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OVERALGEBRAS AND SEPARATION OF GENERIC COADJOINT

ORBITS OF SL(n,R)

AMEL ZERGANE ⋆

Abstract. For the semi simple and deployed Lie algebra g = sl(n,R), we give
an explicit construction of an overalgebra g+ = g ⋊ V of g, where V is a finite
dimensional vector space. In such a setup, we prove the existence of a map Φ from
the dual g⋆ of g into the dual (g+)⋆ of g+ such that the coadjoint orbits of Φ(ξ), for
generic ξ in g⋆, have a distinct closed convex hulls. Therefore, these closed convex
hulls separate ’almost’ the generic coadjoint orbits of G.

1. Introduction

In this paper, we prove that, for n > 2, the Lie algebra g = sl(n,R) admits an
overalgebra almost separating of dgree n, but g does not admit an overalgebra of
degree 2. More precisely:

There exist a Lie overalgebra g+ = sl(n,R)⋊ V and an application Φ of degree n,
Φ : g⋆ −→ g+⋆ such that:

1. p ◦ Φ = idg⋆ , where p is the canonical projection p : g+⋆ −→ g⋆,
2. Φ(Coad(SL(n,R))ξ) = Coad(G+)Φ(ξ),
3. if ξ is generic, then Conv (Φ(Coad(SL(n,R)ξ))) = Conv (Φ(Coad(SL(n,R))ξ′))

if and only if Coad(SL(n,R))ξ′ belongs to a finite set of coadjoint orbits of
sl(n,R) (here: a singleton if n is odd, a singleton or a set of two elements if
n is even).

We identify (g+)⋆ the dual of g+ with the space g⋆ ⊕ V ⋆. The condition 1. means
Φ(ξ) = ξ + φ(ξ), where φ is a polynomial of degree n from g⋆ to V ⋆. We say that
(g+, φ) is an overalgebra almost separating of g (of degree n).

But there is no separating overalgebra of degree 2, (g+2 , φ), i.e there is neither a Lie
overalgebra g+2 = sl(n,R)⋊ V2 nor φ : g⋆ −→ V ⋆

2 of degree 2 such that :

1. p ◦ Φ = idg⋆ , if p is the canonical projection p : g+⋆
2 −→ g⋆,

2. Φ(Coad(SL(n,R))ξ) = Coad(G+)Φ(ξ),
3. if ξ is generic then, Conv (Φ(Coad(SL(n,R)ξ))) = Conv (Φ(Coad(SL(n,R))ξ′))

if and only if Coad(SL(n,R))ξ′ belongs to a finite family of coadjoint orbits.
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2 A. ZERGANE

Finally, we show that sl(4,R) does not admit an overalgebra almost separating of
degree 3.

2. Description of orbits of sl(n,R)

2.1. Invariant functions of sl(n,R).
Since the Lie algebra sl(n,R) is simple, we can identify the adjoint action and

coadjoint action of the Lie group G = SL(n,R). More precisely, we consider the non
degenerate bilinear invariant form on sl(n,R) defined by:

〈X, Y 〉 = Tr(XY ).

Denote ξ an element of the dual of sl(n,R) and X an element of sl(n,R).
The functions defined on the dual g∗ = sl(n,R) of the Lie algebra g by:

Tk(ξ) = Tr(ξk), 2 ≤ k ≤ n

are invariant: Tk(gξg
−1) = Tk(ξ) for all ξ and all g.

The ring of the polynomial invariant functions on C is C[T2, . . . , Tn] (cf. [W]).

2.2. Description of Ω = {ξ ∈ sl(n,R),#Sp(ξ) = n}.

This is classic. We recall this only for completeness.
Denote Ω the set of matrices ξ of sl(n,R) which are diagonalizable on C and have

n distinct eigenvalues. The spectrum of this matrix ξ is

Sp(ξ) = {c1, . . . , cr, a1 ± ib1, . . . , as ± ibs, with ci, aj , bj ∈ R, bj > 0, r + 2s = n}.
Denote by (a, b) < (a′, b′) the lexicographic order :

(a, b) < (a′, b′) ⇐⇒







a < a′

or

a = a′ and b < b′.

We note also (the same if the eigenvalues are not stored in lexicographic order ) :

D(c1, . . . , cr, a1 + ib1, . . . , as + ibs) =
















c1
. . .

cr
a1 b1
−b1 a1

. . .
as bs
−bs as
















.

We fix r and s such that r + 2s = n. If r > 0, we put :

Σr,s = {D(cj, ak+ ibk), c1 < c2 < · · · < cr, bk > 0, (a1, b1) < (a2, b2) < · · · < (as, bs)}
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If r = 0, we note :

Σ+
0,s = {D(ak + ibk), bk > 0, (a1, b1) < (a2, b2) < · · · < (as, bs)}

and
Σ−

0,s = {D−(ak + ibk), bk > 0, (a1, b1) < (a2, b2) < · · · < (as, bs)},
where

D−(a1 + ib1, . . . , as + ibs) =













a1 −b1
b1 a1

a2 b2
−b2 a2

. . .
as bs
−bs as













.

Finally, we put

Σ =







⋃

r>0, r+2s=n

Σr,s

⋃(

Σ+
0,n

2

∪ Σ−
0,n

2

)

if n is even

⋃

r>0, r+2s=n

Σr,s if n is odd.

The set Ω is invariant since the spectrum Sp(ξ) of ξ coincides with the spectrum of
gξg−1 = Ad(g)(ξ) (g ∈ SL(n,R)), or if we prefer, if Cξ is the characteristic polynomial
of the matrix ξ, then the adjoint orbit G · ξ0 of ξ0 is included in {ξ, such that Cξ =
Cξ0}.
2.3. Adjoint orbits in Ω.

Lemma 2.1.

For all matrix ξ in Ω, the adjoint orbit G · ξ of the matrix ξ contains a point of Σ.

Proof.
Let ξ be a matrix in Ω, ξ is diagonalizable on C, with eigenvalues all distinct. If

Sp(ξ) = {cj, ak ± ibk}, where the eigenvalues are ordered as above, c1 < · · · < cr and
(a1, b1) < · · · < (as, bs), b1 > 0, . . . , bs > 0, then there exist vectors Ej ∈ C

n and
Fk ∈ C

n such that ξEj = cjEj and ξFk = (ak + ibk)Fk.
Since ξ is real, we can choose Ej real (in R

n) and if we put Fk = Er+2k−1 + iEr+2k

(Er+t are real), then we obtain a basis of Rn. If P is the basis change matrix , then
the matrix of ξ is written in the new basis as follows :

ξ′ = PξP−1 = D(c1, . . . , cr, a1 + ib1, . . . , as + ibs).

a. If detP > 0, then there exists g =
1

n
√
detP

P , such that ξ′ = gξg−1 and

g ∈ SL(n,R). The adjoint orbit G · ξ of the matrix ξ contains a point of Σ.
b. If detP < 0 and r > 0, then we replace E1 by E ′

1 = −E1. The matrix P
becomes P ′ = D(−1, 1, . . . , 1)P , PξP−1 = P ′ξP ′−1 and det(P ′) > 0. As
above, the adjoint orbit G · ξ of the matrix ξ contains a point of Σ.
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c. If detP < 0 and r = 0, then we replace E1 by E ′
1 = E2 and E2 by E ′

2 =
E1. The matrix P becomes P ′ = D(−1, 1, . . . , 1)P , PξP−1 = P ′ξP ′−1 and
det(P ′) > 0. The adjoint orbit G · ξ of the matrix ξ contains the point
ξ′ = P ′ξP ′−1 = D−(a1 + ib1, . . . , as + ibs) of Σ.

�

Lemma 2.2.

Σ is a section for the action of SL(n,R) in Ω, i.e each orbit of Ω contains only a
single point of Σ.

Proof.
Let ξ0 be an element in Σ and G · ξ0 its orbit. If ξ ∈ G · ξ0 ∩ Σ, then, since the

spectrum of ξ is the same as ξ0 and the order of eigenvalues is fixed, we obtain:
If r > 0 then ξ = ξ0. If r = 0, we have either ξ = ξ0, or

G · ξ0 ∩ Σ = {ξ, ξ0} = {D+(ak + ibk), D
−(ak + ibk) = gD+(ak + ibk)g

−1}.
with det(g) = 1.

