i b_{k}\right\}$, where the eigenvalues are ordered as above, $c_{1}<\cdots<c_{r}$ and $\left(a_{1}, b_{1}\right)<\cdots<\left(a_{s}, b_{s}\right), b_{1}>0, \ldots, b_{s}>0$, then there exist vectors $E_{j} \in \mathbb{C}^{n}$ and $F_{k} \in \mathbb{C}^{n}$ such that $\xi E_{j}=c_{j} E_{j}$ and $\xi F_{k}=\left(a_{k}+i b_{k}\right) F_{k}$.

Since ξ is real, we can choose E_{j} real (in \mathbb{R}^{n}) and if we put $F_{k}=E_{r+2 k-1}+i E_{r+2 k}$ (E_{r+t} are real), then we obtain a basis of \mathbb{R}^{n}. If P is the basis change matrix, then the matrix of ξ is written in the new basis as follows:

$$
\xi^{\prime}=P \xi P^{-1}=D\left(c_{1}, \ldots, c_{r}, a_{1}+i b_{1}, \ldots, a_{s}+i b_{s}\right)
$$

a. If $\operatorname{det} P>0$, then there exists $g=\frac{1}{\sqrt[n]{\operatorname{det} P}} P$, such that $\xi^{\prime}=g \xi g^{-1}$ and $g \in S L(n, \mathbb{R})$. The adjoint orbit $G \cdot \xi$ of the matrix ξ contains a point of Σ.
b. If $\operatorname{det} P<0$ and $r>0$, then we replace E_{1} by $E_{1}^{\prime}=-E_{1}$. The matrix P becomes $P^{\prime}=D(-1,1, \ldots, 1) P, P \xi P^{-1}=P^{\prime} \xi P^{\prime-1}$ and $\operatorname{det}\left(P^{\prime}\right)>0$. As above, the adjoint orbit $G \cdot \xi$ of the matrix ξ contains a point of Σ.
c. If $\operatorname{det} P<0$ and $r=0$, then we replace E_{1} by $E_{1}^{\prime}=E_{2}$ and E_{2} by $E_{2}^{\prime}=$ E_{1}. The matrix P becomes $P^{\prime}=D(-1,1, \ldots, 1) P, P \xi P^{-1}=P^{\prime} \xi P^{\prime-1}$ and $\operatorname{det}\left(P^{\prime}\right)>0$. The adjoint orbit $G \cdot \xi$ of the matrix ξ contains the point $\xi^{\prime}=P^{\prime} \xi P^{\prime-1}=D^{-}\left(a_{1}+i b_{1}, \ldots, a_{s}+i b_{s}\right)$ of Σ.

Lemma 2.2.

Σ is a section for the action of $S L(n, \mathbb{R})$ in Ω, i.e each orbit of Ω contains only a single point of Σ.

Proof.
Let ξ_{0} be an element in Σ and $G \cdot \xi_{0}$ its orbit. If $\xi \in G \cdot \xi_{0} \cap \Sigma$, then, since the spectrum of ξ is the same as ξ_{0} and the order of eigenvalues is fixed, we obtain:

If $r>0$ then $\xi=\xi_{0}$. If $r=0$, we have either $\xi=\xi_{0}$, or

$$
G \cdot \xi_{0} \cap \Sigma=\left\{\xi, \xi_{0}\right\}=\left\{D^{+}\left(a_{k}+i b_{k}\right), D^{-}\left(a_{k}+i b_{k}\right)=g D^{+}\left(a_{k}+i b_{k}\right) g^{-1}\right\}
$$

with $\operatorname{det}(g)=1$.
In the latter case, the sub eigenspaces $V e c_{\mathbb{C}}\left(E_{2 k-1}+i E_{2 k}\right)$ and $V e c_{\mathbb{C}}\left(E_{2 k-1}-i E_{2 k}\right)$ are one dimensional. Thus, there exist a nonzero complex numbers z_{1}, \ldots, z_{s} such that:

$$
g\left(E_{1}+i E_{2}\right)=z_{1}\left(E_{1}-i E_{2}\right), \quad \text { and } \quad g\left(E_{2 k-1}+i E_{2 k}\right)=z_{k}\left(E_{2 k-1}+i E_{2 k}\right), \quad k>1
$$

The matrix of g is written in the basis of eigenvectors of the first matrix as follows :

$$
Q g Q^{-1}=\left(\begin{array}{cccccc}
0 & \overline{z_{1}} & & & & \\
z_{1} & 0 & & & & \\
& & z_{2} & & & \\
& & & \overline{z_{2}} & & \\
& & & & \ddots & \\
& & & & & z_{s} \\
& & & & & \\
\hline z_{s}
\end{array}\right)
$$

The determinant of the matrix $Q g Q^{-1}$ is negative or zero, which is impossible. Therefore, $\xi=\xi_{0}$ and Σ is a section for the action of $S L(n, \mathbb{R})$ on Ω.

Lemma 2.3.

Denote $\Omega_{r, s}=G \cdot \Sigma_{r, s}$. Let $\xi_{0} \in \Omega_{r, s}$.

1. If $r>0$, $\left\{\xi\right.$, such that $\left.C_{\xi}=C_{\xi_{0}}\right\}$ is exactly the adjoint orbit $G \cdot \xi_{0}$ of ξ_{0}.
2. If $r=0$, $\left\{\xi\right.$, such that $\left.C_{\xi}=C_{\xi_{0}}\right\}$ is the union of two adjoint orbits $G \cdot \xi_{0} \sqcup G \cdot \xi_{1}$.

Now, show that Ω is dense. Let ξ be an arbitrary matrix of $\mathfrak{s l}(n, \mathbb{R})$. On \mathbb{C}, we can transform this matrix in Jordan form:

1. for each Jordan block $J_{j}(c)$ associated to the real eigenvalue c of ξ, there exist vectors $E_{j}^{1}, \ldots, E_{j}^{t}$ in \mathbb{C}^{n} such that $\xi E_{j}^{1}=c E_{j}^{1}$ and, if $t>1, \xi E_{j}^{t}=c E_{j}^{t}+E_{j}^{t-1}$. We can choose E_{j}^{t} real.
2. for each Jordan block $J_{k}(a+i b)$ associated to the non real eigenvalue $a+i b$, with $b>0$, we can choose vectors $F_{k}^{1}, \ldots, F_{k}^{t}$ in \mathbb{C}^{n} such that $\xi F_{k}^{1}=(a+i b) F_{k}^{1}$ and, if $t>1, \xi F_{k}^{t}=(a+i b) F_{k}^{t}+F_{k}^{t-1}$. The union of these families of vectors, for all Jordan blocks associated to $a+i b$, form a basis of the characteristic subspace $V(a+i b)$ of ξ associated to $a+i b$. The combined vectors $\overline{F_{k}^{t}}$ form a basis of the characteristic subspace $V(a-i b)$. In this basis, the matrix of $\left.\xi\right|_{V(a-i b)}$ is also in Jordan form. As above, put $F_{k}^{t}=E_{k}^{t}+i E_{k}^{\prime t}$, where E_{k}^{t} and $E_{k}^{\prime t}$ are real vectors.

We arrange the eigenvalues of ξ as above, then we obtain a real basis of \mathbb{R}^{n}. On this basis, ξ is written as follows :

$$
\begin{aligned}
& \xi^{\prime}=P \xi P^{-1}=\left(\begin{array}{ccccccccccc}
c_{1} & u_{1} & & & & & & & & & \\
& \ddots & \ddots & & & & & & & & \\
& & c_{r-1} & u_{r-1} & & & & & & & \\
& & & c_{r} & & & & & & & \\
& & & & & a_{1} & b_{1} & v_{1} & & & \\
& -b_{1} & a_{1} & 0 & v_{1} & & \\
& & & & & & & \ddots & \ddots & & \\
& & & & & & & a_{s-1} & b_{s-1} & v_{s-1} & \\
& & & & & & & & -b_{s-1} & a_{s-1} & 0
\end{array}\right) \\
& =\operatorname{Diag}\left(c_{1}, \ldots, c_{r},\left(\begin{array}{cc}
a_{1} & b_{1} \\
-b_{1} & a_{1}
\end{array}\right), \ldots,\left(\begin{array}{cc}
a_{s} & b_{s} \\
-b_{s} & a_{s}
\end{array}\right)\right)+ \\
& +\operatorname{Overdiag}\left(u_{1}, \ldots, u_{r-1},\left(\begin{array}{cc}
v_{1} & 0 \\
0 & v_{1}
\end{array}\right), \ldots,\left(\begin{array}{cc}
v_{s-1} & 0 \\
0 & v_{s-1}
\end{array}\right)\right) \\
& =D+N \text {. }
\end{aligned}
$$

Where P is a real matrix, Diag means that we place the cited sub matrices on the diagonal, Overdiag means that we place the cited sub matrices on the second diagonal, u_{j} and v_{k} are either 0 or 1 .

Let now the real numbers x_{1}, \ldots, x_{r} and y_{1}, \ldots, y_{s} all distinct such that $x_{1}+\cdots+$ $x_{r}+2 y_{1}+\cdots+2 y_{s}=0$. Put:

$$
A=\operatorname{Diag}\left(x_{1}, \ldots, x_{r}, y_{1}, y_{1}, \ldots, y_{s}, y_{s}\right)
$$

and for all $\varepsilon>0, \xi_{\varepsilon}=\xi+\varepsilon P^{-1} A P$. For almost every ε, the trace of ξ_{ε} is zero and ξ_{ε} has n distinct eigenvalues. Then, $\xi_{\varepsilon} \in \Omega$ and for any norm on $\mathfrak{s l}(n, \mathbb{R})$, $\left\|\xi-\xi_{\varepsilon}\right\|=\varepsilon\left\|P^{-1} A P\right\|$. This proves :

Lemma 2.4.

The set Ω is dense in $\mathfrak{s l}(n, \mathbb{R})$.

Show that the set Ω is an open :
We use the implicit function theorem. Let ξ_{0} a matrix in Ω. The characteristic polynomial $C_{\xi_{0}}$ of ξ_{0} has n simple roots. If $C_{\xi_{0}}(\alpha)=0$, then $C_{\xi_{0}}^{\prime}(\alpha) \neq 0$.

If c_{j} is a real eigenvalue of ξ_{0}, then we consider the map $F_{j}: \mathfrak{s l}(n, \mathbb{R}) \times \mathbb{R} \longrightarrow \mathbb{R}$ defined by $F_{j}(\xi, x)=C_{\xi}(x)$.

If $a_{k}+i b_{k}$ is a non real eigenvalue of ξ_{0}, we note $C_{\xi}(z)=C_{\xi}(x+i y)=A_{\xi}(x, y)+$ $i B_{\xi}(x, y)$, where A_{ξ} and B_{ξ} are real. C_{ξ} is a polynomial in z, then

$$
\frac{\partial}{\partial \bar{z}} C_{\xi}(z)=\frac{\partial}{\partial x} C_{\xi}(z)+i \frac{\partial}{\partial y} C_{\xi}(z)=0
$$

for all z. Since $a_{k}+i b_{k}$ is a simple root of $C_{\xi_{0}}$, then

$$
\frac{\partial}{\partial z} C_{\xi_{0}}\left(a_{k}+i b_{k}\right)=\frac{\partial}{\partial x} C_{\xi_{0}}\left(a_{k}+i b_{k}\right)-i \frac{\partial}{\partial y} C_{\xi_{0}}\left(a_{k}+i b_{k}\right) \neq 0 .
$$

Therefore, we have either $\frac{\partial}{\partial x} A_{\xi_{0}}\left(a_{k}+i b_{k}\right) \neq 0$ and $\frac{\partial}{\partial y} B_{\xi_{0}}\left(a_{k}+i b_{k}\right) \neq 0$ or $\frac{\partial}{\partial y} A_{\xi_{0}}\left(a_{k}+\right.$ $\left.i b_{k}\right) \neq 0$ and $\frac{\partial}{\partial x} B_{\xi_{0}}\left(a_{k}+i b_{k}\right) \neq 0$. In all cases,
$\frac{D\left(A_{\xi_{0}}, B_{\xi_{0}}\right)}{D(x, y)}\left(a_{k}, b_{k}\right)=\left|\begin{array}{ll}\partial_{x} A_{\xi_{0}} & \partial_{y} A_{\xi_{0}} \\ \partial_{x} B_{\xi_{0}} & \partial_{y} B_{\xi_{0}}\end{array}\right|\left(a_{k}, b_{k}\right)=\left(\partial_{x} A_{\xi_{0}}\left(a_{k}, b_{k}\right)\right)^{2}+\left(\partial_{x} B_{\xi_{0}}\left(a_{k}, b_{k}\right)\right)^{2} \neq 0$.
We define $F_{j}: \mathfrak{s l}(n, \mathbb{R}) \times \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ by $F_{k}(\xi, x, y)=\left(A_{\xi}(x+i y), B_{\xi}(x+i y)\right)$, then $\operatorname{Jac}\left(F_{k}\right)\left(\xi_{0}, a_{k}, b_{k}\right) \neq 0$.

The functions F_{j}, F_{k} are differentiable, then $F_{j}\left(\xi_{0}, c_{j}\right)=0$ and $\frac{\partial F_{j}}{\partial x}\left(\xi_{0}, c_{j}\right)=$ $C_{\xi_{0}}^{\prime}\left(c_{j}\right) \neq 0$. Similarly, $F_{k}\left(\xi_{0}, a_{k}, b_{k}\right)=0$ and $\frac{D F_{k}}{D(x, y)}\left(\xi_{0}, a_{k}, b_{k}\right) \neq 0$.

