Enhanced multiple ultrasonic shear reflection method for the determination of high frequency viscoelastic properties
Résumé
In this work, we propose a study dedicated to the influence of the delay line nature in transverse ultrasonic sensors, dedicated to dynamic high frequency elastic moduli of viscoelastic materials estimation. In literature, these shear ultrasonic rheometers are using delay lines in glass or quartz and normal or oblique incidence of ultrasonic rays. The oblique incidence is used in order to improve the sensitivity of the measurements. We theoretically demonstrate in this work that the use of delay lines in polymers is recommended to improve the sensitivity. Due to modifications, performed on a 10 MHz commercial ultrasonic sensor, we experimentally show on glycerin (which is a Newtonian material) that it is possible to multiply by a factor 10 the sensitivity; compared to delay lines in quartz using a normal incidence of rays. Hence, we overpass the accuracy of the oblique incidence approach with a simpler experimental setup.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...