In the latter case, the sub eigenspaces V ecC(E2k−1+ iE2k) and V ecC(E2k−1− iE2k)
are one dimensional. Thus, there exist a nonzero complex numbers z1, . . . , zs such
that :

g(E1 + iE2) = z1(E1 − iE2), and g(E2k−1 + iE2k) = zk(E2k−1 + iE2k), k > 1.

The matrix of g is written in the basis of eigenvectors of the first matrix as follows :

QgQ−1 =













0 z1
z1 0

z2
z2

. . .

zs
zs













.

The determinant of the matrix QgQ−1 is negative or zero, which is impossible. There-
fore, ξ = ξ0 and Σ is a section for the action of SL(n,R) on Ω. �

Lemma 2.3.

Denote Ωr,s = G · Σr,s. Let ξ0 ∈ Ωr,s.

1. If r > 0, {ξ, such that Cξ = Cξ0} is exactly the adjoint orbit G · ξ0 of ξ0.

2. If r = 0, {ξ, such that Cξ = Cξ0} is the union of two adjoint orbits G·ξ0⊔G·ξ1 .

Now, show that Ω is dense. Let ξ be an arbitrary matrix of sl(n,R). On C, we can
transform this matrix in Jordan form:

1. for each Jordan block Jj(c) associated to the real eigenvalue c of ξ, there exist
vectors E1

j , . . . , E
t
j in C

n such that ξE1
j = cE1

j and, if t > 1, ξEt
j = cEt

j+E
t−1
j .

We can choose Et
j real.
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2. for each Jordan block Jk(a+ ib) associated to the non real eigenvalue a + ib,
with b > 0, we can choose vectors F 1

k , . . . , F
t
k in C

n such that ξF 1
k = (a+ib)F 1

k

and, if t > 1, ξF t
k = (a+ ib)F t

k +F t−1
k . The union of these families of vectors,

for all Jordan blocks associated to a + ib, form a basis of the characteristic
subspace V (a + ib) of ξ associated to a + ib. The combined vectors F t

k form
a basis of the characteristic subspace V (a − ib). In this basis, the matrix of
ξ|V (a−ib) is also in Jordan form. As above, put F t

k = Et
k + iE ′t

k , where Et
k and

E ′t
k are real vectors.

We arrange the eigenvalues of ξ as above, then we obtain a real basis of Rn. On this
basis, ξ is written as follows :

ξ′ = PξP−1 =






















c1 u1
. . .

. . .
cr−1 ur−1

cr
a1 b1 v1
−b1 a1 0 v1

. . .
. . .

as−1 bs−1 vs−1

−bs−1 as−1 0 vs−1

as bs
−bs as






















= Diag(c1, . . . , cr,

(
a1 b1
−b1 a1

)

, . . . ,

(
as bs
−bs as

)

)+

+Overdiag(u1, . . . , ur−1,

(
v1 0
0 v1

)

, . . . ,

(
vs−1 0
0 vs−1

)

)

= D +N.

Where P is a real matrix, Diag means that we place the cited sub matrices on
the diagonal, Overdiag means that we place the cited sub matrices on the second
diagonal, uj and vk are either 0 or 1.

Let now the real numbers x1, . . . , xr and y1, . . . , ys all distinct such that x1 + · · ·+
xr + 2y1 + · · ·+ 2ys = 0. Put:

A = Diag(x1, . . . , xr, y1, y1, . . . , ys, ys),

and for all ε > 0, ξε = ξ + εP−1AP . For almost every ε, the trace of ξε is zero
and ξε has n distinct eigenvalues. Then, ξε ∈ Ω and for any norm on sl(n,R),
‖ξ − ξε‖ = ε‖P−1AP‖. This proves :

Lemma 2.4.

The set Ω is dense in sl(n,R).
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Show that the set Ω is an open :

We use the implicit function theorem. Let ξ0 a matrix in Ω. The characteristic
polynomial Cξ0 of ξ0 has n simple roots. If Cξ0(α) = 0, then C ′

ξ0
(α) 6= 0.

If cj is a real eigenvalue of ξ0, then we consider the map Fj : sl(n,R) × R −→ R

defined by Fj(ξ, x) = Cξ(x).
If ak + ibk is a non real eigenvalue of ξ0, we note Cξ(z) = Cξ(x+ iy) = Aξ(x, y) +

iBξ(x, y), where Aξ and Bξ are real. Cξ is a polynomial in z, then

∂

∂z
Cξ(z) =

∂

∂x
Cξ(z) + i

∂

∂y
Cξ(z) = 0,

for all z. Since ak + ibk is a simple root of Cξ0 , then

∂

∂z
Cξ0(ak + ibk) =

∂

∂x
Cξ0(ak + ibk)− i

∂

∂y
Cξ0(ak + ibk) 6= 0.

Therefore, we have either
∂

∂x
Aξ0(ak+ibk) 6= 0 and

∂

∂y
Bξ0(ak+ibk) 6= 0 or

∂

∂y
Aξ0(ak+

ibk) 6= 0 and
∂

∂x
Bξ0(ak + ibk) 6= 0. In all cases,

D(Aξ0, Bξ0)

D(x, y)
(ak, bk) =

∣
∣
∣
∣

∂xAξ0 ∂yAξ0

∂xBξ0 ∂yBξ0

∣
∣
∣
∣
(ak, bk) = (∂xAξ0(ak, bk))

2+(∂xBξ0(ak, bk))
2 6= 0.

We define Fj : sl(n,R) × R
2 −→ R

2 by Fk(ξ, x, y) = (Aξ(x + iy), Bξ(x + iy)), then
Jac(Fk)(ξ0, ak, bk) 6= 0.

The functions Fj , Fk are differentiable, then Fj(ξ0, cj) = 0 and
∂Fj

∂x
(ξ0, cj) =

C ′
ξ0
(cj) 6= 0. Similarly, Fk(ξ0, ak, bk) = 0 and

DFk

D(x, y)
(ξ0, ak, bk) 6= 0.

So, there exists an open Uj (resp. Uk) of sl(n,R), containing ξ0, and there is an
open Vj of R containing cj (resp. Vk of R2, containing (ak, bk)) and there are maps
fj : Uj −→ Vj (resp. fk : Uk −→ Vk) such that

(ξ, x) ∈ Uj × Vj

Fj(ξ, x) = 0

}

⇐⇒
{
(ξ, x) ∈ Uj × Vj

x = fj(ξ)

(

resp.
(ξ, x, y) ∈ Uk × Vk

Fk(ξ, x, y) = 0

}

⇐⇒
{
(ξ, x, y) ∈ Uk × Vk

(x, y) = fk(ξ)

)

We replace as needed the open Vr by another open small enough such that

Vj ∩
(
⋃

j′ 6=j

Vj′

)

= ∅, Vk ∩
(

(R× {0}) ∪
⋃

k′ 6=k

Vk′

)

= ∅.

And we put U =
⋂

r

Ur. U is an open containing ξ0 and, for all ξ in U , Cξ vanishes

at n distinct points (real or complex), then, U ⊂ Ω.
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Lemma 2.5.

The set Ω is an open in sl(n,R).

3. sl(n,R) admits an overalgebra almost separating of degree n

3.1. Separation of orbits of Ω by invariant functions.

This is also well known. Let ξ a n × n real matrix and Cξ its characteristic
polynomial. On C, we can put ξ in Jordan form. We note z1, . . . , zn the diagonal
terms of this Jordan form. Then :

Cξ(X) = (−1)n det(ξ −XI) = (X − z1) · · · (X − zn)

= Xn − (
∑

i

zi)X
n−1 + (

∑

i<j

zizj)X
n−2 + · · ·+ (−1)nz1 . . . zn

= Xn − αn−1X
n−1 + αn−2X

n−2 + · · ·+ (−1)nα0.

Therefore, using a formula due to Newton (cf. [W]), we have, for all k,

(−1)k+1
∑

i1<···<ik

zi1zi2 . . . zik =
∑

j

zkj − (
∑

i1

zi1)(
∑

j

zk−1
j ) + (

∑

i1<i2

zi1zi2)(
∑

j

zk−2
j ) + . . .

+ · · ·+ (−1)k−1(
∑

i1<···<ik−1

zi1 . . . zik−1
)(
∑

j

zj)

or

(−1)k+1αn−k = Tr(ξk)− αn−1Tr(ξ) + αn−2Tr(ξ
k−1) + · · ·+ (−1)k−1αk−1Tr(ξ).

