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Asymptotic direction of random walks
in Dirichlet environment

Laurent Tournier1

Abstract In this short paper we generalize the result of directional transience from [SaTo10]. This
enables us, by means of [Si07], [ZeMe01] and [Bo12] to conclude that, on Zd (for any dimension d),
random walks in i.i.d. Dirichlet environment, or equivalently oriented-edge reinforced random walks,
have almost-surely an asymptotic direction equal to the direction of the initial drift, i.e. Xn

‖Xn‖ con-

verges to Eo[X1]
‖Eo[X1]‖ as n→∞, unless this drift is zero.

1 Introduction

Let d ≥ 1, and denote by V = {~e1,−~e1, . . . , ~ed,−~ed} the set of unit vectors in Zd, which will be
used as possible steps. Assume we are given weights α~e > 0, ~e ∈ V.

Consider now the directed graph Zd whose oriented edges are the pairs e = (x, y) such that
~e := y − x is an element of V, endowed with (initial) weight

αe := α~e

and, for x ∈ Zd, define the law P
(α)
x of a random walk (Xn)n≥0 on Zd in the following way:

P
(α)
x -a.s., X0 = x and for every time n ∈ N and every edge e starting at Xn,

P (α)
x

(
(Xn, Xn+1) = e

∣∣X0, . . . , Xn

)
=

αe +Nn(e)∑
f :f=Xn

αf +Nn(f)
(1)

where for every edge e we let e =: (e, e) and

Nn(e) := #
{

0 ≤ i < n : (Xi, Xi+1) = e
}
.

It is called the oriented-edge reinforced random walk (with initial weights (αe)e, starting at x).

Due to the embedding of an independent Polya urn at each vertex and to de Finetti’s the-
orem, this model admits an equivalent representation as a random walk in an i.i.d. random
environment given by Dirichlet random variables. This representation (for which we refer
for instance to [EnSa02] since it won’t be explicitely used here besides its existence) makes
the specificity of oriented-edge linear reinforcement and enabled several sharp results to
be obtained, in contrast to the still very partial understanding of either random walks in
random environment or reinforced random walks in dimension ≥ 2.
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Define the mean drift
~∆ := E(α)

o [X1] =
1

Σ

∑
~e∈V

α~e ~e

where Σ =
∑

~e∈V α~e.

In any dimension, Enriquez and Sabot [EnSa06] have given a sufficient ballisticity con-
dition and bounds on the speed, later improved in [To09]. Non ballistic cases are known
to occur when weights are sufficiently small (cf. [To09]), and Sabot and Tournier [SaTo10]
proved that under the only assumption ~∆ 6= ~0 (refered to as the non symmetric case), the
random walk is transient with positive probability in the direction of a basis vector.

In dimension ≥ 3, Sabot (in [Sa09]) proved that these random walks are transient (includ-
ing in the symmetric case ~∆ = ~0) and (in [Sa10]) characterized the ballistic regime (using in
particular [SaTo10]).

The last three papers exploit a property of stability of Dirichlet distributions under time
reversal. This technique proves again particularly efficient in the present paper to obtain
the following theorem.

Theorem 1. Assume ~∆ 6= ~0. For any ~u ∈ Rd with rational slopes such that ~u · ~∆ > 0,

P (α)
o

(
Xn · ~u −→

n
+∞

)
> 0.

In [SaTo10], this theorem was proved in the case when ~u = ~ei. The interest in the present
refinement lies in the corollary below, obtained by combining the theorem with the 0-1 laws
of [ZeMe01] (d = 2) and of the recent [Bo12] (d ≥ 3) together with the main result of [Si07] for
the conclusion (details follow).

Corollary 1. Assume ~∆ 6= ~0. Then

Xn

‖Xn‖
−→
n

~∆

‖~∆‖
P (α)
o -a.s.

Remarks.

