Asymptotic direction of random walks in Dirichlet environment
Résumé
In this short paper we generalize the result of directional transience from [SabotTournier10]. This enables us, by means of [Simenhaus07], [ZernerMerkl01] and [Bouchet12] to conclude that, on Z^d (for any dimension d), random walks in i.i.d. Dirichlet environment, or equivalently oriented-edge reinforced random walks, have almost-surely an asymptotic direction equal to the direction of the initial drift, unless this drift is zero.
Origine | Fichiers produits par l'(les) auteur(s) |
---|