This formula allows to express all αk as functions of the numbers Tr(ξj), and con-
versely, to express all Tr(ξk) as functions of the numbers αj.

Finally, we deduce that:
two matrices ξ and ξ′ satisfying Cξ = Cξ′ if and only if Tr(ξk) = Tr(ξ′k) for all

k = 1, . . . , n.

Proposition 3.1.

We keep all previous notations, in particular, Ω = ∪r+2s=nΩr,s is an open, dense
and invariant subset of sl(n,R). The orbits of Ω will be called generic orbits. Let
ξ0 ∈ Ωr,s.

1. If r > 0, {ξ, such that Tk(ξ) = Tk(ξ0) for all k = 2, . . . , n } is exactly the
adjoint orbit G · ξ0 of ξ0,

2. If r = 0, {ξ, such that Tk(ξ) = Tk(ξ0) for all k = 2, . . . , n } is the union of
two adjoint orbits G · ξ0 ⊔G · ξ1.

We say that the invariant functions Tk separate almost the (co)adjoint generic or-
bits of sl(n,R).
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3.2. Convex hull of orbits of Ω.

For n = 2, the convex hull of the orbits of Ω are well known (cf.[ASZ]). We deduce
that, for n = 2 :

Conv(G ·D(−c, c)) = sl(2,R) (c > 0), and

Conv(G ·D+(ib) ∪G ·D−(ib)) = sl(2,R) (b > 0).

For n = 3, we deduce that Ω ⊂ Conv(G ·D(c1, c2, c3)). Indeed, if c′1 < c′2 < c′3 such
that c′1 + c′2 + c′3 = 0, then either c′1 6= −2c3, or c′2 6= −2c3. Suppose c′1 6= −2c3, the

other case is trained the same by exchanging the induces 1 and 2. Let c′′1 = c′1−
c1 + c2

2
and c′′2 = −c′1 − c3. We write:

(
c1

c2

)

=






1

2
(c1 − c2)

1

2
(c2 − c1)




+

c1 + c2
2

(
1

1

)

,

then, there exist t in [0, 1] and g ∈ SL(2,R) such that :
(
c′1

c′′2

)

=

(
c′′1

−c′′1

)

+
c1 + c2

2

(
1

1

)

= t

(
c1

c2

)

+ (1− t)g

(
c1

c2

)

g−1.

We deduce that the convex hull of G·D(c1, c2, c3) contains





c′1
c′′2

c3



 with c′′2 6= c3.

By the same argument, but with induces 2 and 3, we show that this convex hull

contains D(c′1, c
′
2, c

′
3). Let now a′ = −1

2
c′1, and b′ > 0, then :

(
c′2

c′3

)

=






1

2
(c′2 − c′3)

1

2
(c′3 − c′2)




+ a′

(
1

1

)

,

the convex hull of G ·D(c1, c2, c3) contains also

D(c′1, a
′ + ib′) =





c′1
0 b′

−b′ 0



+ a′





0
1

1



 .

On the other hand, we saw that





c
a −b
b a



 belongs to G ·D(c, a+ ib). Therefore,

if a 6= 0 then Conv(G ·D(c, a+ ib)) contains the matrix





c
a

a



, with a 6= c. So,

by our first argument, Conv(G ·D(c, a+ ib)) contains the matrix





c′1
c′2

a



 with

c′1 6= c′2 6= a 6= c′1.Therefore, by the above, Conv(G · D(c, a + ib)) contains all Ω.
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If a = 0, Conv(G · D(0, ib)) contains the matrices

(
0

D+(ib)

)

and

(
0

D−(ib)

)

.

So, Conv(G ·D(0, ib)) contains the matrix





0
−1

1



. Finally, Conv(G ·D(0, ib))

contains all Ω.
We have proved:

Lemma 3.2.

If n = 3 and ξ ∈ Ω, then Ω ⊂ Conv(G · ξ).

If n = 4, as above, Ω ⊂ Conv(G · D(c1, . . . , c4)). We deduce by using the lemma
that for all c′2, . . . , c

′
4,

D(c1, c
′
2, c

′
3, c

′
4) ∈ Conv(G ·D(c1, c2, a+ ib))

and also Ω ⊂ Conv(G · D(c1, c2, a + ib)). It remains the cases D(a1 + ib1, a2 + ib2),
a1 6= 0 and D(ib1, ib2). In the first case, we saw that







a1 −b1
b1 a1

a2 −b2
b2 a2







∈ G ·D(a1 + ib1, a2 + ib2),

then







a1
a1

a2
a2







∈ Conv(G ·D(a1 + ib1, a2 + ib2)) and a1 6= a2.

By applying the calculation for n = 2, we deduce that D(a1, x, y, a4) belongs to
Conv(G · D(a1 + ib1, a2 + ib2)), for all x and y such that a1 + x + y + a4 = 0.
Therefore, Ω ⊂ Conv(G ·D(a1 + ib1, a2 + ib2)).

For the latter case, we saw that, insl(2,R), the adjoint orbit of D(ib) is the set of

matrices

(
x y + z

y − z −x

)

with z2 − x2 − y2 = b2 and z > 0. Then, G · D(ib1, ib2)

contains a matrix as follows:







x z
−z −x

0 b2
−b2 0






, with 0 < b1 < z.
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Combining this matrix with







0 1
1 0

0 1
1 0







, we obtain :

ξ =







−x −z
z x

0 −b2
b2 0







∈ G ·D(ib1, ib2).

If t =
b1

z + b1
, the matrix tξ + (1− t)D(ib1, ib2) is D(−tx, tx, i(1 − 2t)b2) ∈ Conv(G ·

D(ib1, ib2)). Or

Lemma 3.3.

If n = 4 and ξ ∈ Ω, then Ω ⊂ Conv(G · ξ).

Proposition 3.4.

For all n > 2, the convex hull of the adjoint orbit of a point ξ in Ω contains Ω:

Ω ⊂ Conv(G · ξ).
This convex hull is dense in sl(n,R).

Proof.
By induction on n > 4, suppose that, for all 2 < p < n, this property is true. We

consider D(cj, ak + ibk) ∈ Σr,s, with r + 2s = n.

If r ≥ 2, then n− 2 > 2, and we write:

D(cj, ak+ ibk) =

(
D(c′1, c

′
2)

D(c′3, . . . , c
′
r, a

′
k + ib′k)

)

+





c1 + c2
2

I2

−c1 + c2
n− 2

In−2



 ,

Using the fact that sl(2,R) = Conv(G · D(c′1, c
′
2)) and by the induction hypothesis

for n− 2, we get Ω ⊂ Conv(G ·D(cj, ak + ibk)).
If r = 1, we decompose D(c1, ak + ibk) as : D(c1, ak + ibk) =

(
D(c′1, a

′
1 + ib1)

D(a′2 + ib′2, . . . , a
′
n + ib′n)

)

+






c1 + 2a1
3

I3

−c1 + 2a1
n− 3

In−3




 .

Then, a matrix D(c′′1, c
′′
2, c

′′
3, a2+ ib2, . . . , an+ ibn) belongs to Conv(G ·D(c1, ak+ ibk)).

Therefore, the first case applies, and we still get the result.
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If r = 0, then s > 2, we decompose D(ak + ibk) as : D(ak + ibk) =

(
D(a′1 + ib1, a

′
2 + ib′2)

D(a′3 + ib′3, . . . , a
′
n + ib′n)

)

+






2a1 + 2a2
4

I4

−2a1 + 2a2
n− 4

In−4




 .

Then a matrix D(c′′1, . . . , c
′′
4, a3 + ib3, . . . , an + ibn) belongs to Conv(G ·D(ak + ibk)).

So, the first case applies, and this completes the proof of our proposition.

�

Corollary 3.5. sl(n,R) admits an overalgebra almost separating of degree n.

Proof.
g = sl(n,R) admits an overalgebra of degree n, given by :

g+ = sl(n,R)× R
n−1

Φ : g⋆ −→ g+⋆, Φ(X) = (X, φ(X)) = (X, T2(X), T3(X), . . . , Tn(X)).

Indeed, φ is polynomial, with degree n.
Moreover, we have for all ξ in Ω,

Conv (Φ(Coad(SL(n,R))ξ)) = Conv(Coad(SL(n,R))ξ)× (T2(ξ), . . . , Tn(ξ))

= sl(n,R)⋆ × (T2(ξ), . . . , Tn(ξ)).