– In [EnSa06], Enriquez and Sabot gave an expansion of the speed as γ → ∞ when the
parameters are α(γ)

i := γαi, and noticed that the second order was surprisingly colinear
to the first one, i.e. to ~∆. This is not anymore a surprise given the above corollary; but
this highlights the fact that the simplicity of the corollary comes as a surprise itself.
Correlations between the transition probabilities at one site indeed affect the speed
(cf. for instance [Sa04]), and thus the speed of a random walk in random environment
is typically not expected to be colinear with the mean drift, if not for symmetry reasons.

– The theorem does actually not depend on the graph structure of Zd besides translation
invariance, meaning that the result also holds for non nearest neighbour models: we
may enable V to be any finite subset of Zd, and the proof is written in such a way that
it covers this case. The same is true for the main results of [Bo12] and [Si07] with little
modification, hence the corollary also generalizes in this way in dimension ≥ 3. The
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intersection property for planar walks used in [ZeMe01] may however fail if jumps are
allowed in such a way that the graph is not anymore planar. But if it is planar, then
the proof carries closely. This includes in particular the case of the triangular lattice
(by taking V = {±~e1,±~e2,±(~e1 + ~e2)}).

– Using the above-mentioned 0-1 laws, the probability in the theorem equals 1 and the
rationality assumption is readily waived; the theorem was stated this way in order to
keep its proof essentially contained in the present paper, in contrast to its corollary.

– Statement (d) of Theorem 1.8 of [DrRa10] (and Lemma 4 of [ZeMe01]) implies that in
any dimension, when ~u · ~∆ = 0, P (α)

o -a.s., lim supnXn · ~u = +∞ and lim infnXn · ~u = −∞.
In dimension at least 3, this is showed in [Bo12] as well.

– Theorem 2 of [Bo12] also implies the existence of a deterministic yet unspecified
asymptotic direction in dimension at least 3. Further remarks regarding the derivation
of the corollary from the theorem are deferred to the end of the proof.

2 Proof of the theorem

The proof, like [SaTo10], uses a time reversal property from [Sa09] (re-proved in a more
probabilistic way in [SaTo10]). To keep the present proof more self-contained, the following
very elementary lemma sums up the only aspect of this property that will be used later (this
is Lemma 1 of [SaTo10]).

Lemma 1. Let G = (V,E) be a directed graph, endowed with positive weights (αe)e∈E. We
denote by Ǧ = (V, Ě) its reversed graph, i.e. Ě := {ě := (e, e) : e = (e, e) ∈ E}, endowed with
the weights α̌ě := αe. Assume that div(α) = 0, i.e., for every x ∈ V ,

αx :=
∑
e : e=x

αe =
∑
e : e=x

αe =: α̌x.

Then, for any closed path σ = (x0, x1, . . . , xn−1, x0) in G, letting σ̌ := (x0, xn−1, . . . , x1, x0) denote
its reverse (in Ǧ), we have

P (α)
x0

(
(X0, . . . , Xn) = σ

)
= P (α̌)

x0

(
(X0, . . . , Xn) = σ̌

)
,

where the laws of oriented-edge reinforced random walks on G or Ǧ are defined as in (1).

Proof. From the definition of P (α)
x0 we get

P (α)
x0 ((X0, . . . , Xn) = σ) =

∏
e∈E αe(αe + 1) · · · (αe + ne(σ)− 1)∏
x∈V αx(αx + 1) · · · (αx + nx(σ)− 1)

,

where ne(σ) (resp. nx(σ)) is the number of crossings of the oriented edge e (resp. the number
of visits of the vertex x) in the path σ. Cyclicity gives ne(σ) = ně(σ̌) and nx(σ) = nx(σ̌) for
all e ∈ E, x ∈ V . Furthermore we have by assumption α̌x = αx for every vertex x, and by
definition αe = α̌ě for every edge e. This shows that the previous product matches the similar
product with Ě, α̌ and σ̌ instead of E, α and σ, hence the lemma.
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Let us turn to the proof of Theorem 1. Assume ~∆ 6= ~0, and let ~u be a vector with rational
slopes such that ~∆ · ~u > 0.