So, there exists an open U_{j} (resp. U_{k}) of $\mathfrak{s l}(n, \mathbb{R})$, containing ξ_{0}, and there is an open V_{j} of \mathbb{R} containing c_{j} (resp. V_{k} of \mathbb{R}^{2}, containing $\left(a_{k}, b_{k}\right)$) and there are maps $f_{j}: U_{j} \longrightarrow V_{j}$ (resp. $f_{k}: U_{k} \longrightarrow V_{k}$) such that

$$
\left.\begin{array}{rl}
(\xi, x) \in U_{j} \times V_{j} \\
F_{j}(\xi, x)=0
\end{array}\right\} \Longleftrightarrow\left\{\begin{array}{r}
(\xi, x) \in U_{j} \times V_{j} \\
x=f_{j}(\xi)
\end{array}\right\} \begin{aligned}
(\xi, x, y) \in U_{k} \times V_{k} \\
\text { resp. } \left.\begin{array}{r}
(\xi, x, y) \in U_{k} \times V_{k} \\
(x, y)=f_{k}(\xi)
\end{array}\right)
\end{aligned}
$$

We replace as needed the open V_{r} by another open small enough such that

$$
V_{j} \cap\left(\bigcup_{j^{\prime} \neq j} V_{j^{\prime}}\right)=\emptyset, \quad V_{k} \cap\left((\mathbb{R} \times\{0\}) \cup \bigcup_{k^{\prime} \neq k} V_{k^{\prime}}\right)=\emptyset .
$$

And we put $U=\bigcap_{r} U_{r} . U$ is an open containing ξ_{0} and, for all ξ in U, C_{ξ} vanishes at n distinct points (real or complex), then, $U \subset \Omega$.

Lemma 2.5.

The set Ω is an open in $\mathfrak{s l}(n, \mathbb{R})$.

3. $\mathfrak{s l}(n, \mathbb{R})$ Admits an overalgebra almost separating of degree n

3.1. Separation of orbits of Ω by invariant functions.

This is also well known. Let ξ a $n \times n$ real matrix and C_{ξ} its characteristic polynomial. On \mathbb{C}, we can put ξ in Jordan form. We note z_{1}, \ldots, z_{n} the diagonal terms of this Jordan form. Then :

$$
\begin{aligned}
C_{\xi}(X) & =(-1)^{n} \operatorname{det}(\xi-X I)=\left(X-z_{1}\right) \cdots\left(X-z_{n}\right) \\
& =X^{n}-\left(\sum_{i} z_{i}\right) X^{n-1}+\left(\sum_{i<j} z_{i} z_{j}\right) X^{n-2}+\cdots+(-1)^{n} z_{1} \ldots z_{n} \\
& =X^{n}-\alpha_{n-1} X^{n-1}+\alpha_{n-2} X^{n-2}+\cdots+(-1)^{n} \alpha_{0} .
\end{aligned}
$$

Therefore, using a formula due to Newton (cf. [W]), we have, for all k,

$$
\begin{gathered}
(-1)^{k+1} \sum_{i_{1}<\cdots<i_{k}} z_{i_{1}} z_{i_{2}} \ldots z_{i_{k}}=\sum_{j} z_{j}^{k}-\left(\sum_{i_{1}} z_{i_{1}}\right)\left(\sum_{j} z_{j}^{k-1}\right)+\left(\sum_{i_{1}<i_{2}} z_{i_{1}} z_{i_{2}}\right)\left(\sum_{j} z_{j}^{k-2}\right)+\ldots \\
+\cdots+(-1)^{k-1}\left(\sum_{i_{1}<\cdots<i_{k-1}} z_{i_{1}} \ldots z_{i_{k-1}}\right)\left(\sum_{j} z_{j}\right)
\end{gathered}
$$

or

$$
(-1)^{k+1} \alpha_{n-k}=\operatorname{Tr}\left(\xi^{k}\right)-\alpha_{n-1} \operatorname{Tr}(\xi)+\alpha_{n-2} \operatorname{Tr}\left(\xi^{k-1}\right)+\cdots+(-1)^{k-1} \alpha_{k-1} \operatorname{Tr}(\xi)
$$

This formula allows to express all α_{k} as functions of the numbers $\operatorname{Tr}\left(\xi^{j}\right)$, and conversely, to express all $\operatorname{Tr}\left(\xi^{k}\right)$ as functions of the numbers α_{j}.

Finally, we deduce that:
two matrices ξ and ξ^{\prime} satisfying $C_{\xi}=C_{\xi^{\prime}}$ if and only if $\operatorname{Tr}\left(\xi^{k}\right)=\operatorname{Tr}\left(\xi^{\prime k}\right)$ for all $k=1, \ldots, n$.

Proposition 3.1.

We keep all previous notations, in particular, $\Omega=\cup_{r+2 s=n} \Omega_{r, s}$ is an open, dense and invariant subset of $\mathfrak{s l}(n, \mathbb{R})$. The orbits of Ω will be called generic orbits. Let $\xi_{0} \in \Omega_{r, s}$.

1. If $r>0$, $\left\{\xi\right.$, such that $T_{k}(\xi)=T_{k}\left(\xi_{0}\right)$ for all $\left.k=2, \ldots, n\right\}$ is exactly the adjoint orbit $G \cdot \xi_{0}$ of ξ_{0},
2. If $r=0$, $\left\{\xi\right.$, such that $T_{k}(\xi)=T_{k}\left(\xi_{0}\right)$ for all $\left.k=2, \ldots, n\right\}$ is the union of two adjoint orbits $G \cdot \xi_{0} \sqcup G \cdot \xi_{1}$.

We say that the invariant functions T_{k} separate almost the (co)adjoint generic orbits of $\mathfrak{s l}(n, \mathbb{R})$.

3.2. Convex hull of orbits of Ω.

For $n=2$, the convex hull of the orbits of Ω are well known (cf.[ASZ]). We deduce that, for $n=2$:

$$
\begin{gathered}
\operatorname{Conv}(G \cdot D(-c, c))=\mathfrak{s l}(2, \mathbb{R}) \quad(c>0), \quad \text { and } \\
\operatorname{Conv}\left(G \cdot D^{+}(i b) \cup G \cdot D^{-}(i b)\right)=\mathfrak{s l}(2, \mathbb{R}) \quad(b>0) .
\end{gathered}
$$

For $n=3$, we deduce that $\Omega \subset \operatorname{Conv}\left(G \cdot D\left(c_{1}, c_{2}, c_{3}\right)\right)$. Indeed, if $c_{1}^{\prime}<c_{2}^{\prime}<c_{3}^{\prime}$ such that $c_{1}^{\prime}+c_{2}^{\prime}+c_{3}^{\prime}=0$, then either $c_{1}^{\prime} \neq-2 c_{3}$, or $c_{2}^{\prime} \neq-2 c_{3}$. Suppose $c_{1}^{\prime} \neq-2 c_{3}$, the other case is trained the same by exchanging the induces 1 and 2 . Let $c_{1}^{\prime \prime}=c_{1}^{\prime}-\frac{c_{1}+c_{2}}{2}$ and $c_{2}^{\prime \prime}=-c_{1}^{\prime}-c_{3}$. We write:

$$
\left(\begin{array}{ll}
c_{1} & \\
& c_{2}
\end{array}\right)=\left(\begin{array}{ll}
\frac{1}{2}\left(c_{1}-c_{2}\right) & \\
& \frac{1}{2}\left(c_{2}-c_{1}\right)
\end{array}\right)+\frac{c_{1}+c_{2}}{2}\left(\begin{array}{ll}
1 & \\
& 1
\end{array}\right)
$$

then, there exist t in $[0,1]$ and $g \in S L(2, \mathbb{R})$ such that:

$$
\left(\begin{array}{ll}
c_{1}^{\prime} & \\
& c_{2}^{\prime \prime}
\end{array}\right)=\left(\begin{array}{ll}
c_{1}^{\prime \prime} & \\
& -c_{1}^{\prime \prime}
\end{array}\right)+\frac{c_{1}+c_{2}}{2}\left(\begin{array}{cc}
1 & \\
& 1
\end{array}\right)=t\left(\begin{array}{ll}
c_{1} & \\
& c_{2}
\end{array}\right)+(1-t) g\left(\begin{array}{cc}
c_{1} & \\
& c_{2}
\end{array}\right) g^{-1}
$$

We deduce that the convex hull of $G \cdot D\left(c_{1}, c_{2}, c_{3}\right)$ contains $\left(\begin{array}{lll}c_{1}^{\prime} & & \\ & c_{2}^{\prime \prime} & \\ & & c_{3}\end{array}\right)$ with $c_{2}^{\prime \prime} \neq c_{3}$. By the same argument, but with induces 2 and 3, we show that this convex hull contains $D\left(c_{1}^{\prime}, c_{2}^{\prime}, c_{3}^{\prime}\right)$. Let now $a^{\prime}=-\frac{1}{2} c_{1}^{\prime}$, and $b^{\prime}>0$, then :

$$
\left(\begin{array}{ll}
c_{2}^{\prime} & \\
& c_{3}^{\prime}
\end{array}\right)=\left(\begin{array}{ll}
\frac{1}{2}\left(c_{2}^{\prime}-c_{3}^{\prime}\right) & \\
& \\
& \frac{1}{2}\left(c_{3}^{\prime}-c_{2}^{\prime}\right)
\end{array}\right)+a^{\prime}\left(\begin{array}{ll}
1 & \\
& 1
\end{array}\right)
$$

the convex hull of $G \cdot D\left(c_{1}, c_{2}, c_{3}\right)$ contains also

$$
D\left(c_{1}^{\prime}, a^{\prime}+i b^{\prime}\right)=\left(\begin{array}{ccc}
c_{1}^{\prime} & & \\
& 0 & b^{\prime} \\
& -b^{\prime} & 0
\end{array}\right)+a^{\prime}\left(\begin{array}{ccc}
0 & & \\
& 1 & \\
& & 1
\end{array}\right)
$$

On the other hand, we saw that $\left(\begin{array}{ccc}c & & \\ & a & -b \\ & b & a\end{array}\right)$ belongs to $G \cdot D(c, a+i b)$. Therefore, if $a \neq 0$ then $\operatorname{Conv}(G \cdot D(c, a+i b))$ contains the matrix $\left(\begin{array}{lll}c & & \\ & & \\ & & \\ & & a\end{array}\right)$, with $a \neq c$. So, by our first argument, $\operatorname{Conv}(G \cdot D(c, a+i b))$ contains the matrix $\left(\begin{array}{lll}c_{1}^{\prime} & & \\ & c_{2}^{\prime} & \\ & & a\end{array}\right)$ with $c_{1}^{\prime} \neq c_{2}^{\prime} \neq a \neq c_{1}^{\prime}$. Therefore, by the above, $\operatorname{Conv}(G \cdot D(c, a+i b))$ contains all Ω.

If $a=0, \operatorname{Conv}(G \cdot D(0, i b))$ contains the matrices $\left(\begin{array}{ll}0 & \\ & D^{+}(i b)\end{array}\right)$ and $\left(\begin{array}{ll}0 & \\ & D^{-}(i b)\end{array}\right)$. So, $\operatorname{Conv}(G \cdot D(0, i b))$ contains the matrix $\left(\begin{array}{lll}0 & & \\ & -1 & \\ & & 1\end{array}\right)$. Finally, $\operatorname{Conv}(G \cdot D(0, i b))$ contains all Ω.

We have proved:

Lemma 3.2.

If $n=3$ and $\xi \in \Omega$, then $\Omega \subset \operatorname{Conv}(G \cdot \xi)$.

If $n=4$, as above, $\Omega \subset \operatorname{Conv}\left(G \cdot D\left(c_{1}, \ldots, c_{4}\right)\right)$. We deduce by using the lemma that for all $c_{2}^{\prime}, \ldots, c_{4}^{\prime}$,

$$
D\left(c_{1}, c_{2}^{\prime}, c_{3}^{\prime}, c_{4}^{\prime}\right) \in \operatorname{Conv}\left(G \cdot D\left(c_{1}, c_{2}, a+i b\right)\right)
$$

and also $\Omega \subset \operatorname{Conv}\left(G \cdot D\left(c_{1}, c_{2}, a+i b\right)\right)$. It remains the cases $D\left(a_{1}+i b_{1}, a_{2}+i b_{2}\right)$, $a_{1} \neq 0$ and $D\left(i b_{1}, i b_{2}\right)$. In the first case, we saw that

$$
\left(\begin{array}{cccc}
a_{1} & -b_{1} & & \\
b_{1} & a_{1} & & \\
& & a_{2} & -b_{2} \\
& & b_{2} & a_{2}
\end{array}\right) \in G \cdot D\left(a_{1}+i b_{1}, a_{2}+i b_{2}\right)
$$

then

$$
\left(\begin{array}{llll}
a_{1} & & & \\
& a_{1} & & \\
& & a_{2} & \\
& & & a_{2}
\end{array}\right) \in \operatorname{Conv}\left(G \cdot D\left(a_{1}+i b_{1}, a_{2}+i b_{2}\right)\right) \quad \text { and } a_{1} \neq a_{2}
$$

By applying the calculation for $n=2$, we deduce that $D\left(a_{1}, x, y, a_{4}\right)$ belongs to $\operatorname{Conv}\left(G \cdot D\left(a_{1}+i b_{1}, a_{2}+i b_{2}\right)\right)$, for all x and y such that $a_{1}+x+y+a_{4}=0$. Therefore, $\Omega \subset \operatorname{Conv}\left(G \cdot D\left(a_{1}+i b_{1}, a_{2}+i b_{2}\right)\right)$.