Then Φ(ξ′) belongs to this set if and only if Tk(ξ
′) = Tk(ξ) for all k, if and only if

Cξ′ = Cξ.
We saw that if n is odd, {ξ′, such that Cξ′ = Cξ} is exactly the orbitCoad(SL(n,R))ξ

and, if n is even, {ξ′, such that Cξ′ = Cξ} is either the orbit Coad(SL(n,R))ξ, or,
if Cξ has only non real roots, the set {ξ′, such that Cξ′ = Cξ} is the union of two
disjoint orbits. This proves that (g+, φ) is an overalgebra almost separating of degree
n of sl(n,R).

�

4. Overalgebra almost separating of degree p of a Lie algebra g

Definition 4.1. (Semi direct product)
Let G be a real Lie group, V a finite dimensional vector space and (π, V ) a linear

representation of G. Denote by G+ = G′
⋊V the Lie group whose set G×V and low:

(g, v).(g′, v′) = (gg′, v + π(g)v′).

Its Lie algebra is g+ = g′ ⋊ V , whose space g⊕ V and bracket :

[(X, u), (X ′, u′)] = ([X,X ′], π′(X)u′ − π′(X ′)u).

( π′ is the derivative of π, π′ is the representation of g in V ).
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The exponential map is

exp(X, u) = (expX,
eπ

′(X) − I

π′(X)
u).

We also define the linear map ψu : g −→ V , by ψu(X) = π′(X)u, for all u ∈ V .
Then, the coadjoint action is realized in g+

⋆
= g⋆ × V ⋆ and defined by:

Coad′(X, u)(ξ, f) = (Coad′(X)ξ +t ψu(f),−tπ′(X)f).

The group action is

Coad(g, v)(ξ, f) = (Coad(g)ξ +t ψv(
tπ(g−1)f),t π(g−1)f).

Denote by π⋆(g) =t π(g−1).
Let Φ : g⋆ −→ g+

⋆
be a map non necessarily linear. We assume that p ◦ Φ = id,

then Φ is written Φ(ξ) = (ξ, φ(ξ)). φ is not necessarily linear.

Assume that Φ(Coad(G)ξ) = Coad(G+)Φ(ξ), then : for all g in G and all v in V ,
there exists g′ ∈ G (g′ = g′g,v,ξ) such that
{

π⋆(g)φ(ξ) = φ(Coad(g′)ξ),

Coad(g)(ξ) + (tψv ◦ π⋆(g))φ(ξ) = Coad(g′)ξ = Coad(g)(ξ) +t ψv ◦ φ(Coad(g′)ξ).
In particular, if X is in g, then π⋆(exp(tX))(φ(ξ)) = φ(Coad(g′t)ξ). The continuous

curve t 7→ π⋆(exp(tX))(φ(ξ)) is drawn on the surface C = φ(Coad(G)ξ), its derivative
at 0 is the vector π⋆′(X)φ(ξ). This vector belongs to the tangent space

Tφ(ξ)(C) = φ′(φ(ξ))(Tξ(Coad(G)ξ)) = φ′(φ(ξ))(Coad(g)ξ).

We have also, for the same g in G, v in V , and g′ = g′g,v,ξ ∈ G,

Coad(g)(ξ) = (I −t ψv ◦ φ)(Coad(g′)ξ).
We deduce that, if v = 0, then Coad(g)(ξ) = Coad(g′g,0,ξ)(ξ) and therefore π⋆(g)φ(ξ) =
φ(Coad(g)ξ). So:

Lemma 4.2.

φ is an intertwining (non linear) between the coadjoint representation and the rep-
resentation π⋆.

If φ is polynomial of degree p, then φ is written :

φ(ξ) = φ1(ξ) + φ2(ξ) + · · ·+ φp(ξ),

with φk homogeneous of degree k.
Since φ is an intertwining, then φ ◦ Adg = π⋆(g) ◦ φ, and for all k, φk ◦ Adg =

π⋆(g) ◦ φk, i.e each φk is an intertwining.

On the other hand, for each k, φk(ξ) can be written

φk(ξ) = bk(ξ · . . . · ξ
︸ ︷︷ ︸

k

),
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where bk is a linear map from Sk(g⋆) in V ⋆. The map bk is also an intertwining, since
the action Coadk of G on Sk(g⋆) is such that :

φk(Coad(g)ξ) = bk(Coad(g)ξ · . . . · Coad(g)ξ) = (bk ◦ Coadk(g))(ξ · . . . · ξ).
Put then:

Sp(g
⋆) = g⋆ ⊕ S2(g⋆)⊕ · · · ⊕ Sp(g⋆),

and

b : Sp(g
⋆) −→ V ⋆, b(v1 + v2 + · · ·+ vp) = b1(v1) + · · ·+ bp(vp).

Let U = b(Sp(g
⋆)). U is a submodule of V ⋆, isomorphic to the quotient module

Sp(g
⋆)/ ker(b). Put then W = V/U⊥. W is a quotient module of the module V such

that W ⋆ ≃ U ( and then W ≃ U⋆).

Lemma 4.3.

If (g⋊ V, φ) is an overalgebra almost separating of g, then (g⋊W, φ̃), where

φ̃(ξ) = b(ξ + ξ · ξ + · · ·+ ξ · . . . · ξ)
is also an overalgebra almost separating of g.

Proof.
In the statement of this lemma, we identify W ⋆ with the submodule U of V ⋆. With

this identification, if ι is the canonical injection of U in V ⋆, then φ(ξ) = ι◦ φ̃(ξ). The

application Φ becomes Φ̃(ξ) = (ξ, ι◦φ(ξ)) = (j ◦Φ)(ξ) if j(ξ, v) = (ξ, ι(v)). Therefore

Conv
(

Φ̃(CoadG ξ)
)

= j
(
Conv (Φ(CoadG ξ))

)
,

and Conv
(

Φ̃(CoadG ξ)
)

= Conv
(

Φ̃(CoadG ξ′)
)

if and only if Conv (Φ(CoadG ξ)) =

Conv (Φ(CoadG ξ′)). We deduce that (g⋊W, φ̃) or, if we prefer, (g⋊(Sp(g
⋆)/ ker b)⋆ , φ̃)

is an overalgebra almost separating of g.

�

If g is semi-simple and deployed, then all its representations are completely re-
ducible. Therefore W ⋆ = Sp(g

⋆)/ ker b is isomorphic to a submodule of Sp(g
⋆) =

Sp(g). In this case, W is isomorphic to a submodule of (Sp(g))
⋆. So, we consider the

application φ with values in Sp(g), and φ becomes :

φ(ξ) = b1(ξ) + · · ·+ bp(ξ · . . . · ξ).
The application b becomes an intertwining of modules Sp(g).

Corollary 4.4.

If g is a deployed and semi-simple Lie algebra, admitting an overalgebra almost
separating of degree p, and τ a natural application from g = g⋆ to Sp(g) defined by :
τ(ξ) = ξ+ ξ · ξ+ · · ·+ ξ · . . . · ξ, then there exists an intertwining b of Sp(g) such that
(g⋊ (Sp(g))

⋆ , b ◦ τ) is an overalgebra almost separating of g.
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5. The case g = sl(n,R) and p = 2

5.1. The case g = sl(n,R).
We suppose now g = sl(n,R). Recall the usual notations (cf. [FH]).
sl(n,R) is a real simple algebra. A Cartan subalgebra h of sl(n,R), of dimension

n − 1, is given by the set of diagonal matrices ξ = D(c1, . . . , cn). With this Cartan
algebra, sl(n,R) is deployed. For H ∈ h, we note Li(H) = ci, with L1+ · · ·+Ln = 0.
We choose the usual system of simple roots, i.e the forms αi = Li − Li+1 (1 ≤ i ≤
n − 1). The system of positive roots is the set of forms Li − Lj, with i < j. If
eij = (xrs) is the n× n matrix such that xrs = δriδsj, then for all H in h,

ad(H)eij =

{
(αi + · · ·+ αj−1)(H)eij, if i < j

− (αj + · · ·+ αi−1)(H)eij, if i > j.

The fundamental weights are ωk = L1+ · · ·+Lk (1 ≤ k ≤ n−1) and the simple mod-
ules are exactly the modules noted Γa1...an−1

of highest weight a1ω1 + · · ·+ an−1ωn−1,
with ak integer. Moreover, the dual of Γa1,...,an−1

is the module Γan−1,...,a1. (cf. [FH]).