Up to multiplication by a constant, we may assume that ~u ∈ Zd, and that ‖~u‖ ≥ ‖~e‖, ∀~e ∈ V
(cf. second remark after the corollary). We complete ~u into an orthogonal basis (~u, ~u2, . . . , ~ud)
chosen in such a way that ~ui ∈ Zd for all i.

Let us consider the event D := {∀n ≥ 0, Xn · ~u ≥ 0}. Because the weights are translation
invariant, the probabilities P (α)

x (D) are invariant by the translations x 7→ x ± ~ui for all i ≥ 2,
and thus take only finitely many different values when x is in the “discrete hyperplane”

H :=
{
x ∈ Zd : ∃~e ∈ V, (x− ~e) · ~u < 0 ≤ x · ~u},

namely for instance each of the values obtained when x belongs to the finite set

H0 := H ∩
(
R+~u+ [0, ~u2) + · · ·+ [0, ~ud)

)
.

We introduce a probability measure µ on H0 as follows: for all x ∈ H0,

µ(x) :=
1

Z

∑
~e∈V:

(x−~e)·~u<0

α~e (2)

where Z is a normalizing constant. Let us define a finite graph that will enable us to bound
P

(α)
µ (D) :=

∑
x∈H0

µ(x)P
(α)
x (D) from below.

Let N,L ∈ N∗. We first consider the cylinder

CN,L :=
{
x ∈ Zd : 0 ≤ x · ~u ≤ L‖~u‖2

}/
(NZ~u2 + · · ·+NZ~ud),

i.e. the slab {0 ≤ x · ~u ≤ L‖~u‖2} ∩ Zd where vertices that differ by N~ui for some i ∈ {2, . . . , d}
are identified. Let R denote its “right” end, i.e.

R :=
{
x ∈ Zd : ∃~e ∈ V, x · ~u ≤ L‖~u‖2 < (x+ ~e) · ~u

}/
(NZ~u2 + · · ·+NZ~ud) ⊂ CN,L

(note that the inclusion is due to the constraint ‖~u‖ ≥ ‖~e‖ for small L) and similarly L ⊂ CN,L
for the “left” end. We may now define the finite graph GN,L (refer to Figure 1 for an example
in Z2). Its vertex set is

VN,L := CN,L ∪ {R, ∂},
where R and ∂ are new vertices, and the edges of GN,L are of the following types:

a) edges induced by those of Zd inside CN,L;

b) edges from (resp. to) the vertices of L to (resp. from) ∂, corresponding to the edges of Zd
exiting (resp. entering) the cylinder “through the left end”;

c) edges from (resp. to) the vertices of R to (resp. from) R, corresponding to the edges of Zd
exiting (resp. entering) the cylinder “through the right end”;

d) a new edge from R to ∂.

Note that in b) and c) several edges may connect two vertices, and that in d) no edge goes
from ∂ to R. We also introduce weights αN,Le on the edges of GN,L as follows (invoking the
translation invariance of the weights in Zd):
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– edges defined in a), b) and c) have the weight of the corresponding edge in Zd;

– the edge from R to ∂ has weight

αN,L(R,∂)
:=

( ∑
x∈R, ~e∈V:
x+~e/∈CN,L

α~e

)
−
( ∑

x∈L, ~e∈V:
x−~e/∈CN,L

α~e

)
.

By construction, we have divαN,L = 0. The main point to check however is that αN,L(R,∂) is
positive.

Due to periodicity, we have

αN,L(R,∂) = Nd−1‖~u2‖ · · · ‖~ud‖
∑
~e∈V

(
Φ~u(~e)− Φ−~u(~e)

)
α~e

where Φ~u(~e) is the flux of ~e through the oriented hyperplane ~u⊥:

Φ~u(~e) :=
1

Nd−1‖~u2‖ · · · ‖~ud‖
#
{
x ∈ R : x+ ~e /∈ CN,L

}
=

1

‖~u2‖ · · · ‖~ud‖
#

({
x ∈ Zd : x · ~u ≤ 0 < (x+ ~e) · ~u

}/(
Z~u2 + · · ·+ Z~ud

))
.

