On the stability of planar randomly switched systems - Archive ouverte HAL
Article Dans Une Revue The Annals of Applied Probability Année : 2014

On the stability of planar randomly switched systems

Résumé

Consider the random process (Xt) solution of dXt/dt = A(It) Xt where (It) is a Markov process on {0,1} and A0 and A1 are real Hurwitz matrices on R2. Assuming that there exists lambda in (0, 1) such that (1 − λ)A0 + λA1 has a positive eigenvalue, we establish that the norm of Xt may converge to 0 or infinity, depending on the the jump rate of the process I. An application to product of random matrices is studied. This paper can be viewed as a probabilistic counterpart of the paper "A note on stability conditions for planar switched systems" by Balde, Boscain and Mason.
Fichier principal
Vignette du fichier
exemple.pdf (232.21 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00686271 , version 1 (09-04-2012)

Identifiants

Citer

Michel Benaïm, Stéphane Le Borgne, Florent Malrieu, Pierre-André Zitt. On the stability of planar randomly switched systems. The Annals of Applied Probability, 2014, 24 (1), pp.292-311. ⟨10.1214/13-AAP924⟩. ⟨hal-00686271⟩
344 Consultations
170 Téléchargements

Altmetric

Partager

More