For the latter case, we saw that, insl$(2, \mathbb{R})$, the adjoint orbit of $D(i b)$ is the set of matrices $\left(\begin{array}{cc}x & y+z \\ y-z & -x\end{array}\right)$ with $z^{2}-x^{2}-y^{2}=b^{2}$ and $z>0$. Then, $G \cdot D\left(i b_{1}, i b_{2}\right)$ contains a matrix as follows:

$$
\left(\begin{array}{cccc}
x & z & & \\
-z & -x & & \\
& & 0 & b_{2} \\
& & -b_{2} & 0
\end{array}\right), \quad \text { with } \quad 0<b_{1}<z
$$

Combining this matrix with $\left(\begin{array}{cccc}0 & 1 & & \\ 1 & 0 & & \\ & & 0 & 1 \\ & & 1 & 0\end{array}\right)$, we obtain :

$$
\xi=\left(\begin{array}{cccc}
-x & -z & & \\
z & x & & \\
& & 0 & -b_{2} \\
& & b_{2} & 0
\end{array}\right) \in G \cdot D\left(i b_{1}, i b_{2}\right)
$$

If $t=\frac{b_{1}}{z+b_{1}}$, the matrix $t \xi+(1-t) D\left(i b_{1}, i b_{2}\right)$ is $D\left(-t x, t x, i(1-2 t) b_{2}\right) \in \operatorname{Conv}(G$. $\left.D\left(i b_{1}, i b_{2}\right)\right)$. Or

Lemma 3.3.

If $n=4$ and $\xi \in \Omega$, then $\Omega \subset \operatorname{Conv}(G \cdot \xi)$.

Proposition 3.4.

For all $n>2$, the convex hull of the adjoint orbit of a point ξ in Ω contains Ω :

$$
\Omega \subset \operatorname{Conv}(G \cdot \xi)
$$

This convex hull is dense in $\mathfrak{s l}(n, \mathbb{R})$.

Proof.
By induction on $n>4$, suppose that, for all $2<p<n$, this property is true. We consider $D\left(c_{j}, a_{k}+i b_{k}\right) \in \Sigma_{r, s}$, with $r+2 s=n$.

If $r \geq 2$, then $n-2>2$, and we write:
$D\left(c_{j}, a_{k}+i b_{k}\right)=\left(\begin{array}{ll}D\left(c_{1}^{\prime}, c_{2}^{\prime}\right) & \\ & D\left(c_{3}^{\prime}, \ldots, c_{r}^{\prime}, a_{k}^{\prime}+i b_{k}^{\prime}\right)\end{array}\right)+\left(\begin{array}{cc}\frac{c_{1}+c_{2}}{2} I_{2} & \\ & -\frac{c_{1}+c_{2}}{n-2} I_{n-2}\end{array}\right)$,
Using the fact that $\mathfrak{s l}(2, \mathbb{R})=\operatorname{Conv}\left(G \cdot D\left(c_{1}^{\prime}, c_{2}^{\prime}\right)\right)$ and by the induction hypothesis for $n-2$, we get $\Omega \subset \operatorname{Conv}\left(G \cdot D\left(c_{j}, a_{k}+i b_{k}\right)\right)$.

If $r=1$, we decompose $D\left(c_{1}, a_{k}+i b_{k}\right)$ as : $D\left(c_{1}, a_{k}+i b_{k}\right)=$

$$
\left(\begin{array}{cc}
D\left(c_{1}^{\prime}, a_{1}^{\prime}+i b_{1}\right) & D\left(a_{2}^{\prime}+i b_{2}^{\prime}, \ldots, a_{n}^{\prime}+i b_{n}^{\prime}\right)
\end{array}\right)+\left(\begin{array}{cc}
\frac{c_{1}+2 a_{1}}{3} I_{3} & \\
& -\frac{c_{1}+2 a_{1}}{n-3} I_{n-3}
\end{array}\right)
$$

Then, a matrix $D\left(c_{1}^{\prime \prime}, c_{2}^{\prime \prime}, c_{3}^{\prime \prime}, a_{2}+i b_{2}, \ldots, a_{n}+i b_{n}\right)$ belongs to $\operatorname{Conv}\left(G \cdot D\left(c_{1}, a_{k}+i b_{k}\right)\right)$. Therefore, the first case applies, and we still get the result.

If $r=0$, then $s>2$, we decompose $D\left(a_{k}+i b_{k}\right)$ as : $D\left(a_{k}+i b_{k}\right)=$

$$
\left(\begin{array}{cc}
D\left(a_{1}^{\prime}+i b_{1}, a_{2}^{\prime}+i b_{2}^{\prime}\right) & \\
D\left(a_{3}^{\prime}+i b_{3}^{\prime}, \ldots, a_{n}^{\prime}+i b_{n}^{\prime}\right)
\end{array}\right)+\left(\begin{array}{cc}
\frac{2 a_{1}+2 a_{2}}{4} I_{4} & \\
& -\frac{2 a_{1}+2 a_{2}}{n-4} I_{n-4}
\end{array}\right) .
$$

Then a matrix $D\left(c_{1}^{\prime \prime}, \ldots, c_{4}^{\prime \prime}, a_{3}+i b_{3}, \ldots, a_{n}+i b_{n}\right)$ belongs to $\operatorname{Conv}\left(G \cdot D\left(a_{k}+i b_{k}\right)\right)$. So, the first case applies, and this completes the proof of our proposition.

Corollary 3.5. $\mathfrak{s l}(n, \mathbb{R})$ admits an overalgebra almost separating of degree n.

Proof.
$\mathfrak{g}=\mathfrak{s l}(n, \mathbb{R})$ admits an overalgebra of degree n, given by :

$$
\begin{aligned}
& \mathfrak{g}^{+}=\mathfrak{s l}(n, \mathbb{R}) \times \mathbb{R}^{n-1} \\
& \Phi: \mathfrak{g}^{\star} \longrightarrow \mathfrak{g}^{+\star}, \quad \Phi(X)=(X, \phi(X))=\left(X, T_{2}(X), T_{3}(X), \ldots, T_{n}(X)\right) .
\end{aligned}
$$

Indeed, ϕ is polynomial, with degree n.
Moreover, we have for all ξ in Ω,

$$
\begin{aligned}
\overline{\operatorname{Conv}}(\Phi(\operatorname{Coad}(S L(n, \mathbb{R})) \xi)) & =\overline{\operatorname{Conv}}(\operatorname{Coad}(S L(n, \mathbb{R})) \xi) \times\left(T_{2}(\xi), \ldots, T_{n}(\xi)\right) \\
& =\mathfrak{s l}(n, \mathbb{R})^{\star} \times\left(T_{2}(\xi), \ldots, T_{n}(\xi)\right) .
\end{aligned}
$$

Then $\Phi\left(\xi^{\prime}\right)$ belongs to this set if and only if $T_{k}\left(\xi^{\prime}\right)=T_{k}(\xi)$ for all k, if and only if $C_{\xi^{\prime}}=C_{\xi}$.

We saw that if n is odd, $\left\{\xi^{\prime}\right.$, such that $\left.C_{\xi^{\prime}}=C_{\xi}\right\}$ is exactly the orbit $\operatorname{Coad}(S L(n, \mathbb{R})) \xi$ and, if n is even, $\left\{\xi^{\prime}\right.$, such that $\left.C_{\xi^{\prime}}=C_{\xi}\right\}$ is either the orbit $\operatorname{Coad}(S L(n, \mathbb{R})) \xi$, or, if C_{ξ} has only non real roots, the set $\left\{\xi^{\prime}\right.$, such that $\left.C_{\xi^{\prime}}=C_{\xi}\right\}$ is the union of two disjoint orbits. This proves that $\left(\mathfrak{g}^{+}, \phi\right)$ is an overalgebra almost separating of degree n of $\mathfrak{s l}(n, \mathbb{R})$.

4. Overalgebra almost separating of degree p of a Lie algebra \mathfrak{g}

Definition 4.1. (Semi direct product)
Let G be a real Lie group, V a finite dimensional vector space and (π, V) a linear representation of G. Denote by $G^{+}=G^{\prime} \rtimes V$ the Lie group whose set $G \times V$ and low:

$$
(g, v) \cdot\left(g^{\prime}, v^{\prime}\right)=\left(g g^{\prime}, v+\pi(g) v^{\prime}\right)
$$

Its Lie algebra is $\mathfrak{g}^{+}=\mathfrak{g}^{\prime} \rtimes V$, whose space $\mathfrak{g} \oplus V$ and bracket :

$$
\left[(X, u),\left(X^{\prime}, u^{\prime}\right)\right]=\left(\left[X, X^{\prime}\right], \pi^{\prime}(X) u^{\prime}-\pi^{\prime}\left(X^{\prime}\right) u\right) .
$$

(π^{\prime} is the derivative of π, π^{\prime} is the representation of \mathfrak{g} in V).

The exponential map is

$$
\exp (X, u)=\left(\exp X, \frac{e^{\pi^{\prime}(X)}-I}{\pi^{\prime}(X)} u\right)
$$

We also define the linear map $\psi_{u}: \mathfrak{g} \longrightarrow V$, by $\psi_{u}(X)=\pi^{\prime}(X) u$, for all $u \in V$. Then, the coadjoint action is realized in $\mathfrak{g}^{+\star}=\mathfrak{g}^{\star} \times V^{\star}$ and defined by:

$$
\operatorname{Coad}^{\prime}(X, u)(\xi, f)=\left(\operatorname{Coad}^{\prime}(X) \xi+{ }^{t} \psi_{u}(f),-{ }^{t} \pi^{\prime}(X) f\right)
$$

The group action is

$$
\operatorname{Coad}(g, v)(\xi, f)=\left(\operatorname{Coad}(g) \xi+{ }^{t} \psi_{v}\left({ }^{t} \pi\left(g^{-1}\right) f\right),{ }^{t} \pi\left(g^{-1}\right) f\right) .
$$

Denote by $\pi^{\star}(g)={ }^{t} \pi\left(g^{-1}\right)$.
Let $\Phi: \mathfrak{g}^{\star} \longrightarrow \mathfrak{g}^{+\star}$ be a map non necessarily linear. We assume that $p \circ \Phi=i d$, then Φ is written $\Phi(\xi)=(\xi, \phi(\xi))$. ϕ is not necessarily linear.

Assume that $\Phi(\operatorname{Coad}(G) \xi)=\operatorname{Coad}\left(G^{+}\right) \Phi(\xi)$, then : for all g in G and all v in V, there exists $g^{\prime} \in G\left(g^{\prime}=g_{g, v, \xi}^{\prime}\right)$ such that

$$
\left\{\begin{aligned}
\pi^{\star}(g) \phi(\xi) & =\phi\left(\operatorname{Coad}\left(g^{\prime}\right) \xi\right), \\
\operatorname{Coad}(g)(\xi)+\left({ }^{t} \psi_{v} \circ \pi^{\star}(g)\right) \phi(\xi) & =\operatorname{Coad}\left(g^{\prime}\right) \xi=\operatorname{Coad}(g)(\xi)+{ }^{t} \psi_{v} \circ \phi\left(\operatorname{Coad}\left(g^{\prime}\right) \xi\right) .
\end{aligned}\right.
$$

In particular, if X is in \mathfrak{g}, then $\pi^{\star}(\exp (t X))(\phi(\xi))=\phi\left(\operatorname{Coad}\left(g_{t}^{\prime}\right) \xi\right)$. The continuous curve $t \mapsto \pi^{\star}(\exp (t X))(\phi(\xi))$ is drawn on the surface $\mathcal{C}=\phi(\operatorname{Coad}(G) \xi)$, its derivative at 0 is the vector $\pi^{\star \prime}(X) \phi(\xi)$. This vector belongs to the tangent space

$$
T_{\phi(\xi)}(\mathcal{C})=\phi^{\prime}(\phi(\xi))\left(T_{\xi}(\operatorname{Coad}(G) \xi)\right)=\phi^{\prime}(\phi(\xi))(\operatorname{Coad}(\mathfrak{g}) \xi)
$$

We have also, for the same g in G, v in V, and $g^{\prime}=g_{g, v, \xi}^{\prime} \in G$,

$$
\operatorname{Coad}(g)(\xi)=\left(I-{ }^{t} \psi_{v} \circ \phi\right)\left(\operatorname{Coad}\left(g^{\prime}\right) \xi\right) .
$$

We deduce that, if $v=0$, then $\operatorname{Coad}(g)(\xi)=\operatorname{Coad}\left(g_{g, 0, \xi}^{\prime}\right)(\xi)$ and therefore $\pi^{\star}(g) \phi(\xi)=$ $\phi(\operatorname{Coad}(g) \xi)$. So:

Lemma 4.2.

ϕ is an intertwining (non linear) between the coadjoint representation and the representation π^{\star}.

If ϕ is polynomial of degree p, then ϕ is written :

$$
\phi(\xi)=\phi_{1}(\xi)+\phi_{2}(\xi)+\cdots+\phi_{p}(\xi),
$$

with ϕ_{k} homogeneous of degree k.
Since ϕ is an intertwining, then $\phi \circ A d_{g}=\pi^{\star}(g) \circ \phi$, and for all $k, \phi_{k} \circ A d_{g}=$ $\pi^{\star}(g) \circ \phi_{k}$, i.e each ϕ_{k} is an intertwining.