Clearly Φ~u(~e) is zero if ~u · ~e ≤ 0 and otherwise it is a simple geometric fact that the above
cardinality equals the volume of the parallelotope on the vectors ~e, ~u2, . . . , ~ud. Indeed, this
is also the number of lattice points in the torus Rd

/
(Z~e + Z~u2 + · · · + Z~ud), and this torus is

partitioned into the unit cubes x+ [0, 1)d indexed by the lattice points x. Hence in any case

Φ~u(~e) =
( ~u

‖~u‖ · ~e
)

+

which gives

αN,L(R,∂) =
Nd−1‖~u2‖ · · · ‖~ud‖

‖~u‖
∑
~e∈V

(
(~u · ~e)+ − (−~u · ~e)+

)
α~e =

Nd−1‖~u2‖ · · · ‖~ud‖
‖~u‖

∑
~e∈V

(
~u · ~e

)
α~e

= Nd−1‖~u2‖ · · · ‖~ud‖
~u

‖~u‖ · Σ
~∆

therefore finally αN,L(R,∂) > 0 since ~u · ~∆ > 0, as expected.

NB. The above computation also shows that, introducing a new notation,

αN,L(L,∂)
:=
∑
x∈L

αN,L(x,∂) =
∑

x∈L, ~e∈V:
x−~e/∈CN,L

α~e = Nd−1‖~u2‖ · · · ‖~ud‖
∑
~e∈V

(
− ~u

‖~u‖ · ~e
)

+

α~e,

hence in particular
αN,L(L,∂)

αN,L(R,∂)

=

∑
~e∈V

(
− ~u · ~e

)
+
α~e∑

~e∈V
(
~u · ~e

)
α~e

=
E

(α)
o

[
(X1 · ~u)−

]
E

(α)
o

[
X1 · ~u

] . (3)
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~u

~u2

~e1

~e2∂

R

o

L~u

N~u2

α2

α1
α−2

α−1

α1

α2

α−1

α−2

N(2α1+α2−2α−1−α−2)

α−1

α−2

α2

α1

L

Figure 1: Graph GN,L for ~u = 2~e1 + ~e2 (boundary conditions in direction ~u2 are periodic)

Starting from X0 = ∂, we have X1 = Z(+Z~u2 + · · ·+ Z~ud) where Z has law µ (defined in (2)).
Since the event {HR < H+

∂ } only depends on the walk before its first return in ∂ and has
translation invariance with respect to vectors ~u2, . . . , ~ud we deduce, considering µ as a law
on L,

P (αN,L)
µ (HR < H∂) = P

(αN,L)
∂ (HR < H+

∂ )

≥ P (αN,L)
∂ (XH∂−1 = R).

The last event is the probability that the walk follows a cycle in a given family (namely cycles
going through ∂ only once and containing the edge (R, ∂)). Applying Lemma 1 to every such
cycle and summing up, we get (using (3) for the last equality)

P
(αN,L)
∂ (XH∂−1 = R) = P

(α̌N,L)
∂ (X1 = R)

=
αN,L(R,∂)

αN,L(R,∂) + αN,L(L,∂)

=
E

(α)
o

[
X1 · ~u

]
E

(α)
o

[
(X1 · ~u)+

] .
This lower bound is positive and uniform with respect to L and N . We may rewrite the result
as

P (αN,L)
µ (HR < H∂) ≥ 1− E

(α)
o

[
(X1 · ~u)−

]
E

(α)
o

[
(X1 · ~u)+

] .
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Letting N and then L go to infinity as in [SaTo10] (applied to each of the finitely many
possible values of X0 in H0), we get

P (α)
µ (∀n ≥ 0, Xn · ~u ≥ 0) ≥ 1− E

(α)
o

[
(X1 · ~u)−

]
E

(α)
o

[
(X1 · ~u)+

]
hence, by translation invariance of P (α)

o and Kalikow’s 0-1 law (and Lemma 4 of [ZeMe01],
showing that the walk cannot stay in a slab),

P (α)
o (Xn · ~u→n +∞) = P (α)

µ (Xn · ~u→n +∞) ≥ 1− E
(α)
o

[
(X1 · ~u)−

]
E

(α)
o

[
(X1 · ~u)+

] > 0.