Let X 7→ Xs be the symmetry operation relative to the second diagonal given by:
if X is the matrix (xij), then Xs is the matrix (xsij) with :

xsij = x(n+1−j)(n+1−i),

The operation s leaves the Cartan subalgebra invariant. For all weight ω, put ωs(H) =
ω(Hs). In particular, Ls

i = Ln+1−i and ωs
j = −ωn−j.

Moreover, s permutes the radiciel spaces, since esij = e(n+1−j)(n+1−i), or, if H belongs
to h and i < j,

[H, esij ] = −(Ls
i − Ls

j)(H)esij .

We consider now the module Sk(sl(n,R)) i.e the space of the sums
∑

i1<···<ik

λi1,...,ikXi1 ·

. . . ·Xik on which sl(n,R) acts by the adjoint action ad defined by:

adX(Xi1 · . . . ·Xik) =

k∑

r=1

Xi1 · . . . · [X,Xir ] · . . . ·Xik .

Lemma 5.1.

The space Sk(sl(n,R)) is self-dual i.e
(
Sk(sl(n,R))

)⋆
= Sk(sl(n,R)).

Proof.
Suppose that the module Γa1,...,an−1

appears in Sk(sl(n,R)). Then, there is a non
zero vector va1,...,an−1

such that , for all H in h, and for all i < j,

adH(va1...an−1
) = (a1ω1 + · · ·+ an−1ωn−1)(H)va1...an−1

, adeij(va1...an−1
) = 0.

If v =
∑

i1<···<ik

λi1,...,ikXi1 ·. . .·Xik is a vector of Sk(sl(n,R)), then vs =
∑

i1<···<ik

λi1,...,ikX
s
i1
·

. . . ·Xs
ik

. Moreover, the map v 7→ vs is an involutive bijection : (vs)s = v.
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The vector vsa1...an−1
is not zero and, for all H in h, and all i < j,

adH(v
s
a1...an−1

) = −(a1ω1 + · · ·+ an−1ωn−1)
s(H)vsa1...an−1

= (an−1ω1 + · · ·+ a1ωn−1)(H)vsa1...an−1
,

adeij(v
s
a1...an−1

) = 0.

In other words,
(
Γa1,...,an−1

)s
= Γan−1,...,a1 ≃

(
Γa1,...,an−1

)⋆
.

�

Corollary 5.2.

If sl(n,R) admits an overalgebra almost separating of degree p, if τ is the nat-
ural application of sl(n,R)⋆ in Sp(sl(n,R)) = (Sp(sl(n,R)))

⋆ given by : τ(ξ) =
ξ+ξ ·ξ+· · ·+ξ ·. . .·ξ, then there exist an intertwining bk of Sk(sl(n,R)) (k = 1, . . . , p)

such that (sl(n,R)⋊Sp(sl(n,R)),
∑

k

bk ◦τ) is an overalgebra almost separating of the

Lie algebra sl(n,R).

5.2. The case p = 2.
For k = 1 and k = 2, looking for the intertwining between Sk(sl(n,R)⋆) and

(
Sk(sl(n,R))

)⋆
.

For k = 1, the space of these intertwining is one dimensional and generated by P0

defined by :

〈P0(ξ), X〉 = Tr(ξX).

Therefore, any intertwining b1 is written b1 = a0P0, with a0 real. For k=2:

5.2.1. Decomposition of S2(g).
The module S2(g) is the sum of three or four irreducible modules, all of different

types. Recall the usual notations (cf. [FH]).

• The highest weight vector in S2(sl(n,R)) is

v20...02 = e1n.e1n.

The weight of this vector is 2ω1 + 2ωn = 2L1 − 2Ln. Then, we deduce the
existence of a simple module Γ20...02 of dimension (cf. [FH]):

dimΓ20...02 =

n−1∏

i=2

2 + n− i

n− i
.

n−1∏

j=2

2 + j − 1

j − 1
.
4 + n− 1

n− 1
=
n2(n− 1)(n+ 3)

4
.

• Among the weight vectors of weight ω2 + ωn−2 = L1 −Ln +L2 −Ln−1, and if
n > 3, there is one that is annulled by the action of ei(i+1), 1 ≤ i ≤ (n − 1).
This weight vector is :

v010...010 = e2n.e1(n−1) − e2(n−1).e1n.
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We deduce then the existence of a simple module Γ010...010 of dimension:
dimΓ010...010 =

n−2∏

j=3

1 + (j − 1)

j − 1
.
n−2∏

j=3

1 + (j − 2)

j − 2
.
n−2∏

i=3

1 + (n− 1)− i

n− 1− i
.
n−2∏

i=3

1 + n− i

n− i
.

n2(n+ 1)

4(n− 2)2(n− 3)

=
n2(n+ 1)(n− 3)

4
If n = 3, e22 is not in sl(3), and this dimension is 0. This sub module does
not appear.

• Among the weight vectors of weight ω1+ωn−1 = L1 −Ln, there is one that is
annulled by the action of ei(i+1), 1 ≤ i ≤ (n− 1). This weight vector is:

v10...01 =
n∑

i=1

e1i.ein −
2

n

n∑

j=1

ejj .e1n.

Then, we deduce the existence of a simple module Γ10...01 of dimension:

dimΓ10...01 =
n−1∏

i=2

1 + n− i

n− i
.
n−1∏

j=2

1 + j − 1

j − 1
.
2 + n− 1

n− 1
= n2 − 1.

• Among the weight vectors of weight 0, there is one that is annulled by the
action of ei(i+1), 1 ≤ i ≤ (n− 1). This weight vector is:

v00...00 = 2n
∑

1≤i<j≤n

eij.eji +
∑

1≤i<j≤n

(eii − ejj).(eii − ejj)

We deduce the existence of a trivial simple module Γ00...00 of dimension 1.

Therefore:

S2(sl(n,R)) ∼=







Γ20...02 ⊕ Γ10...01 ⊕ Γ010...010 ⊕ Γ0...0, if n > 3

Γ22 ⊕ Γ11 ⊕ Γ00, if n = 3.

since the dimensions,
n2(n2 − 1)

2
=
n2(n− 1)(n+ 3)

4
+n2−1+

n2(n+ 1)(n− 3)

4
+1.

5.2.2. Intertwining of S2(sl(n,R)).
Let P1, P2, P3 and P4 the intertwining defined from S2(sl(n,R)) in (S2(sl(n,R)))⋆,

such that, for all ξ, η ∈ sl(n,R) and X, Y ∈ sl(n,R) :

• 〈P1(ξ.η), X.Y 〉 = Tr(ξXηY ) + Tr(ξY ηX),
• 〈P2(ξ.η), X.Y 〉 = Tr(ξX)Tr(ηY ) + Tr(ξY )Tr(ηX),
• 〈P3(ξ.η), X.Y 〉 = Tr(ξηXY ) + Tr(ξηYX) + Tr(ηξXY ) + Tr(ηξY X),
• 〈P4(ξ.η), X.Y 〉 = Tr(ξη)Tr(XY ).

In particular, we have :

• P2(v20...02) = P3(v20...02) = P4(v20...02) = 0, and 〈P1(v20...02), en1.en1〉 = 1 6= 0,
• P3(v010...010) = P4(v010...010) = 0, and

〈
P2(v010...010), en2.e(n−1)1

〉
= 4 6= 0,

• P4(v10...01) = 0, and 〈P3(v10...01), en2.e21〉 6= 0,
• P4(v00...00) 6= 0.
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Thus, if n > 3, P1, P2, P3 and P4 are independent and, since the dimension of the
space of intertwining of S2(sl(n,R)) is 4, then any intertwining b2 is written :

b2 = a1P1 + a2P2 + a3P3 + a4P4, where ai are real constants.

If n = 3, P1, P3 and P4 are independent and, since the dimension of the space of
intertwining is three, then we can write :

b2 = a1P1 + a3P3 + a4P4, where ai are real constants.

Remark 5.1. First, recall that for gl(n,R), the forms (A1, . . . , Am) 7→ Tr(Ai1 . . . Aik)

are the only invariant functions which generate K[End(V )m]GL(V ) (see [H-C]).
Remark that there are 24 possible products of 4 matrices, depending on the position

of the matrix in the product. If we take the trace of these products, then there are
only 6 distinct forms, since, for all A1, A2, A3, A4 ∈ sl(n,R):

Tr(A1A2A3A4) = Tr(A2A3A4A1) = Tr(A3A4A1A2) = Tr(A4A1A2A3).