On the other hand, for each $k, \phi_{k}(\xi)$ can be written

$$
\phi_{k}(\xi)=b_{k}(\underbrace{\xi \cdot \ldots \cdot \xi}_{k}),
$$

where b_{k} is a linear map from $S^{k}\left(\mathfrak{g}^{\star}\right)$ in V^{\star}. The map b_{k} is also an intertwining, since the action Coad ${ }^{k}$ of G on $S^{k}\left(\mathfrak{g}^{\star}\right)$ is such that:

$$
\phi_{k}(\operatorname{Coad}(g) \xi)=b_{k}(\operatorname{Coad}(g) \xi \cdot \ldots \cdot \operatorname{Coad}(g) \xi)=\left(b_{k} \circ \operatorname{Coad}^{k}(g)\right)(\xi \cdot \ldots \cdot \xi)
$$

Put then:

$$
S_{p}\left(\mathfrak{g}^{\star}\right)=\mathfrak{g}^{\star} \oplus S^{2}\left(\mathfrak{g}^{\star}\right) \oplus \cdots \oplus S^{p}\left(\mathfrak{g}^{\star}\right),
$$

and

$$
b: S_{p}\left(\mathfrak{g}^{\star}\right) \longrightarrow V^{\star}, b\left(v_{1}+v_{2}+\cdots+v_{p}\right)=b_{1}\left(v_{1}\right)+\cdots+b_{p}\left(v_{p}\right) .
$$

Let $U=b\left(S_{p}\left(\mathfrak{g}^{\star}\right)\right) . U$ is a submodule of V^{\star}, isomorphic to the quotient module $S_{p}\left(\mathfrak{g}^{\star}\right) / \operatorname{ker}(b)$. Put then $W=V / U^{\perp} . W$ is a quotient module of the module V such that $W^{\star} \simeq U$ (and then $\left.W \simeq U^{\star}\right)$.

Lemma 4.3.

If $(\mathfrak{g} \rtimes V, \phi)$ is an overalgebra almost separating of \mathfrak{g}, then $(\mathfrak{g} \rtimes W, \tilde{\phi})$, where

$$
\tilde{\phi}(\xi)=b(\xi+\xi \cdot \xi+\cdots+\xi \cdot \ldots \cdot \xi)
$$

is also an overalgebra almost separating of \mathfrak{g}.

Proof.

In the statement of this lemma, we identify W^{\star} with the submodule U of V^{\star}. With this identification, if ι is the canonical injection of U in V^{\star}, then $\phi(\xi)=\iota \sim \tilde{\phi}(\xi)$. The application Φ becomes $\tilde{\Phi}(\xi)=(\xi, \iota \circ \phi(\xi))=(j \circ \Phi)(\xi)$ if $j(\xi, v)=(\xi, \iota(v))$. Therefore

$$
\overline{\operatorname{Conv}}(\tilde{\Phi}(\operatorname{CoadG} \xi))=j(\overline{\operatorname{Conv}}(\Phi(\operatorname{CoadG} \xi))),
$$

and $\overline{\operatorname{Conv}}(\tilde{\Phi}(\operatorname{CoadG} \xi))=\overline{\operatorname{Conv}}\left(\tilde{\Phi}\left(\operatorname{CoadG} \xi^{\prime}\right)\right)$ if and only if $\overline{\operatorname{Conv}}(\Phi(\operatorname{CoadG} \xi))=$ $\overline{\operatorname{Conv}}\left(\Phi\left(\operatorname{Coad} G \xi^{\prime}\right)\right)$. We deduce that $(\mathfrak{g} \rtimes W, \tilde{\phi})$ or, if we prefer, $\left(\mathfrak{g} \rtimes\left(S_{p}\left(\mathfrak{g}^{\star}\right) / \operatorname{ker} b\right)^{\star}, \tilde{\phi}\right)$ is an overalgebra almost separating of \mathfrak{g}.

If \mathfrak{g} is semi-simple and deployed, then all its representations are completely reducible. Therefore $W^{\star}=S_{p}\left(\mathfrak{g}^{\star}\right) / \operatorname{ker} b$ is isomorphic to a submodule of $S_{p}\left(\mathfrak{g}^{\star}\right)=$ $S_{p}(\mathfrak{g})$. In this case, W is isomorphic to a submodule of $\left(S_{p}(\mathfrak{g})\right)^{\star}$. So, we consider the application ϕ with values in $S_{p}(\mathfrak{g})$, and ϕ becomes :

$$
\phi(\xi)=b_{1}(\xi)+\cdots+b_{p}(\xi \cdot \ldots \cdot \xi)
$$

The application b becomes an intertwining of modules $S_{p}(\mathfrak{g})$.

Corollary 4.4.

If \mathfrak{g} is a deployed and semi-simple Lie algebra, admitting an overalgebra almost separating of degree p, and τ a natural application from $\mathfrak{g}=\mathfrak{g}^{\star}$ to $S_{p}(\mathfrak{g})$ defined by : $\tau(\xi)=\xi+\xi \cdot \xi+\cdots+\xi \cdot \ldots \cdot \xi$, then there exists an intertwining b of $S_{p}(\mathfrak{g})$ such that $\left(\mathfrak{g} \rtimes\left(S_{p}(\mathfrak{g})\right)^{\star}, b \circ \tau\right)$ is an overalgebra almost separating of \mathfrak{g}.

$$
\text { 5. The CASE } \mathfrak{g}=\mathfrak{s l}(n, \mathbb{R}) \text { AND } p=2
$$

5.1. The case $\mathfrak{g}=\mathfrak{s l}(n, \mathbb{R})$.

We suppose now $\mathfrak{g}=\mathfrak{s l}(n, \mathbb{R})$. Recall the usual notations (cf. $[\mathrm{FH}])$.
$\mathfrak{s l}(n, \mathbb{R})$ is a real simple algebra. A Cartan subalgebra \mathfrak{h} of $\mathfrak{s l}(n, \mathbb{R})$, of dimension $n-1$, is given by the set of diagonal matrices $\xi=D\left(c_{1}, \ldots, c_{n}\right)$. With this Cartan algebra, $\mathfrak{s l}(n, \mathbb{R})$ is deployed. For $H \in \mathfrak{h}$, we note $L_{i}(H)=c_{i}$, with $L_{1}+\cdots+L_{n}=0$. We choose the usual system of simple roots, i.e the forms $\alpha_{i}=L_{i}-L_{i+1}(1 \leq i \leq$ $n-1$). The system of positive roots is the set of forms $L_{i}-L_{j}$, with $i<j$. If $e_{i j}=\left(x_{r s}\right)$ is the $n \times n$ matrix such that $x_{r s}=\delta_{r i} \delta_{s j}$, then for all H in \mathfrak{h},

$$
\operatorname{ad}(H) e_{i j}=\left\{\begin{array}{lc}
\left(\alpha_{i}+\cdots+\alpha_{j-1}\right)(H) e_{i j}, & \text { if } i<j \\
-\left(\alpha_{j}+\cdots+\alpha_{i-1}\right)(H) e_{i j}, & \text { if } i>j
\end{array}\right.
$$

The fundamental weights are $\omega_{k}=L_{1}+\cdots+L_{k}(1 \leq k \leq n-1)$ and the simple modules are exactly the modules noted $\Gamma_{a_{1} \ldots a_{n-1}}$ of highest weight $a_{1} \omega_{1}+\cdots+a_{n-1} \omega_{n-1}$, with a_{k} integer. Moreover, the dual of $\Gamma_{a_{1}, \ldots, a_{n-1}}$ is the module $\Gamma_{a_{n-1}, \ldots, a_{1}}$. (cf. [FH]).

Let $X \mapsto X^{s}$ be the symmetry operation relative to the second diagonal given by: if X is the matrix $\left(x_{i j}\right)$, then X^{s} is the matrix $\left(x_{i j}^{s}\right)$ with :

$$
x_{i j}^{s}=x_{(n+1-j)(n+1-i)},
$$

The operation s leaves the Cartan subalgebra invariant. For all weight ω, put $\omega^{s}(H)=$ $\omega\left(H^{s}\right)$. In particular, $L_{i}^{s}=L_{n+1-i}$ and $\omega_{j}^{s}=-\omega_{n-j}$.
Moreover, s permutes the radiciel spaces, since $e_{i j}^{s}=e_{(n+1-j)(n+1-i)}$, or, if H belongs to \mathfrak{h} and $i<j$,

$$
\left[H, e_{i j}^{s}\right]=-\left(L_{i}^{s}-L_{j}^{s}\right)(H) e_{i j}^{s} .
$$

We consider now the module $S^{k}(\mathfrak{s l}(n, \mathbb{R}))$ i.e the space of the sums $\sum_{i_{1}<\cdots<i_{k}} \lambda_{i_{1}, \ldots, i_{k}} X_{i_{1}}$. $\ldots \cdot X_{i_{k}}$ on which $\mathfrak{s l}(n, \mathbb{R})$ acts by the adjoint action ad defined by:

$$
a d_{X}\left(X_{i_{1}} \cdot \ldots \cdot X_{i_{k}}\right)=\sum_{r=1}^{k} X_{i_{1}} \cdot \ldots \cdot\left[X, X_{i_{r}}\right] \cdot \ldots \cdot X_{i_{k}} .
$$

Lemma 5.1.

The space $S^{k}(\mathfrak{s l}(n, \mathbb{R}))$ is self-dual i.e $\left(S^{k}(\mathfrak{s l}(n, \mathbb{R}))\right)^{\star}=S^{k}(\mathfrak{s l}(n, \mathbb{R}))$.
Proof.
Suppose that the module $\Gamma_{a_{1}, \ldots, a_{n-1}}$ appears in $S^{k}(\mathfrak{s l}(n, \mathbb{R}))$. Then, there is a non zero vector $v_{a_{1}, \ldots, a_{n-1}}$ such that, for all H in \mathfrak{h}, and for all $i<j$,

$$
a d_{H}\left(v_{a_{1} \ldots a_{n-1}}\right)=\left(a_{1} \omega_{1}+\cdots+a_{n-1} \omega_{n-1}\right)(H) v_{a_{1} \ldots a_{n-1}}, \quad a d_{e_{i j}}\left(v_{a_{1} \ldots a_{n-1}}\right)=0 .
$$

If $v=\sum_{i_{1}<\cdots<i_{k}} \lambda_{i_{1}, \ldots, i_{k}} X_{i_{1}} \cdots \cdot X_{i_{k}}$ is a vector of $S^{k}(\mathfrak{s l}(n, \mathbb{R}))$, then $v^{s}=\sum_{i_{1}<\cdots<i_{k}} \lambda_{i_{1}, \ldots, i_{k}} X_{i_{1}}^{s}$. $\ldots \cdot X_{i_{k}}^{s}$. Moreover, the map $v \mapsto v^{s}$ is an involutive bijection : $\left(v^{s}\right)^{s}=v$.

The vector $v_{a_{1} \ldots a_{n-1}}^{s}$ is not zero and, for all H in \mathfrak{h}, and all $i<j$,

$$
\begin{aligned}
a d_{H}\left(v_{a_{1} \ldots a_{n-1}}^{s}\right) & =-\left(a_{1} \omega_{1}+\cdots+a_{n-1} \omega_{n-1}\right)^{s}(H) v_{a_{1} \ldots a_{n-1}}^{s} \\
& =\left(a_{n-1} \omega_{1}+\cdots+a_{1} \omega_{n-1}\right)(H) v_{a_{1} \ldots a_{n-1}}^{s}, \\
a d_{e_{i j}}\left(v_{a_{1} \ldots a_{n-1}}^{s}\right) & =0 .
\end{aligned}
$$

In other words,

$$
\left(\Gamma_{a_{1}, \ldots, a_{n-1}}\right)^{s}=\Gamma_{a_{n-1}, \ldots, a_{1}} \simeq\left(\Gamma_{a_{1}, \ldots, a_{n-1}}\right)^{\star}
$$

Corollary 5.2.

If $\mathfrak{s l}(n, \mathbb{R})$ admits an overalgebra almost separating of degree p, if τ is the natural application of $\mathfrak{s l}(n, \mathbb{R})^{\star}$ in $S_{p}(\mathfrak{s l}(n, \mathbb{R}))=\left(S_{p}(\mathfrak{s l}(n, \mathbb{R}))\right)^{\star}$ given by : $\tau(\xi)=$ $\xi+\xi \cdot \xi+\cdots+\xi \cdot \ldots \cdot \xi$, then there exist an intertwining b_{k} of $S^{k}(\mathfrak{s l}(n, \mathbb{R}))(k=1, \ldots, p)$ such that $\left(\mathfrak{s l}(n, \mathbb{R}) \rtimes S_{p}(\mathfrak{s l}(n, \mathbb{R})), \sum_{k} b_{k} \circ \tau\right)$ is an overalgebra almost separating of the Lie algebra $\mathfrak{s l}(n, \mathbb{R})$.

5.2. The case $p=2$.

For $k=1$ and $k=2$, looking for the intertwining between $S^{k}\left(\mathfrak{s l}(n, \mathbb{R})^{\star}\right)$ and $\left(S^{k}(\mathfrak{s l}(n, \mathbb{R}))\right)^{\star}$.
For $k=1$, the space of these intertwining is one dimensional and generated by P_{0} defined by :

$$
\left\langle P_{0}(\xi), X\right\rangle=\operatorname{Tr}(\xi X)
$$

Therefore, any intertwining b_{1} is written $b_{1}=a_{0} P_{0}$, with a_{0} real. For $\mathrm{k}=2$:

5.2.1. Decomposition of $S^{2}(\mathfrak{g})$.

The module $S^{2}(\mathfrak{g})$ is the sum of three or four irreducible modules, all of different types. Recall the usual notations (cf. $[\mathrm{FH}]$).