This is the content of Theorem 1. One may note that the above lower bound is a continuous
function of ~u

‖~u‖ .

3 Proof of the corollary

Recall that oriented-edge reinforced random walks are also random walks in Dirichlet envi-
ronment. Due to the 0-1 law of Zerner and Merkl [ZeMe01] (cf. also [Ze07]) in dimension 2
(for random walks in elliptic random environment), and of Bouchet [Bo12] in dimension at
least 3 (for random walks in Dirichlet environment), the result of Theorem 1 turns into: for
any ~u ∈ Rd with rational slopes and such that ~u · ~∆ > 0,

Xn · ~u −→
n

+∞, P (α)
o − a.s. (4)

Note that the set of directions ~u ∈ Rd such that the previous statement holds also has to be
convex, therefore it contains the half-space {~u ∈ Rd : ~u · ~∆ > 0}.

By Theorem 1 of [Si07], there exists a direction ~ν ∈ Sd−1 such that

Xn

‖Xn‖
−→
n
~ν, P (α)

o − a.s.

On the other hand, this direction satisfies ~ν · ~u ≥ 0 for every ~u that satisfies (4), in particular
for every ~u such that ~∆ · ~u > 0. This fully characterizes ~ν, which therefore has to be

~ν =
~∆

‖~∆‖
.

Remarks

– Before learning about the article [Bo12], a former version of the present paper gave a
weaker result in dimension at least 3, namely that an asymptotic direction exists, al-
though it remained unidentified, and possibly random (two-valued). Indeed, by the 0-1
law of Kalikow (in its elliptic version proved in [ZeMe01]) and Theorem 1.8 of [DrRa10],
there exists ~ν ∈ Sd−1 and an event A such that

Xn

‖Xn‖
−→
n

(1A − 1Ac)~ν
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but identifying ~ν from Theorem 1 is hindered by the restriction to rational slopes due
to the possible non-convexity of the set of directions ~u of transience (i.e. satisfying the
theorem).

– In dimension at least 3, since [Bo12] already proves the existence of an asymptotic
direction, an alternative derivation of the corollary without [Si07] would consist in
using Theorem 1 in the proof of Theorem 2 of [Bo12] instead of referring to [SaTo10].
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ment. Ann. Inst. Henri Poincaré Probab. Stat. 43, no. 6, 751–761.

[To09] TOURNIER, L. (2009) Integrability of exit times and ballisticity for random walks in
Dirichlet environment. Electron. J. Probab. 14, no. 16, 431–451 (electronic). MR2480548

[Ze07] ZERNER, M. (2007) The zero-one law for planar random walks in i.i.d. random envi-
ronments revisited. Electron. Comm. Probab. 12, 326–335 (electronic). MR2342711

- 8 -

http://arxiv.org/abs/1205.5709
http://www.ams.org/mathscinet-getitem?mr=MR2643564
http://www.ams.org/mathscinet-getitem?mr=MR1952554
http://www.ams.org/mathscinet-getitem?mr=MR2242664
http://www.ams.org/mathscinet-getitem?mr=MR1880239
http://www.ams.org/mathscinet-getitem?mr=MR0942765
http://www.ams.org/mathscinet-getitem?mr=MR2094437
http://www.ams.org/mathscinet-getitem?mr=MR2834720
http://www.ams.org/mathscinet-getitem?mr=MR2779393
http://www.ams.org/mathscinet-getitem?mr=MR2480548
http://www.ams.org/mathscinet-getitem?mr=MR2342711

	Introduction
	Proof of the theorem
	Proof of the corollary