Since we are looking here to build symmetric forms in ξ, η and X, Y , there are only
4 symmetric forms obtained as product of traces of product matrices. These forms
are the 4 forms described above.

5.3. sl(n,R) does not admit an overalgebra almost separating of degree 2.

We have seen if sl(n,R) admits an overalgebra almost separating of degree 2, then
sl(n,R) admits an overalgebra of the form

G = (sl(n,R)⋊ S2(sl(n,R)), (φ : ξ 7→ b1(ξ) + b2(ξ · ξ))),
with b1 = a0P0 and b2 = a1P1 + · · ·+ a4P4.

We assume that a such overalgebra almost separating G exists.

The generic orbits SL(n,R) · ξ are the orbits of the points ξ of Ω. Recall that :

SL(n,R) · ξ ⊂ {ξ′ ∈ sl(n,R), Cξ′ = Cξ}.
Thus, for all ξ in Ω and all v ∈ S2(sl(n,R)), we put ζ = ξ +t ψv(φ(ξ)) such that
Cξ′ = Cξ.

Lemma 5.3.

If G is an overalgebra almost separating for sl(n,R), then for all ξ of sl(n,R) and
all v of S2(sl(n,R)), ζ = ξ+tψv(φ(ξ)) has the same caracteristic polynomial as ξ and
the same eigenvalues.

Proof. For any matrix ξ of sl(n,R), and all ε > 0, there exists ξε in Ω such that :

‖ξ − ξε‖ < ε.

Since ξε is in Ω,

det(ξε +
t ψv(φ(ξε))− λI) = det(ξε − λI), ∀λ, ∀v
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If ε tends to 0, then, for all λ,

det(ξ +t ψv(φ(ξ))− λI) = det(ξ − λI).

�

Theorem 5.4.

For n > 2, sl(n,R) does not admit an overalgebra almost separating of degree 2.

Proof.
We have seen if sl(n,R) has an overalgebra almost separating of degree 2, there

exists an overalgebra G, with

φ(ξ) = a0P0(ξ) + (a1P1 + · · ·+ a4P4)(ξ · ξ).
We will show that, if for all ξ in Ω, and all v in S2(sl(n,R)), ξ and ζ = ξ+tψv(φ(ξ))

have the same eigenvalues, then a0 = a1 = · · · = a3 = 0, and that the function
φ(ξ) = a4P4(ξ · ξ) does not separate the coadjoint orbits of sl(n,R), if n > 2.

Taking first v = U ∈ sl(n,R). Then
〈
tψU(φ(ξ)), X

〉
= a0Tr(ξ[X,U ]), and ζ =

ξ + a0[U, ξ].

Let U = en1 + e(n−1)2 and ξ = e1n + e2(n−1), thus

ζ = a0(−e11 − e22 + e(n−1)(n−1) + enn) + e1n + e2(n−1)

and
det(ζ − λI) = (−λ)n−4(λ2 − a20)

2.

Therefore, ζ has the same spectrum as ξ implies a0 = 0.

Put now v = X.X, then a direct calculation gives :

tψX.X(φ(ξ)) =

{

4a1[X, ξXξ] + 4a2Tr(ξX)[X, ξ] + 4a3[X
2, ξ2], if n > 3,

4a1[X, ξXξ] + 4a3[X
2, ξ2], if n = 3.

Choose ξ = e1n and X = en1. ξ and X are nilpotent matrices : X2 = ξ2 = 0 and
we obtain :

ξX = e11, [X, ξXξ] = enn − e11, T r(ξX) = 1, [X, ξ] = enn − e11,

thus

tψX.X(φ(ξ)) =

{
(4a1 + 4a2)(−e11 − e22 + e(n−1)(n−1) + enn), if n > 3,

4a1(e33 − e22), if n = 3,

and, if we note ζ = ξ +t ψX.X(φ(ξ)), then

det(ζ − λI) =

{

(−λ)n−2(λ2 − (4a1 + 4a2)
2), if n > 3,

− λ(λ2 − (4a1)
2), if n = 3.

Since det(ξ − λI) = (−λ)n, then we deduce that 4a1 + 4a2 = 0 if n > 3 and a1 = 0 if
n = 3.
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Suppose now n > 3. We choose ξ = e1n+e2(n−1) and X =t ξ = en1+e(n−1)2. These
matrices are nilpotent and we obtain

ξ2 = 0, ξX = e11 + e22,

ξXξ = e1n + e2(n−1), [X, ξXξ] = −e11 − e22 + e(n−1)(n−1) + enn,

T r(ξX) = 2, [X, ξ] = −e11 − e22 + e(n−1)(n−1) + enn.

Therefore
tψX.X(φ(ξ)) = (4a1 + 8a2)(−e11 − e22 + e(n−1)(n−1) + enn)

and
det(ζ − λI) = (−λ)(n−4)(λ2 − (4a1 + 8a2)

2)2.

Since det(ξ − λI) = (−λ)n, we deduce that 4a1 + 8a2 = 0. Thus, in all cases,
a1 = a2 = 0.

Choose now ξ = e1(n−1) + e(n−1)n and X =t ξ = e(n−1)1 + en(n−1), then

X2 = en1, ξ2 = e1n, [X2, ξ2] = −e11 + enn.

Therefore
tψX2(φ(ξ)) = 4a3(−e11 + enn)

and
det(ζ − λI) = (−λ)(n−2)(λ2 − (4a3)

2).

Hence, since det(ξ − λI) = (−λ)n, then a3 = 0.

Thus, we deduce that :

φ(ξ) = b2(ξ.ξ) = a4P4(ξ.ξ) or 〈φ(ξ), U +X.Y 〉 = a4Tr(ξ
2)Tr(XY ).

But the overalgebra G is not separating, since, for all t in [0, 1], and all matrix
M = D(c4, . . . , cn) ∈ sl(n− 3,R), with |ck| > 2, we define the matrix

ξt =









1

2
(t+

√
4− 3t2)

1

2
(t−

√
4− 3t2)

−t
M









.

For all t,

ξt ∈ Ω, det(ξt) = t(1 − t2)
∏

k

ck and Tr(ξ2t ) = 2 +
∑

k

c2k.

i.e, for all t,

Conv (Φ(CoadSL(n,R)ξt)) = sl(n,R)⋆ × {U +X · Y 7→ a4(2 +
∑

k

c2k)Tr(XY )},

therefore if t 6= 1√
3
,

Coad SL(n,R)(ξt) 6= Coad SL(n,R)(ξ 1√
3

).
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Since t(1 − t2) <
1√
3
(1 − 1

3
) =

2

3
√
3
, det(ξt) 6= det(ξ 1√

3

), thus ξt is not in the orbit

Coad SL(n,R)ξ 1√
3

.

�

Remark 5.2.

Recall that, if n = 2, the overalgebra (sl(2,R) ⋊ R, [ξ 7→ Tr(ξ2)]) is an overalge-
bra almost separating of degree 2 of sl(2,R) (cf. [ASZ] where we use the function

det(ξ) = −1

2
Tr(ξ2)).

Similarly, sl(3,R) does not admit an overalgebra almost separating of degree 2 but
sl(3,R) admits an overalgebra almost separating of degree 3.

In this following section, we will show that sl(4,R) does not admit an overalgebra
almost separating of degree 2 or 3 but it admits one overalgebra almost separating
of degree 4.

6. The case n = 4 and p = 3

As above, we shall first find the explicit decomposition of S3(sl(4,R)).

6.1. Decomposition of S3(sl(4,R)).
We have seen that the module S3(sl(4,R)) is self dual. Then, if the submod-

ule Γa1a2a3 appears in the decomposition of S3(sl(4,R)), the submodule Γa3a2a1 ≃
(Γa1a2a3)

s appears also.

The module S3(sl(4,R)) is a submodule of S2(sl(4,R))⊗ sl(4,R). The decomposi-
tion of S2(sl(4,R))⊗ sl(4,R) is given by Littlewood-Richardson’s rule (cf. [FH]), as
follows :

S2(sl(4,R))⊗ sl(4,R) = (Γ303 + Γ212 + Γ202 + Γ101) + (Γ121 + Γ202 + Γ101 + Γ311 + Γ113)

+ 3(Γ210 + Γ012) + 2Γ020 + 3Γ101 + Γ000.