- The highest weight vector in $S^{2}(\mathfrak{s l}(n, \mathbb{R}))$ is

$$
v_{20 \ldots 02}=e_{1 n} \cdot e_{1 n} .
$$

The weight of this vector is $2 \omega_{1}+2 \omega_{n}=2 L_{1}-2 L_{n}$. Then, we deduce the existence of a simple module $\Gamma_{20 \ldots 02}$ of dimension (cf. [FH]):

$$
\operatorname{dim} \Gamma_{20 \ldots 02}=\prod_{i=2}^{n-1} \frac{2+n-i}{n-i} \cdot \prod_{j=2}^{n-1} \frac{2+j-1}{j-1} \cdot \frac{4+n-1}{n-1}=\frac{n^{2}(n-1)(n+3)}{4}
$$

- Among the weight vectors of weight $\omega_{2}+\omega_{n-2}=L_{1}-L_{n}+L_{2}-L_{n-1}$, and if $n>3$, there is one that is annulled by the action of $e_{i(i+1)}, 1 \leq i \leq(n-1)$. This weight vector is :

$$
v_{010 \ldots 010}=e_{2 n} . e_{1(n-1)}-e_{2(n-1)} \cdot e_{1 n} .
$$

We deduce then the existence of a simple module $\Gamma_{010 \ldots 010}$ of dimension: $\operatorname{dim} \Gamma_{010 \ldots 010}=$

$$
\begin{aligned}
& \prod_{j=3}^{n-2} \frac{1+(j-1)}{j-1} \cdot \prod_{j=3}^{n-2} \frac{1+(j-2)}{j-2} \cdot \prod_{i=3}^{n-2} \frac{1+(n-1)-i}{n-1-i} \cdot \prod_{i=3}^{n-2} \frac{1+n-i}{n-i} \cdot \frac{n^{2}(n+1)}{4(n-2)^{2}(n-3)} \\
& =\frac{n^{2}(n+1)(n-3)}{4}
\end{aligned}
$$

If $n=3, e_{22}$ is not in $\mathfrak{s l}(3)$, and this dimension is 0 . This sub module does not appear.

- Among the weight vectors of weight $\omega_{1}+\omega_{n-1}=L_{1}-L_{n}$, there is one that is annulled by the action of $e_{i(i+1)}, 1 \leq i \leq(n-1)$. This weight vector is:

$$
v_{10 \ldots 01}=\sum_{i=1}^{n} e_{1 i} \cdot e_{i n}-\frac{2}{n} \sum_{j=1}^{n} e_{j j} \cdot e_{1 n}
$$

Then, we deduce the existence of a simple module $\Gamma_{10 \ldots 01}$ of dimension:

$$
\operatorname{dim} \Gamma_{10 \ldots 01}=\prod_{i=2}^{n-1} \frac{1+n-i}{n-i} \cdot \prod_{j=2}^{n-1} \frac{1+j-1}{j-1} \cdot \frac{2+n-1}{n-1}=n^{2}-1
$$

- Among the weight vectors of weight 0 , there is one that is annulled by the action of $e_{i(i+1)}, 1 \leq i \leq(n-1)$. This weight vector is:

$$
v_{00 \ldots . .00}=2 n \sum_{1 \leq i<j \leq n} e_{i j} \cdot e_{j i}+\sum_{1 \leq i<j \leq n}\left(e_{i i}-e_{j j}\right) \cdot\left(e_{i i}-e_{j j}\right)
$$

We deduce the existence of a trivial simple module $\Gamma_{00 \ldots 00}$ of dimension 1.
Therefore:

$$
S^{2}(\mathfrak{s l}(n, \mathbb{R})) \cong \begin{cases}\Gamma_{20 \ldots . .02} \oplus \Gamma_{10 \ldots 01} \oplus \Gamma_{010 \ldots 010} \oplus \Gamma_{0 \ldots 0}, & \text { if } n>3 \\ \Gamma_{22} \oplus \Gamma_{11} \oplus \Gamma_{00}, & \text { if } n=3\end{cases}
$$

since the dimensions, $\frac{n^{2}\left(n^{2}-1\right)}{2}=\frac{n^{2}(n-1)(n+3)}{4}+n^{2}-1+\frac{n^{2}(n+1)(n-3)}{4}+1$.

5.2.2. Intertwining of $S^{2}(\mathfrak{s l}(n, \mathbb{R}))$.

Let P_{1}, P_{2}, P_{3} and P_{4} the intertwining defined from $S^{2}(\mathfrak{s l}(n, \mathbb{R}))$ in $\left(S^{2}(\mathfrak{s l}(n, \mathbb{R}))\right)^{\star}$, such that, for all $\xi, \eta \in \mathfrak{s l}(n, \mathbb{R})$ and $X, Y \in \mathfrak{s l}(n, \mathbb{R})$:

- $\left\langle P_{1}(\xi \cdot \eta), X . Y\right\rangle=\operatorname{Tr}(\xi X \eta Y)+\operatorname{Tr}(\xi Y \eta X)$,
- $\left\langle P_{2}(\xi \cdot \eta), X . Y\right\rangle=\operatorname{Tr}(\xi X) \operatorname{Tr}(\eta Y)+\operatorname{Tr}(\xi Y) \operatorname{Tr}(\eta X)$,
- $\left\langle P_{3}(\xi . \eta), X . Y\right\rangle=\operatorname{Tr}(\xi \eta X Y)+\operatorname{Tr}(\xi \eta Y X)+\operatorname{Tr}(\eta \xi X Y)+\operatorname{Tr}(\eta \xi Y X)$,
- $\left\langle P_{4}(\xi \cdot \eta), X . Y\right\rangle=\operatorname{Tr}(\xi \eta) \operatorname{Tr}(X Y)$.

In particular, we have :

- $P_{2}\left(v_{20 \ldots 02}\right)=P_{3}\left(v_{20 \ldots 02}\right)=P_{4}\left(v_{20 \ldots 02}\right)=0$, and $\left\langle P_{1}\left(v_{20 \ldots . .02}\right), e_{n 1} . e_{n 1}\right\rangle=1 \neq 0$,
- $P_{3}\left(v_{010 \ldots 010}\right)=P_{4}\left(v_{010 \ldots 010}\right)=0$, and $\left\langle P_{2}\left(v_{010 \ldots 010}\right), e_{n 2} . e_{(n-1) 1}\right\rangle=4 \neq 0$,
- $P_{4}\left(v_{10 \ldots 01}\right)=0$, and $\left\langle P_{3}\left(v_{10 \ldots 01}\right), e_{n 2} . e_{21}\right\rangle \neq 0$,
- $P_{4}\left(v_{00 . . .00}\right) \neq 0$.

Thus, if $n>3, P_{1}, P_{2}, P_{3}$ and P_{4} are independent and, since the dimension of the space of intertwining of $S^{2}(\mathfrak{s l}(n, \mathbb{R}))$ is 4 , then any intertwining b_{2} is written :

$$
b_{2}=a_{1} P_{1}+a_{2} P_{2}+a_{3} P_{3}+a_{4} P_{4}, \quad \text { where } a_{i} \text { are real constants. }
$$

If $n=3, P_{1}, P_{3}$ and P_{4} are independent and, since the dimension of the space of intertwining is three, then we can write :

$$
b_{2}=a_{1} P_{1}+a_{3} P_{3}+a_{4} P_{4}, \quad \text { where } a_{i} \text { are real constants. }
$$

Remark 5.1. First, recall that for $\mathfrak{g l}(n, \mathbb{R})$, the forms $\left(A_{1}, \ldots, A_{m}\right) \mapsto \operatorname{Tr}\left(A_{i_{1}} \ldots A_{i_{k}}\right)$ are the only invariant functions which generate $K\left[E n d(V)^{m}\right]^{G L(V)}$ (see [$\left.H-C\right]$).

Remark that there are 24 possible products of 4 matrices, depending on the position of the matrix in the product. If we take the trace of these products, then there are only 6 distinct forms, since, for all $A_{1}, A_{2}, A_{3}, A_{4} \in \mathfrak{s l}(n, \mathbb{R})$:

$$
\operatorname{Tr}\left(A_{1} A_{2} A_{3} A_{4}\right)=\operatorname{Tr}\left(A_{2} A_{3} A_{4} A_{1}\right)=\operatorname{Tr}\left(A_{3} A_{4} A_{1} A_{2}\right)=\operatorname{Tr}\left(A_{4} A_{1} A_{2} A_{3}\right)
$$

Since we are looking here to build symmetric forms in ξ, η and X, Y, there are only 4 symmetric forms obtained as product of traces of product matrices. These forms are the 4 forms described above.
5.3. $\mathfrak{s l}(n, \mathbb{R})$ does not admit an overalgebra almost separating of degree 2.

We have seen if $\mathfrak{s l}(n, \mathbb{R})$ admits an overalgebra almost separating of degree 2 , then $\mathfrak{s l}(n, \mathbb{R})$ admits an overalgebra of the form

$$
\mathfrak{G}=\left(\mathfrak{s l}(n, \mathbb{R}) \rtimes S_{2}(\mathfrak{s l}(n, \mathbb{R})),\left(\phi: \xi \mapsto b_{1}(\xi)+b_{2}(\xi \cdot \xi)\right)\right),
$$

with $b_{1}=a_{0} P_{0}$ and $b_{2}=a_{1} P_{1}+\cdots+a_{4} P_{4}$.
We assume that a such overalgebra almost separating \mathfrak{G} exists.
The generic orbits $S L(n, \mathbb{R}) \cdot \xi$ are the orbits of the points ξ of Ω. Recall that:

$$
S L(n, \mathbb{R}) \cdot \xi \subset\left\{\xi^{\prime} \in \mathfrak{s l}(n, \mathbb{R}), C_{\xi^{\prime}}=C_{\xi}\right\}
$$

Thus, for all ξ in Ω and all $v \in S_{2}(\mathfrak{s l}(n, \mathbb{R}))$, we put $\zeta=\xi+{ }^{t} \psi_{v}(\phi(\xi))$ such that $C_{\xi^{\prime}}=C_{\xi}$.

Lemma 5.3.

If \mathfrak{G} is an overalgebra almost separating for $\mathfrak{s l}(n, \mathbb{R})$, then for all ξ of $\mathfrak{s l}(n, \mathbb{R})$ and all v of $S_{2}(\mathfrak{s l}(n, \mathbb{R})), \zeta=\xi+{ }^{t} \psi_{v}(\phi(\xi))$ has the same caracteristic polynomial as ξ and the same eigenvalues.

Proof. For any matrix ξ of $\mathfrak{s l}(n, \mathbb{R})$, and all $\varepsilon>0$, there exists ξ_{ε} in Ω such that :

$$
\left\|\xi-\xi_{\varepsilon}\right\|<\varepsilon .
$$

Since ξ_{ε} is in Ω,

$$
\operatorname{det}\left(\xi_{\varepsilon}+{ }^{t} \psi_{v}\left(\phi\left(\xi_{\varepsilon}\right)\right)-\lambda I\right)=\operatorname{det}\left(\xi_{\varepsilon}-\lambda I\right), \quad \forall \lambda, \quad \forall v
$$

If ε tends to 0 , then, for all λ,

$$
\operatorname{det}\left(\xi+{ }^{t} \psi_{v}(\phi(\xi))-\lambda I\right)=\operatorname{det}(\xi-\lambda I)
$$

Theorem 5.4.

For $n>2, \mathfrak{s l}(n, \mathbb{R})$ does not admit an overalgebra almost separating of degree 2 .

Proof.

We have seen if $\mathfrak{s l}(n, \mathbb{R})$ has an overalgebra almost separating of degree 2 , there exists an overalgebra \mathfrak{G}, with

$$
\phi(\xi)=a_{0} P_{0}(\xi)+\left(a_{1} P_{1}+\cdots+a_{4} P_{4}\right)(\xi \cdot \xi) .
$$

We will show that, if for all ξ in Ω, and all v in $S_{2}(\mathfrak{s l}(n, \mathbb{R})), \xi$ and $\zeta=\xi+{ }^{t} \psi_{v}(\phi(\xi))$ have the same eigenvalues, then $a_{0}=a_{1}=\cdots=a_{3}=0$, and that the function $\phi(\xi)=a_{4} P_{4}(\xi \cdot \xi)$ does not separate the coadjoint orbits of $\mathfrak{s l}(n, \mathbb{R})$, if $n>2$.

Taking first $v=U \in \mathfrak{s l}(n, \mathbb{R})$. Then $\left\langle{ }^{t} \psi_{U}(\phi(\xi)), X\right\rangle=a_{0} \operatorname{Tr}(\xi[X, U])$, and $\zeta=$ $\xi+a_{0}[U, \xi]$.

Let $U=e_{n 1}+e_{(n-1) 2}$ and $\xi=e_{1 n}+e_{2(n-1)}$, thus

$$
\zeta=a_{0}\left(-e_{11}-e_{22}+e_{(n-1)(n-1)}+e_{n n}\right)+e_{1 n}+e_{2(n-1)}
$$

and

$$
\operatorname{det}(\zeta-\lambda I)=(-\lambda)^{n-4}\left(\lambda^{2}-a_{0}^{2}\right)^{2}
$$

Therefore, ζ has the same spectrum as ξ implies $a_{0}=0$.
Put now $v=X . X$, then a direct calculation gives :

$$
{ }^{t} \psi_{X . X}(\phi(\xi))=\left\{\begin{array}{l}
4 a_{1}[X, \xi X \xi]+4 a_{2} \operatorname{Tr}(\xi X)[X, \xi]+4 a_{3}\left[X^{2}, \xi^{2}\right], \quad \text { if } n>3 \\
4 a_{1}[X, \xi X \xi]+4 a_{3}\left[X^{2}, \xi^{2}\right], \quad \text { if } n=3 .
\end{array}\right.
$$

Choose $\xi=e_{1 n}$ and $X=e_{n 1} . \xi$ and X are nilpotent matrices : $X^{2}=\xi^{2}=0$ and we obtain :

$$
\xi X=e_{11}, \quad[X, \xi X \xi]=e_{n n}-e_{11}, \quad \operatorname{Tr}(\xi X)=1, \quad[X, \xi]=e_{n n}-e_{11}
$$

thus

$$
{ }^{t} \psi_{X . X}(\phi(\xi))=\left\{\begin{array}{l}
\left(4 a_{1}+4 a_{2}\right)\left(-e_{11}-e_{22}+e_{(n-1)(n-1)}+e_{n n}\right), \quad \text { if } n>3, \\
4 a_{1}\left(e_{33}-e_{22}\right), \quad \text { if } n=3,
\end{array}\right.
$$

and, if we note $\zeta=\xi+{ }^{t} \psi_{X . X}(\phi(\xi))$, then

$$
\operatorname{det}(\zeta-\lambda I)=\left\{\begin{array}{l}
(-\lambda)^{n-2}\left(\lambda^{2}-\left(4 a_{1}+4 a_{2}\right)^{2}\right), \quad \text { if } n>3 \\
-\lambda\left(\lambda^{2}-\left(4 a_{1}\right)^{2}\right), \quad \text { if } n=3
\end{array}\right.
$$

Since $\operatorname{det}(\xi-\lambda I)=(-\lambda)^{n}$, then we deduce that $4 a_{1}+4 a_{2}=0$ if $n>3$ and $a_{1}=0$ if $n=3$.

Suppose now $n>3$. We choose $\xi=e_{1 n}+e_{2(n-1)}$ and $X==^{t} \xi=e_{n 1}+e_{(n-1) 2}$. These matrices are nilpotent and we obtain

$$
\begin{aligned}
\xi^{2} & =0, & \xi X & =e_{11}+e_{22}, \\
\xi X \xi & =e_{1 n}+e_{2(n-1)}, & {[X, \xi X \xi] } & =-e_{11}-e_{22}+e_{(n-1)(n-1)}+e_{n n}, \\
\operatorname{Tr}(\xi X) & =2, & {[X, \xi] } & =-e_{11}-e_{22}+e_{(n-1)(n-1)}+e_{n n} .
\end{aligned}
$$

Therefore

$$
{ }^{t} \psi_{X . X}(\phi(\xi))=\left(4 a_{1}+8 a_{2}\right)\left(-e_{11}-e_{22}+e_{(n-1)(n-1)}+e_{n n}\right)
$$

and

$$
\operatorname{det}(\zeta-\lambda I)=(-\lambda)^{(n-4)}\left(\lambda^{2}-\left(4 a_{1}+8 a_{2}\right)^{2}\right)^{2}
$$

Since $\operatorname{det}(\xi-\lambda I)=(-\lambda)^{n}$, we deduce that $4 a_{1}+8 a_{2}=0$. Thus, in all cases, $a_{1}=a_{2}=0$.

Choose now $\xi=e_{1(n-1)}+e_{(n-1) n}$ and $X={ }^{t} \xi=e_{(n-1) 1}+e_{n(n-1)}$, then

$$
X^{2}=e_{n 1}, \quad \xi^{2}=e_{1 n}, \quad\left[X^{2}, \xi^{2}\right]=-e_{11}+e_{n n}
$$

Therefore

$$
{ }^{t} \psi_{X^{2}}(\phi(\xi))=4 a_{3}\left(-e_{11}+e_{n n}\right)
$$

and

$$
\operatorname{det}(\zeta-\lambda I)=(-\lambda)^{(n-2)}\left(\lambda^{2}-\left(4 a_{3}\right)^{2}\right)
$$

Hence, since $\operatorname{det}(\xi-\lambda I)=(-\lambda)^{n}$, then $a_{3}=0$.
Thus, we deduce that :

$$
\phi(\xi)=b_{2}(\xi \cdot \xi)=a_{4} P_{4}(\xi \cdot \xi) \quad \text { or } \quad\langle\phi(\xi), U+X \cdot Y\rangle=a_{4} \operatorname{Tr}\left(\xi^{2}\right) \operatorname{Tr}(X Y)
$$

But the overalgebra \mathfrak{G} is not separating, since, for all t in $[0,1]$, and all matrix $M=D\left(c_{4}, \ldots, c_{n}\right) \in \mathfrak{s l}(n-3, \mathbb{R})$, with $\left|c_{k}\right|>2$, we define the matrix

$$
\xi_{t}=\left(\begin{array}{llll}
\frac{1}{2}\left(t+\sqrt{4-3 t^{2}}\right) & & & \\
& \frac{1}{2}\left(t-\sqrt{4-3 t^{2}}\right) & & \\
& & -t & \\
& & & M
\end{array}\right)
$$

For all t,

$$
\xi_{t} \in \Omega, \operatorname{det}\left(\xi_{t}\right)=t\left(1-t^{2}\right) \prod_{k} c_{k} \text { and } \operatorname{Tr}\left(\xi_{t}^{2}\right)=2+\sum_{k} c_{k}^{2} .
$$

i.e, for all t,

$$
\overline{\operatorname{Conv}}\left(\Phi\left(\operatorname{CoadSL}(n, \mathbb{R}) \xi_{t}\right)\right)=\mathfrak{s l}(n, \mathbb{R})^{\star} \times\left\{U+X \cdot Y \mapsto a_{4}\left(2+\sum_{k} c_{k}^{2}\right) \operatorname{Tr}(X Y)\right\}
$$

therefore if $t \neq \frac{1}{\sqrt{3}}$,

$$
\operatorname{Coad} S L(n, \mathbb{R})\left(\xi_{t}\right) \neq \operatorname{Coad} S L(n, \mathbb{R})\left(\xi_{\frac{1}{\sqrt{3}}}\right)
$$

Since $t\left(1-t^{2}\right)<\frac{1}{\sqrt{3}}\left(1-\frac{1}{3}\right)=\frac{2}{3 \sqrt{3}}, \operatorname{det}\left(\xi_{t}\right) \neq \operatorname{det}\left(\xi_{\frac{1}{\sqrt{3}}}\right)$, thus ξ_{t} is not in the orbit $\operatorname{Coad} S L(n, \mathbb{R}) \xi_{\frac{1}{\sqrt{3}}}$.

Remark 5.2.

Recall that, if $n=2$, the overalgebra $\left(\mathfrak{s l}(2, \mathbb{R}) \rtimes \mathbb{R},\left[\xi \mapsto \operatorname{Tr}\left(\xi^{2}\right)\right]\right)$ is an overalgebra almost separating of degree 2 of $\mathfrak{s l}(2, \mathbb{R})$ (cf. [ASZ] where we use the function $\operatorname{det}(\xi)=-\frac{1}{2} \operatorname{Tr}\left(\xi^{2}\right)$.

Similarly, $\mathfrak{s l}(3, \mathbb{R})$ does not admit an overalgebra almost separating of degree 2 but $\mathfrak{s l}(3, \mathbb{R})$ admits an overalgebra almost separating of degree 3 .

In this following section, we will show that $\mathfrak{s l}(4, \mathbb{R})$ does not admit an overalgebra almost separating of degree 2 or 3 but it admits one overalgebra almost separating of degree 4 .

$$
\text { 6. THE CASE } n=4 \text { AND } p=3
$$

As above, we shall first find the explicit decomposition of $S^{3}(\mathfrak{s l}(4, \mathbb{R}))$.

6.1. Decomposition of $S^{3}(\mathfrak{s l}(4, \mathbb{R}))$.

We have seen that the module $S^{3}(\mathfrak{s l}(4, \mathbb{R}))$ is self dual. Then, if the submodule $\Gamma_{a_{1} a_{2} a_{3}}$ appears in the decomposition of $S^{3}(\mathfrak{s l}(4, \mathbb{R}))$, the submodule $\Gamma_{a_{3} a_{2} a_{1}} \simeq$ $\left(\Gamma_{a_{1} a_{2} a_{3}}\right)^{s}$ appears also.

The module $S^{3}(\mathfrak{s l}(4, \mathbb{R}))$ is a submodule of $S^{2}(\mathfrak{s l}(4, \mathbb{R})) \otimes \mathfrak{s l}(4, \mathbb{R})$. The decomposition of $S^{2}(\mathfrak{s l}(4, \mathbb{R})) \otimes \mathfrak{s l}(4, \mathbb{R})$ is given by Littlewood-Richardson's rule $(c f$. $[\mathrm{FH}])$, as follows:

$$
\begin{aligned}
S^{2}(\mathfrak{s l}(4, \mathbb{R})) \otimes \mathfrak{s l}(4, \mathbb{R})= & \left(\Gamma_{303}+\Gamma_{212}+\Gamma_{202}+\Gamma_{101}\right)+\left(\Gamma_{121}+\Gamma_{202}+\Gamma_{101}+\Gamma_{311}+\Gamma_{113}\right) \\
& +3\left(\Gamma_{210}+\Gamma_{012}\right)+2 \Gamma_{020}+3 \Gamma_{101}+\Gamma_{000}
\end{aligned}
$$

The highest weight vectors which appear in $S^{2}(\mathfrak{s l}(4, \mathbb{R}))$ are $v_{202}, v_{020}, v_{101}$ and v_{000}. We deduce that there are 4 highest weight vectors in $S^{3}(\mathfrak{s l}(4, \mathbb{R}))$ which are $w_{303}=v_{202} \cdot e_{14}, w_{121}=v_{020} \cdot e_{14}, w_{202}=v_{101} \cdot e_{14}$ and $w_{101}=v_{000} \cdot e_{14}$. These vectors are the highest weight vectors for the simple modules $\Gamma_{303}, \Gamma_{121}, \Gamma_{202}$ and Γ_{101}.

In $S^{2}(\mathfrak{s l}(4, \mathbb{R})) \otimes \mathfrak{s l}(4, \mathbb{R})$, the highest weight vectors $v_{020} \otimes e_{14}-v_{020} . e_{14}, v_{101} \otimes$ $e_{14}-v_{101} \cdot e_{14}$ and $v_{000} \otimes e_{14}-v_{000} . e_{14}$ appear also. The corresponding simple modules of these vectors are, respectively, $\Gamma_{121}, \Gamma_{202}$ and Γ_{101}. Since these vectors are not symmetric, then their corresponding modules are not submodules of $S^{3}(\mathfrak{s l}(4, \mathbb{R}))$.

The highest weight vector of Γ_{311} is $e_{14} \otimes e_{13} \otimes e_{14}-e_{14} \cdot e_{13} . e_{14}$ which is not symmetric, then Γ_{311} does not appear in $S^{3}(\mathfrak{s l}(4, \mathbb{R}))$, and Γ_{113} does not appear also.

We conclude:

$$
\Gamma_{303}+\Gamma_{121}+\Gamma_{202}+\Gamma_{101} \subset S^{3}(\mathfrak{s l}(4, \mathbb{R}))
$$

The additional invariant space of $\left(\Gamma_{303}+\Gamma_{212}+\Gamma_{202}+\Gamma_{101}\right)$ in $S^{3}(\mathfrak{s l l}(4, \mathbb{R}))$ has the following decomposition, by using the dimensions :

$$
S^{3}(\mathfrak{s l}(4, \mathbb{R})) /\left(\Gamma_{303}+\Gamma_{212}+\Gamma_{202}+\Gamma_{101}\right)=\left(\Gamma_{210}+\Gamma_{012}\right)+\Gamma_{101}+\Gamma_{000} .
$$

Therefore :

$$
S^{3}(\mathfrak{s l}(4, \mathbb{R}))=\left(\Gamma_{303}+\Gamma_{212}+\Gamma_{202}+\Gamma_{101}\right)+\left(\Gamma_{210}+\Gamma_{012}+\Gamma_{101}+\Gamma_{000}\right) .
$$

The highest weight vectors $w_{303}, w_{121}, w_{202}$ and w_{101} are:

$$
\begin{aligned}
w_{303}= & e_{14} \cdot e_{14} \cdot e_{14} \\
w_{121}= & e_{24} \cdot e_{13} \cdot e_{14}-e_{23} \cdot e_{14} \cdot e_{14}, \\
w_{202}= & e_{12} \cdot e_{24} \cdot e_{14}+e_{13} \cdot e_{34} \cdot e_{14}+\frac{1}{2}\left(\left(e_{11}-e_{22}\right)-\left(e_{33}-e_{44}\right)\right) \cdot e_{14} \cdot e_{14}, \\
w_{101}= & 8\left(e_{12} \cdot e_{21} \cdot e_{14}+e_{13} \cdot e_{31} \cdot e_{14}+e_{14} \cdot e_{41} \cdot e_{14}+e_{23} \cdot e_{32} \cdot e_{14}+e_{34} \cdot e_{43} \cdot e_{14}\right)+ \\
& +3\left(e_{11} \cdot e_{11} \cdot e_{14}+e_{22} \cdot e_{22} \cdot e_{14}+e_{33} \cdot e_{33} \cdot e_{14}+e_{44} \cdot e_{44} \cdot e_{14}\right)- \\
& -2\left(e_{11} \cdot e_{22} \cdot e_{14}+e_{11} \cdot e_{33} \cdot e_{14}+e_{11} \cdot e_{44} \cdot e_{14}+e_{22} \cdot e_{33} \cdot e_{14}+e_{22} \cdot e_{44} \cdot e_{14}+e_{33} \cdot e_{44} \cdot e_{14}\right) .
\end{aligned}
$$

Now looking for the highest weight vectors of the four remaining simple modules.
By Littlewood-Richardson's rule, $\left(\Gamma_{210}+\Gamma_{012}\right)$ appears in the tensorial product $\Gamma_{020} \otimes \Gamma_{101}$ where Γ_{020} is in $S^{2}(\mathfrak{s l}(4, \mathbb{R}))$, and Γ_{101} is in $\mathfrak{s l}(4, \mathbb{R})$.