The highest weight vectors which appear in S2(sl(4,R)) are v202, v020, v101 and
v000. We deduce that there are 4 highest weight vectors in S3(sl(4,R)) which are
w303 = v202.e14, w121 = v020.e14, w202 = v101.e14 and w101 = v000.e14. These vectors
are the highest weight vectors for the simple modules Γ303, Γ121, Γ202 and Γ101.

In S2(sl(4,R)) ⊗ sl(4,R), the highest weight vectors v020 ⊗ e14 − v020.e14, v101 ⊗
e14−v101.e14 and v000⊗ e14−v000.e14 appear also. The corresponding simple modules
of these vectors are, respectively, Γ121, Γ202 and Γ101. Since these vectors are not
symmetric, then their corresponding modules are not submodules of S3(sl(4,R)).
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The highest weight vector of Γ311 is e14 ⊗ e13 ⊗ e14 − e14.e13.e14 which is not sym-
metric, then Γ311 does not appear in S3(sl(4,R)), and Γ113 does not appear also.

We conclude:

Γ303 + Γ121 + Γ202 + Γ101 ⊂ S3(sl(4,R)).

The additional invariant space of (Γ303 + Γ212 + Γ202 + Γ101) in S3(sl(4,R)) has the
following decomposition, by using the dimensions :

S3(sl(4,R))/(Γ303 + Γ212 + Γ202 + Γ101) = (Γ210 + Γ012) + Γ101 + Γ000.

Therefore :

S3(sl(4,R)) = (Γ303 + Γ212 + Γ202 + Γ101) + (Γ210 + Γ012 + Γ101 + Γ000).

The highest weight vectors w303, w121, w202 and w101 are:

w303 = e14.e14.e14,

w121 = e24.e13.e14 − e23.e14.e14,

w202 = e12.e24.e14 + e13.e34.e14 +
1

2
((e11 − e22)− (e33 − e44)).e14.e14,

w101 = 8(e12.e21.e14 + e13.e31.e14 + e14.e41.e14 + e23.e32.e14 + e34.e43.e14)+

+ 3(e11.e11.e14 + e22.e22.e14 + e33.e33.e14 + e44.e44.e14)−
− 2(e11.e22.e14 + e11.e33.e14 + e11.e44.e14 + e22.e33.e14 + e22.e44.e14 + e33.e44.e14).

Now looking for the highest weight vectors of the four remaining simple modules.

By Littlewood-Richardson’s rule, (Γ210 + Γ012) appears in the tensorial product
Γ020 ⊗ Γ101 where Γ020 is in S2(sl(4,R)), and Γ101 is in sl(4,R).

The highest weight vector of the module Γ020 is :

v020 = e24.e13 − e23.e14.

We deduce also two other vectors of Γ020 given by :

ade42v020 = ((e44 − e22).e13 − e43.e14 + e23e12),

ade32v020 = (e34.e13 − e24.e12 − (e33 − e22).e14).

Thus, there is a highest weight vector of Γ210, defined by :

w210 = e12.e24.e13 − e12.e23.e14 − e14.e43.e14 + e13.e34.e13 + (e44 − e33).e13.e14.

w210 is a non zero vector and its weight is 4L1 + 2L2 + 2L3 = 2ω1 + 2ω3. Indeed :

ade12w210 = 0, ade23w210 = 0 and ade34w210 = 0.

Using the application s, the highest weight vector of the module Γ012 is vs210 or :

w012 = e34.e13.e24 − e34.e23.e14 − e14.e21.e14 + e24.e12.e24 + (e11 − e22).e24.e14.

It remains the modules Γ101 and Γ000 which appear in the tensorial product Γ101⊗
Γ101. The first factor is in S2(sl(4,R)), the second is in sl(4,R).
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There is a basis for the first factor defined by the following vectors :

e′ij = ei1.e1j + ei2.e2j + ei3.e3j + ei4.e4j −
1

2
(e11 + e22 + e33 + e44).eij .

In S2(sl(4,R)) ⊂ Γ101 ⊗ Γ101, we have seen that the corresponding highest weight
vectors are:

v101 = e12.e24 + e13.e34 +
1

2
((e11 − e22)− (e33 − e44)).e14,

v000 = 8
∑

1≤i<j≤4

eij.eji +
∑

1≤i<j≤4

(eii − ejj).(eii − ejj).

By replacing the first factor eij by the factor e′ij, we obtain the highest weight vectors
w′

101 and w000 ( w000 is not developed) :

w′
101 = 2e12(2e23.e34 + 2e21.e14 + (e22 − e11).e24 − (e33 − e44).e24)+

+ 2e13(2e32.e24 + 2e31.e14 + (e33 − e11).e34 + (e44 − e22).e34)+

+ (e11 − e22)(2e12.e24 + 2e13.e34 + (e11 − e22).e14−
− (e33 − e44).e14)− (e33 − e44)(2e12.e24 + 2e13.e34 + (e11 − e22).e14 − (e33 − e44).e14),

w000 = 4(e12.e
′
21 + e′12.e21 + e13.e

′
31 + e′13.e31 + e14.e

′
41 + e′14.e41+

+ e23.e
′
32 + e′23.e32 + e24.e

′
42 + e′24.e42 + e34.e

′
43 + e′34.e43)+

+ (e11 − e22)(e
′
11 − e′22) + (e11 − e33)(e

′
11 − e′33) + (e11 − e44)(e

′
11 − e′44)+

+ (e22 − e33)(e
′
22 − e′33) + (e22 − e44)(e

′
22 − e′44) + (e33 − e44)(e

′
33 − e′44).

6.2. Trace forms and intertwining of S3(sl(4,R)).
As for S2(sl(n,R), we know 12 trace forms. Denote by ξ, η and ζ elements in

(sl(4,R))⋆ = sl(4,R), and X, Y , Z elements in sl(4,R). The trace forms are the
following :

T1 = Tr(ξηζXY Z), T2 = Tr(ξηXζY Z), T3 = Tr(ξηXY ζZ),
T4 = Tr(ξXηY ζZ), T5 = Tr(ξηζX)Tr(YZ), T6 = Tr(ξηXY )Tr(ζZ),
T7 = Tr(ξXY Z)Tr(ηζ), T8 = Tr(ξXηY )Tr(ζZ), T9 = Tr(ξηζ)Tr(XYZ),
T10 = Tr(ξηX)Tr(ζY Z), T11 = Tr(ξη)Tr(ζX)Tr(YZ), T12 = Tr(ξX)Tr(ηY )Tr(ζZ).

Recall that, in the previous section, we calculated the 8 highest weight vectors of
the decomposition of S3(sl(4,R)), i.e the free system

(w1, . . . , w8) = (w303, w121, w202, w210, w012, w101, w
′
101, w000).

Let M the matrix with 8 rows and 12 columns whose entries are the numbers
〈Ti(wk), (wk)t〉 (i = 1, . . . , 12, k = 1, . . . , 8) where the vector ej1i1 .ej2i2 .ej3i3 of S3(sl(4,R))
is noted (ei1j1.ei2j2.ei3j3)

t .
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We obtain, by using a symbolic computation program, the following matrix:

M =














0 0 0 36 0 0 0 36 0 0 0 36
0 0 0 0 0 0 0 4 0 0 0 12
0 1 1 3 0 1 0 4 0 1 0 6
0 0 4 0 0 4 0 4 0 0 0 6
0 1 0 0 0 1 0 2 0 0 0 6
1 1 2 0 2 3 2 2 0 0 4 6
1 0 0 0 0 2 0 0 0 0 0 6
3 0 0 0 0 3 0 0 9 0 0 6














The rank of this matrix is 8.

We extract the columns 1, 2, 3, 4, 5, 8, 10, 9, so we obtain the following intertwining.
Explicitly :

〈P1(ξηζ), XY Z〉 = Sym(Tr(ξηζXYZ)),

〈P2(ξηζ), XY Z〉 = Sym(Tr(ξηXζY Z)),

〈P3(ξηζ), XY Z〉 = Sym(Tr(ξηXY ζZ)),

〈P4(ξηζ), XY Z〉 = Sym(Tr(ξXηY ζZ)),

〈P5(ξηζ), XY Z〉 = Sym(Tr(ξηζX)Tr(YZ)),

〈P6(ξηζ), XY Z〉 = Sym(Tr(ξXηY )Tr(ζZ)),

〈P7(ξηζ), XY Z〉 = Sym(Tr(ξηX)Tr(ζYZ)),

〈P8(ξηζ), XY Z〉 = Sym(Tr(ξηζ)Tr(XYZ)).