The highest weight vector of the module Γ_{020} is :

$$
v_{020}=e_{24} \cdot e_{13}-e_{23} \cdot e_{14} .
$$

We deduce also two other vectors of Γ_{020} given by :

$$
\begin{aligned}
& a d_{e_{42}} v_{020}=\left(\left(e_{44}-e_{22}\right) \cdot e_{13}-e_{43} \cdot e_{14}+e_{23} e_{12}\right), \\
& a d_{e_{32}} v_{020}=\left(e_{34} \cdot e_{13}-e_{24} \cdot e_{12}-\left(e_{33}-e_{22}\right) \cdot e_{14}\right) .
\end{aligned}
$$

Thus, there is a highest weight vector of Γ_{210}, defined by :

$$
w_{210}=e_{12} \cdot e_{24} \cdot e_{13}-e_{12} \cdot e_{23} \cdot e_{14}-e_{14} \cdot e_{43} \cdot e_{14}+e_{13} \cdot e_{34} \cdot e_{13}+\left(e_{44}-e_{33}\right) \cdot e_{13} \cdot e_{14}
$$

w_{210} is a non zero vector and its weight is $4 L_{1}+2 L_{2}+2 L_{3}=2 \omega_{1}+2 \omega_{3}$. Indeed :

$$
a d_{e_{12}} w_{210}=0, \quad a d_{e_{23}} w_{210}=0 \quad \text { and } \quad a d_{e_{34}} w_{210}=0 .
$$

Using the application s, the highest weight vector of the module Γ_{012} is v_{210}^{s} or :

$$
w_{012}=e_{34} \cdot e_{13} \cdot e_{24}-e_{34} \cdot e_{23} \cdot e_{14}-e_{14} \cdot e_{21} \cdot e_{14}+e_{24} \cdot e_{12} \cdot e_{24}+\left(e_{11}-e_{22}\right) \cdot e_{24} \cdot e_{14} .
$$

It remains the modules Γ_{101} and Γ_{000} which appear in the tensorial product $\Gamma_{101} \otimes$ Γ_{101}. The first factor is in $S^{2}(\mathfrak{s l}(4, \mathbb{R}))$, the second is in $\mathfrak{s l}(4, \mathbb{R})$.

There is a basis for the first factor defined by the following vectors :

$$
e_{i j}^{\prime}=e_{i 1} \cdot e_{1 j}+e_{i 2} \cdot e_{2 j}+e_{i 3} \cdot e_{3 j}+e_{i 4} \cdot e_{4 j}-\frac{1}{2}\left(e_{11}+e_{22}+e_{33}+e_{44}\right) \cdot e_{i j} .
$$

In $S^{2}(\mathfrak{s l}(4, \mathbb{R})) \subset \Gamma_{101} \otimes \Gamma_{101}$, we have seen that the corresponding highest weight vectors are:

$$
\begin{aligned}
& v_{101}=e_{12} \cdot e_{24}+e_{13} \cdot e_{34}+\frac{1}{2}\left(\left(e_{11}-e_{22}\right)-\left(e_{33}-e_{44}\right)\right) \cdot e_{14}, \\
& v_{000}=8 \sum_{1 \leq i<j \leq 4} e_{i j} \cdot e_{j i}+\sum_{1 \leq i<j \leq 4}\left(e_{i i}-e_{j j}\right) \cdot\left(e_{i i}-e_{j j}\right) .
\end{aligned}
$$

By replacing the first factor $e_{i j}$ by the factor $e_{i j}^{\prime}$, we obtain the highest weight vectors w_{101}^{\prime} and w_{000} (w_{000} is not developed) :

$$
\begin{aligned}
w_{101}^{\prime}= & 2 e_{12}\left(2 e_{23} \cdot e_{34}+2 e_{21} \cdot e_{14}+\left(e_{22}-e_{11}\right) \cdot e_{24}-\left(e_{33}-e_{44}\right) \cdot e_{24}\right)+ \\
& +2 e_{13}\left(2 e_{32} \cdot e_{24}+2 e_{31} \cdot e_{14}+\left(e_{33}-e_{11}\right) \cdot e_{34}+\left(e_{44}-e_{22}\right) \cdot e_{34}\right)+ \\
& +\left(e_{11}-e_{22}\right)\left(2 e_{12} \cdot e_{24}+2 e_{13} \cdot e_{34}+\left(e_{11}-e_{22}\right) \cdot e_{14}-\right. \\
& \left.-\left(e_{33}-e_{44}\right) \cdot e_{14}\right)-\left(e_{33}-e_{44}\right)\left(2 e_{12} \cdot e_{24}+2 e_{13} \cdot e_{34}+\left(e_{11}-e_{22}\right) \cdot e_{14}-\left(e_{33}-e_{44}\right) \cdot e_{14}\right), \\
w_{000}= & 4\left(e_{12} \cdot e_{21}^{\prime}+e_{12}^{\prime} \cdot e_{21}+e_{13} \cdot e_{31}^{\prime}+e_{13}^{\prime} \cdot e_{31}+e_{14} \cdot e_{41}^{\prime}+e_{14}^{\prime} \cdot e_{41}+\right. \\
& \left.+e_{23} \cdot e_{32}^{\prime}+e_{23}^{\prime} \cdot e_{32}+e_{24} \cdot e_{42}^{\prime}+e_{24}^{\prime} \cdot e_{42}+e_{34} \cdot e_{43}^{\prime}+e_{34}^{\prime} \cdot e_{43}\right)+ \\
& +\left(e_{11}-e_{22}\right)\left(e_{11}^{\prime}-e_{22}^{\prime}\right)+\left(e_{11}-e_{33}\right)\left(e_{11}^{\prime}-e_{33}^{\prime}\right)+\left(e_{11}-e_{44}\right)\left(e_{11}^{\prime}-e_{44}^{\prime}\right)+ \\
& +\left(e_{22}-e_{33}\right)\left(e_{22}^{\prime}-e_{33}^{\prime}\right)+\left(e_{22}-e_{44}\right)\left(e_{22}^{\prime}-e_{44}^{\prime}\right)+\left(e_{33}-e_{44}\right)\left(e_{33}^{\prime}-e_{44}^{\prime}\right) .
\end{aligned}
$$

6.2. Trace forms and intertwining of $S^{3}(\mathfrak{s l}(4, \mathbb{R}))$.

As for $S^{2}(\mathfrak{s l}(n, \mathbb{R})$, we know 12 trace forms. Denote by ξ, η and ζ elements in $(\mathfrak{s l}(4, \mathbb{R}))^{\star}=\mathfrak{s l}(4, \mathbb{R})$, and X, Y, Z elements in $\mathfrak{s l}(4, \mathbb{R})$. The trace forms are the following :

$$
\begin{aligned}
T_{1} & =\operatorname{Tr}(\xi \eta \zeta X Y Z), & T_{2} & =\operatorname{Tr}(\xi \eta X \zeta Y Z), & T_{3} & =\operatorname{Tr}(\xi \eta X Y \zeta Z), \\
T_{4} & =\operatorname{Tr}(\xi X \eta Y \zeta Z), & T_{5} & =\operatorname{Tr}(\xi \eta \zeta X) \operatorname{Tr}(Y Z), & T_{6} & =\operatorname{Tr}(\xi \eta X Y) \operatorname{Tr}(\zeta Z), \\
T_{7} & =\operatorname{Tr}(\xi X Y Z) \operatorname{Tr}(\eta \zeta), & T_{8} & =\operatorname{Tr}(\xi X \eta Y) \operatorname{Tr}(\zeta Z), & T_{9} & =\operatorname{Tr}(\xi \eta \zeta) \operatorname{Tr}(X Y Z), \\
T_{10} & =\operatorname{Tr}(\xi \eta X) \operatorname{Tr}(\zeta Y Z), & T_{11} & =\operatorname{Tr}(\xi \eta) \operatorname{Tr}(\zeta X) \operatorname{Tr}(Y Z), & T_{12} & =\operatorname{Tr}(\xi X) \operatorname{Tr}(\eta Y) \operatorname{Tr}(\zeta Z) .
\end{aligned}
$$

Recall that, in the previous section, we calculated the 8 highest weight vectors of the decomposition of $S^{3}(\mathfrak{s l}(4, \mathbb{R}))$, i.e the free system

$$
\left(w^{1}, \ldots, w^{8}\right)=\left(w_{303}, w_{121}, w_{202}, w_{210}, w_{012}, w_{101}, w_{101}^{\prime}, w_{000}\right)
$$

Let M the matrix with 8 rows and 12 columns whose entries are the numbers $\left\langle T_{i}\left(w^{k}\right),\left(w^{k}\right)^{t}\right\rangle(i=1, \ldots, 12, k=1, \ldots, 8)$ where the vector $e_{j_{1} i_{1}} \cdot e_{j_{2} i_{2}} \cdot e_{j_{3} i_{3}}$ of $S^{3}(\mathfrak{s l}(4, \mathbb{R}))$ is noted $\left(e_{i_{1} j_{1}} \cdot e_{i_{2} j_{2}} \cdot e_{i_{3} j_{3}}\right)^{t}$.

We obtain, by using a symbolic computation program, the following matrix:

$$
M=\left(\begin{array}{cccccccccccc}
0 & 0 & 0 & 36 & 0 & 0 & 0 & 36 & 0 & 0 & 0 & 36 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 4 & 0 & 0 & 0 & 12 \\
0 & 1 & 1 & 3 & 0 & 1 & 0 & 4 & 0 & 1 & 0 & 6 \\
0 & 0 & 4 & 0 & 0 & 4 & 0 & 4 & 0 & 0 & 0 & 6 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 2 & 0 & 0 & 0 & 6 \\
1 & 1 & 2 & 0 & 2 & 3 & 2 & 2 & 0 & 0 & 4 & 6 \\
1 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 6 \\
3 & 0 & 0 & 0 & 0 & 3 & 0 & 0 & 9 & 0 & 0 & 6
\end{array}\right)
$$

The rank of this matrix is 8 .
We extract the columns $1,2,3,4,5,8,10,9$, so we obtain the following intertwining. Explicitly :

$$
\begin{aligned}
& \left\langle P_{1}(\xi \eta \zeta), X Y Z\right\rangle=\operatorname{Sym}(\operatorname{Tr}(\xi \eta \zeta X Y Z)), \\
& \left\langle P_{2}(\xi \eta \zeta), X Y Z\right\rangle=\operatorname{Sym}(\operatorname{Tr}(\xi \eta X \zeta Y Z)), \\
& \left\langle P_{3}(\xi \eta \zeta), X Y Z\right\rangle=\operatorname{Sym}(\operatorname{Tr}(\xi \eta X Y \zeta Z)), \\
& \left\langle P_{4}(\xi \eta \zeta), X Y Z\right\rangle=\operatorname{Sym}(\operatorname{Tr}(\xi X \eta Y \zeta Z)), \\
& \left\langle P_{5}(\xi \eta \zeta), X Y Z\right\rangle=\operatorname{Sym}(\operatorname{Tr}(\xi \eta \zeta X) \operatorname{Tr}(Y Z)), \\
& \left\langle P_{6}(\xi \eta \zeta), X Y Z\right\rangle=\operatorname{Sym}(\operatorname{Tr}(\xi X \eta Y) \operatorname{Tr}(\zeta Z)), \\
& \left\langle P_{7}(\xi \eta \zeta), X Y Z\right\rangle=\operatorname{Sym}(\operatorname{Tr}(\xi \eta X) \operatorname{Tr}(\zeta Y Z)), \\
& \left\langle P_{8}(\xi \eta \zeta), X Y Z\right\rangle=\operatorname{Sym}(\operatorname{Tr}(\xi \eta \zeta) \operatorname{Tr}(X Y Z)) .
\end{aligned}
$$

The notation 'Sym' means that the expression is symmetrical in ξ, η, ζ.
If N is the sub-matrix of M, with 8 rows and 8 columns whose entries are $\left\langle P_{i}\left(w^{k}\right),\left(w^{k}\right)^{t}\right\rangle$, $i=1, \ldots, 8$, then

$$
N=\left(\begin{array}{cccccccc}
0 & 0 & 0 & 36 & 0 & 36 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 4 & 0 & 0 \\
0 & 1 & 1 & 3 & 0 & 4 & 1 & 0 \\
0 & 0 & 4 & 0 & 0 & 4 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 2 & 0 & 0 \\
1 & 1 & 2 & 0 & 2 & 2 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
3 & 0 & 0 & 0 & 0 & 0 & 0 & 9
\end{array}\right)
$$

The rank of this matrix is also 8 . Thus $\left(P_{1}, P_{2}, P_{3}, P_{4}, P_{5}, P_{6}, P_{7}, P_{8}\right)$ are independent. Therefore:

Lemma 6.1.

The applications $P_{i}: S^{3}\left(\mathfrak{s l}(4, \mathbb{R})^{\star}\right) \longrightarrow\left(S^{3}(\mathfrak{s l}(4, \mathbb{R}))\right)^{\star}$ defined above, form a basis of the space of intertwining of the module $S^{3}(\mathfrak{s l}(4, \mathbb{R}))$.

6.3. $\mathfrak{s l}(4, \mathbb{R})$ does not admit an overalgebra almost separating of degree 3 .

Theorem 6.2.