The notation ’Sym’ means that the expression is symmetrical in ξ, η, ζ .

IfN is the sub-matrix ofM , with 8 rows and 8 columns whose entries are 〈Pi(w
k), (wk)t〉,

i = 1, . . . , 8, then

N =














0 0 0 36 0 36 0 0
0 0 0 0 0 4 0 0
0 1 1 3 0 4 1 0
0 0 4 0 0 4 0 0
0 1 0 0 0 2 0 0
1 1 2 0 2 2 0 0
1 0 0 0 0 0 0 0
3 0 0 0 0 0 0 9














The rank of this matrix is also 8. Thus (P1, P2, P3, P4, P5, P6, P7, P8) are independent.
Therefore:

Lemma 6.1.

The applications Pi : S
3(sl(4,R)⋆) −→

(
S3(sl(4,R))

)⋆
defined above, form a basis

of the space of intertwining of the module S3(sl(4,R)).
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6.3. sl(4,R) does not admit an overalgebra almost separating of degree 3.

Theorem 6.2.

The algebra sl(4,R) does not admit an overalgebra almost separating of degree 3.

Proof.
We have seen that if sl(4,R) admits an overalgebra of degree 3, then sl(4,R) admits

an overalgebra of the form

(sl(4,R)⋊ S3(sl(4,R)), (b1 + b2 + b3) ◦ τ).
In this case, bi are an intertwining, b1 = 0, 〈b2(ξ.η), X.Y 〉 = aTr(ξη)Tr(XY ) and b3
is written :

b3(ξ.η.ζ) =

8∑

j=1

cjPj(ξ.η.ζ).

Then, we choose v = X.X.X in S3(sl(4,R)) and we calculate tψv(Pj(ξ.ξ.ξ)). Ex-
plicitly:

tψv(P1(ξ.ξ.ξ)) = [X3, ξ3],
tψv(P2(ξ.ξ.ξ)) = [X2ξ2X, ξ] + [XξX2, ξ2],
tψv(P3(ξ.ξ.ξ)) = [X2ξX, ξ2] + [Xξ2X2, ξ],
tψv(P4(ξ.ξ.ξ)) = 3[XξXξX, ξ],
tψv(P5(ξ.ξ.ξ)) = Tr(X2)[X, ξ3],
tψv(P6(ξ.ξ.ξ)) = 2Tr(ξX)[XξX, ξ] + Tr(ξXξX)[X, ξ],
tψv(P7(ξ.ξ.ξ)) = Tr(ξX2)[X, ξ2] + Tr(ξ2X)[X2, ξ],
tψv(P8(ξ.ξ.ξ)) = 0.

Let ξ = e14, then ξ2 = 0 and tψv(Pj(ξ.ξ.ξ)) = 0, for j = 1, 2, 3, 5, 7.

Let now X = e14 + e41, then ξX = e11 and XξXξX = X − ξ = e41.

So, we obtain tψv(P4(ξ.ξ.ξ)) = −3(e11 − e44) and tψv(P6(ξ.ξ.ξ)) = 3(e11 − e44).
Thus, with same notations as above,

ζ = ξ +t ψv(φ(ξ)) = 3(c6 − c4)(e11 − e44) + e14.

Therefore,

det(ζ − λI) = λ2(λ2 − 9(c6 − c4)
2).

We deduce the relation c6 − c4 = 0.

On the other hand, let X = e14 − e41, then :

ξX = −e11, ξXξX = e11, XξXξX = −e41,
XξX = e41, [XξXξX, ξ] = e11 − e44, XξX = e41,

[XξX, ξ] = −e11 + e44, [X, ξ] = e11 − e44, ξXξX = e11.
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Thus, we get tψv(P6(ξ.ξ.ξ)) = 3(e11−e44) and tψv(P4(ξ.ξ.ξ)) = 3(e11−e44). There-
fore, if ζ = ξ +t ψv(φ(ξ)),

det(ζ − λI) = λ2(λ2 − 9(c6 + c4)
2)

then c6 + c4 = 0. This shows that c6 = c4 = 0.

We choose now ξ = e13 + e34, and X =t ξ = e31 + e43. Then:

X2 = e41, X2ξ2X = e43, [ξ,X2ξ2X ] = e33 − e44, XξX2 = e41,
[ξ2, XξX2] = e11 − e44, X2ξX = e41, [ξ2, X2ξX ] = e11 − e44, Xξ2X2 = e31,
[ξ,Xξ2X2] = e11 − e33, X2ξ2X = e43, [X2ξ2X, ξ] = e44 − e33, XξX2 = e41,
[XξX2, ξ2] = e44 − e11.

We deduce that tψv(P2(ξ.ξ.ξ)) = e11+e33−2e44 and tψv(P3(ξ.ξ.ξ)) = 2e11−e33−e44.
Therefore,

ζ = ξ +t ψv(φ(ξ)) = e13 + e34 + (c2 + 2c3)e11 + (c2 − c3)e33 − (2c2 + c3)e44

and

det(ζ − λI) = −λ(c2 + 2c3 − λ)(c2 − c3 − λ)(−2c2 − c3 − λ)

Hence, the spectrum of ζ is the same as ξ, i.e {0} implies c2 + 2c3 = 0, c2 − c3 = 0,
and 2c2 + c3 = 0, so c2 = c3 = 0.

Now, let ξ = e13 + e14 + e34 and X =t ξ = e31 + e41 + e43, then

ξ2 = e14, X2 = e41, ξX2 = e11 + e31,
ξ2X = e11 + e13, [ξ2, X ] = e11 + e13 − e34 − e44, [ξ,X2] = e11 + e31 − e43 − e44.

Thus,
tψv(P7(ξ.ξ.ξ)) = 2e11 + e13 + e31 − e34 − e43 − 2e44

and, if ζ = ξ +t ψv(φ(ξ)),

det(ζ − λI) = −λ(−λ3 + λ(5c27 + c7) + 2c37 + c27 + 2c7).

Therefore, the spectrum of ζ is the same as ξ, i.e {0} implies c7 = 0.

Later, we choose ξ = e12 + e23 + e34 and X =t ξ. Then, ξ2 = e13 + e24, ξ
3 = e14,

X3 = e41. Thus tψv(P1(ξ.ξ.ξ)) = e11 − e44 and the spectrum of ζ = ξ +t ψv(φ(ξ)) is
{0} implies c1 = 0.

Finally, we choose another X = e14 + e41 and we allowed ξ = e12 + e23 + e34. Then
X2 = e11 + e44 and ξ3 = e11 − e44. Therefore, tψv(P5(ξ.ξ.ξ)) = 2(e11 − e44) and
det(ζ − λI) = λ4 implies c5 = 0.

We finally get:

〈φ(ξ), U +X.Y +X ′.Y ′.Z ′〉 = a4Tr(ξ
2)Tr(XY ) + c8Tr(ξ

3)Tr(X ′Y ′Z ′).
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But we consider, for 0 < t < 1, the matrices

ξt =







√
1 + t

−
√
1 + t √

1− t

−
√
1− t






.

ξt is an element of Ω for all t, Tr(ξ2t ) = 4 and Tr(ξ3t ) = 0 for all t. Although,
det(ξt) = (1 − t2)2. Therefore, with the same argument as in a previous section, we
have, for all t,

Conv (Φ(Coad SL(4,R)ξt)) = (sl(4,R))⋆ × {U +X.Y +X ′.Y ′.Z ′ 7→ 4a4Tr(XY )}.

But, if t 6= 1

2
, ξt is not in the orbit Coad SL(4,R)ξ 1

2

.

Thus, sl(4,R) does not admit an overalgebra almost separating of degree 3.

�

In fact, we think that the following conjecture is always true :

Conjecture 6.3. For all n, sl(n,R) does not admit an overalgebra almost separating
of degree n− 1, but it admits an overalgebra almost separating of degree n.

More generally, if g is a real and deployed semi simple Lie algebra and if k is
the greatest degree of the generators of the algebra of invariant functions on g, then
g admits an overalgebra almost separating of degree k. But g does not admit an
overalgebra almost separating of degree k − 1.

The hypothesis ‘g deployed’ is necessary. Indeed, we remark that sl(2,R) does not
admit an overalgebra almost separating of degree 1, but the Lie algebra su(2) admits
an overalgebra almost separating of degree 1 since its adjoint orbits are spheres which
are characterized by the closure of their convex hull.
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