The algebra $\mathfrak{s l}(4, \mathbb{R})$ does not admit an overalgebra almost separating of degree 3.
Proof.
We have seen that if $\mathfrak{s l}(4, \mathbb{R})$ admits an overalgebra of degree 3 , then $\mathfrak{s l}(4, \mathbb{R})$ admits an overalgebra of the form

$$
\left(\mathfrak{s l}(4, \mathbb{R}) \rtimes S_{3}(\mathfrak{s l l}(4, \mathbb{R})),\left(b_{1}+b_{2}+b_{3}\right) \circ \tau\right) .
$$

In this case, b_{i} are an intertwining, $b_{1}=0,\left\langle b_{2}(\xi . \eta), X . Y\right\rangle=a \operatorname{Tr}(\xi \eta) \operatorname{Tr}(X Y)$ and b_{3} is written :

$$
b_{3}(\xi \cdot \eta \cdot \zeta)=\sum_{j=1}^{8} c_{j} P_{j}(\xi \cdot \eta \cdot \zeta) .
$$

Then, we choose $v=X . X . X$ in $S_{3}(\mathfrak{s l}(4, \mathbb{R}))$ and we calculate ${ }^{t} \psi_{v}\left(P_{j}(\xi . \xi . \xi)\right)$. Explicitly:

$$
\begin{aligned}
{ }^{t} \psi_{v}\left(P_{1}(\xi \cdot \xi \cdot \xi)\right) & =\left[X^{3}, \xi^{3}\right], \\
{ }^{t} \psi_{v}\left(P_{2}(\xi \cdot \xi \cdot \xi)\right) & =\left[X^{2} \xi^{2} X, \xi\right]+\left[X \xi X^{2}, \xi^{2}\right], \\
{ }^{t} \psi_{v}\left(P_{3}(\xi \cdot \xi \cdot \xi)\right) & =\left[X^{2} \xi X, \xi^{2}\right]+\left[X \xi^{2} X^{2}, \xi\right], \\
{ }^{t} \psi_{v}\left(P_{4}(\xi \cdot \xi \cdot \xi)\right) & =3[X \xi X \xi X, \xi], \\
{ }^{t} \psi_{v}\left(P_{5}(\xi \cdot \xi \cdot \xi)\right) & =\operatorname{Tr}\left(X^{2}\right)\left[X, \xi^{3}\right], \\
{ }^{t} \psi_{v}\left(P_{6}(\xi \cdot \xi \cdot \xi)\right) & =2 \operatorname{Tr}(\xi X)[X \xi X, \xi]+\operatorname{Tr}(\xi X \xi X)[X, \xi], \\
{ }^{t} \psi_{v}\left(P_{7}(\xi \cdot \xi \cdot \xi)\right) & =\operatorname{Tr}\left(\xi X^{2}\right)\left[X, \xi^{2}\right]+\operatorname{Tr}\left(\xi^{2} X\right)\left[X^{2}, \xi\right], \\
{ }^{t} \psi_{v}\left(P_{8}(\xi \cdot \xi \cdot \xi)\right) & =0 .
\end{aligned}
$$

Let $\xi=e_{14}$, then $\xi^{2}=0$ and ${ }^{t} \psi_{v}\left(P_{j}(\xi \cdot \xi \cdot \xi)\right)=0$, for $j=1,2,3,5,7$.
Let now $X=e_{14}+e_{41}$, then $\xi X=e_{11}$ and $X \xi X \xi X=X-\xi=e_{41}$.
So, we obtain ${ }^{t} \psi_{v}\left(P_{4}(\xi . \xi . \xi)\right)=-3\left(e_{11}-e_{44}\right)$ and ${ }^{t} \psi_{v}\left(P_{6}(\xi . \xi . \xi)\right)=3\left(e_{11}-e_{44}\right)$. Thus, with same notations as above,

$$
\zeta=\xi+{ }^{t} \psi_{v}(\phi(\xi))=3\left(c_{6}-c_{4}\right)\left(e_{11}-e_{44}\right)+e_{14} .
$$

Therefore,

$$
\operatorname{det}(\zeta-\lambda I)=\lambda^{2}\left(\lambda^{2}-9\left(c_{6}-c_{4}\right)^{2}\right)
$$

We deduce the relation $c_{6}-c_{4}=0$.
On the other hand, let $X=e_{14}-e_{41}$, then :

$$
\begin{aligned}
\xi X & =-e_{11}, & \xi X \xi X & =e_{11}, & X \xi X \xi X & =-e_{41}, \\
X \xi X & =e_{41}, & {[X \xi X \xi X, \xi] } & =e_{11}-e_{44}, & X \xi X & =e_{41}, \\
{[X \xi X, \xi] } & =-e_{11}+e_{44}, & {[X, \xi] } & =e_{11}-e_{44}, & \xi X \xi X & =e_{11} .
\end{aligned}
$$

Thus, we get ${ }^{t} \psi_{v}\left(P_{6}(\xi . \xi \cdot \xi)\right)=3\left(e_{11}-e_{44}\right)$ and ${ }^{t} \psi_{v}\left(P_{4}(\xi . \xi \cdot \xi)\right)=3\left(e_{11}-e_{44}\right)$. Therefore, if $\zeta=\xi+{ }^{t} \psi_{v}(\phi(\xi))$,

$$
\operatorname{det}(\zeta-\lambda I)=\lambda^{2}\left(\lambda^{2}-9\left(c_{6}+c_{4}\right)^{2}\right)
$$

then $c_{6}+c_{4}=0$. This shows that $c_{6}=c_{4}=0$.
We choose now $\xi=e_{13}+e_{34}$, and $X={ }^{t} \xi=e_{31}+e_{43}$. Then:

$$
\begin{array}{rlrl}
X^{2} & =e_{41}, & X^{2} \xi^{2} X & =e_{43}, \\
{\left[\xi^{2}, X \xi X^{2}\right]} & =e_{11}-e_{44}, & X^{2} \xi X & \left.=e_{41}^{2} \xi^{2} X\right]=e_{33}-e_{44}, \quad X \xi X^{2}=e_{41}, \\
{\left[\xi, X \xi^{2}, X^{2} \xi X\right]=e_{11}-e_{44}, \quad X \xi^{2} X^{2}=e_{31},} & =e_{11}-e_{33}, \quad X^{2} \xi^{2} X=e_{43}, & {\left[X^{2} \xi^{2} X, \xi\right]=e_{44}-e_{33}, \quad X \xi X^{2}=e_{41},} \\
{\left[X \xi X^{2}, \xi^{2}\right]} & =e_{44}-e_{11} .
\end{array}
$$

We deduce that ${ }^{t} \psi_{v}\left(P_{2}(\xi \cdot \xi \cdot \xi)\right)=e_{11}+e_{33}-2 e_{44}$ and ${ }^{t} \psi_{v}\left(P_{3}(\xi \cdot \xi \cdot \xi)\right)=2 e_{11}-e_{33}-e_{44}$. Therefore,

$$
\zeta=\xi+{ }^{t} \psi_{v}(\phi(\xi))=e_{13}+e_{34}+\left(c_{2}+2 c_{3}\right) e_{11}+\left(c_{2}-c_{3}\right) e_{33}-\left(2 c_{2}+c_{3}\right) e_{44}
$$

and

$$
\operatorname{det}(\zeta-\lambda I)=-\lambda\left(c_{2}+2 c_{3}-\lambda\right)\left(c_{2}-c_{3}-\lambda\right)\left(-2 c_{2}-c_{3}-\lambda\right)
$$

Hence, the spectrum of ζ is the same as ξ, i.e $\{0\}$ implies $c_{2}+2 c_{3}=0, c_{2}-c_{3}=0$, and $2 c_{2}+c_{3}=0$, so $c_{2}=c_{3}=0$.

Now, let $\xi=e_{13}+e_{14}+e_{34}$ and $X={ }^{t} \xi=e_{31}+e_{41}+e_{43}$, then

$$
\begin{aligned}
\xi^{2} & =e_{14}, & X^{2} & =e_{41},
\end{aligned} r X^{2}=e_{11}+e_{31}, ~ 子, ~\left[\xi^{2}, X\right]=e_{11}+e_{13}-e_{34}-e_{44}, \quad\left[\xi, X^{2}\right]=e_{11}+e_{31}-e_{43}-e_{44} .
$$

Thus,

$$
{ }^{t} \psi_{v}\left(P_{7}(\xi . \xi . \xi)\right)=2 e_{11}+e_{13}+e_{31}-e_{34}-e_{43}-2 e_{44}
$$

and, if $\zeta=\xi+{ }^{t} \psi_{v}(\phi(\xi))$,

$$
\operatorname{det}(\zeta-\lambda I)=-\lambda\left(-\lambda^{3}+\lambda\left(5 c_{7}^{2}+c_{7}\right)+2 c_{7}^{3}+c_{7}^{2}+2 c_{7}\right)
$$

Therefore, the spectrum of ζ is the same as ξ, i.e $\{0\}$ implies $c_{7}=0$.
Later, we choose $\xi=e_{12}+e_{23}+e_{34}$ and $X={ }^{t} \xi$. Then, $\xi^{2}=e_{13}+e_{24}, \xi^{3}=e_{14}$, $X^{3}=e_{41}$. Thus ${ }^{t} \psi_{v}\left(P_{1}(\xi . \xi . \xi)\right)=e_{11}-e_{44}$ and the spectrum of $\zeta=\xi+{ }^{t} \psi_{v}(\phi(\xi))$ is $\{0\}$ implies $c_{1}=0$.

Finally, we choose another $X=e_{14}+e_{41}$ and we allowed $\xi=e_{12}+e_{23}+e_{34}$. Then $X^{2}=e_{11}+e_{44}$ and $\xi^{3}=e_{11}-e_{44}$. Therefore, ${ }^{t} \psi_{v}\left(P_{5}(\xi . \xi . \xi)\right)=2\left(e_{11}-e_{44}\right)$ and $\operatorname{det}(\zeta-\lambda I)=\lambda^{4}$ implies $c_{5}=0$.

We finally get:

$$
\left\langle\phi(\xi), U+X . Y+X^{\prime} . Y^{\prime} . Z^{\prime}\right\rangle=a_{4} \operatorname{Tr}\left(\xi^{2}\right) \operatorname{Tr}(X Y)+c_{8} \operatorname{Tr}\left(\xi^{3}\right) \operatorname{Tr}\left(X^{\prime} Y^{\prime} Z^{\prime}\right)
$$

But we consider, for $0<t<1$, the matrices

$$
\xi_{t}=\left(\begin{array}{cccc}
\sqrt{1+t} & & & \\
& -\sqrt{1+t} & & \\
& & \sqrt{1-t} & \\
& & & -\sqrt{1-t}
\end{array}\right)
$$

ξ_{t} is an element of Ω for all $t, \operatorname{Tr}\left(\xi_{t}^{2}\right)=4$ and $\operatorname{Tr}\left(\xi_{t}^{3}\right)=0$ for all t. Although, $\operatorname{det}\left(\xi_{t}\right)=\left(1-t^{2}\right)^{2}$. Therefore, with the same argument as in a previous section, we have, for all t,

$$
\overline{\operatorname{Conv}}\left(\Phi\left(\operatorname{Coad} S L(4, \mathbb{R}) \xi_{t}\right)\right)=(\mathfrak{s l}(4, \mathbb{R}))^{\star} \times\left\{U+X . Y+X^{\prime} . Y^{\prime} . Z^{\prime} \mapsto 4 a_{4} \operatorname{Tr}(X Y)\right\}
$$

But, if $t \neq \frac{1}{2}, \xi_{t}$ is not in the orbit $\operatorname{Coad} S L(4, \mathbb{R}) \xi_{\frac{1}{2}}$.
Thus, $\mathfrak{s l}(4, \mathbb{R})$ does not admit an overalgebra almost separating of degree 3 .

In fact, we think that the following conjecture is always true :

Conjecture 6.3. For all $n, \mathfrak{s l}(n, \mathbb{R})$ does not admit an overalgebra almost separating of degree $n-1$, but it admits an overalgebra almost separating of degree n.

More generally, if \mathfrak{g} is a real and deployed semi simple Lie algebra and if k is the greatest degree of the generators of the algebra of invariant functions on \mathfrak{g}, then \mathfrak{g} admits an overalgebra almost separating of degree k. But \mathfrak{g} does not admit an overalgebra almost separating of degree $k-1$.

The hypothesis ' \mathfrak{g} deployed' is necessary. Indeed, we remark that $\mathfrak{s l}(2, \mathbb{R})$ does not admit an overalgebra almost separating of degree 1, but the Lie algebra $\mathfrak{s u}(2)$ admits an overalgebra almost separating of degree 1 since its adjoint orbits are spheres which are characterized by the closure of their convex hull.

References

[ASZ] D. Arnal, M. Selmi et A. Zergane Separation of representations with quadratic overgroups, Bulletin des Sciences Mathématiques 135 141-165 December 2010
[FH] W. Fulton et J. Harris Representation theory Graduate text in Mathematics, Springer-Verlag, New-York 1991
[HC] K.Hanspeter, P.Claudio Classical invariant theory, A primer, Preliminary version, Jully 1996
[W] H. Weyl The classical groups, their invariants and representations, Princeton Mathematical Series, vol 1. Princeton University press, Princeton 1946

[^1]* Laboratoire de Mathématique Physique, Fonctions Spéciales et Applications, Université de Sousse, Ecole Supérieure des Sciences et de Technologie de HammamSousse, Rue Lamine Abassi 4011 H. Sousse, Tunisie

E-mail address: amel.zergane@u-bourgogne.fr
E-mail address: amel.zergan@yahoo.fr

[^0]: 1991 Mathematics Subject Classification. 37J15, 22E45, 22E27, 22D30.
 Key words and phrases. overalgebra almost separating, generic coadjoint orbits, semi-simple and deployed Lie algebra.

 This work was supported by The Hubert Curien-Utique contracts 06/S1502 and 09/G 1502.
 I thank my professor Didier Arnal for his aid an i thank the University of Bourgogne for its hospitality during my stay in France.

[^1]: * Institut de Mathématiques de Bourgogne, UMR CNRS 5584, Université de Bourgogne, U.F.R. Sciences et Techniques B.P. 47870 , F-21078 Dijon Cedex, France

