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Michel Benaïm, Stéphane Le Borgne, Florent Malrieu and Pierre-André Zitt

April 9, 2012

Abstract

Consider the random process (Xt)t>0
solution of Ẋt = AIt

Xt where (It)t>0
is a Markov

process on {0, 1} and A0 and A1 are real Hurwitz matrices on R
2. Assuming that there

exists λ ∈ (0, 1) such that (1 − λ)A0 + λA1 has a positive eigenvalue, we establish that ‖Xt‖
may converge to 0 or +∞ depending on the the jump rate of the process I. An application
to product of random matrices is studied. This paper can be viewed as a probabilistic
counterpart of the paper [2] by Balde, Boscain and Mason.

Keywords. Ergodicity; Linear Differential Equations; Lyapunov exponent; Planar switched systems; Piecewise
Deterministic Markov Process; Product of random matrices.
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1 Introduction

The motivation of the present paper is twofold. Firstly, this work answers a question by G. Char-
lot about the stochastic counterpart of the work [2]. Secondly, the Piecewise Deterministic
Markov processes (PDMP) under study may present a surprising blow-up when time goes to
infinity.

Let A0, A1 ∈ R
2×2 be two real matrices which admit two eigenvalues with negative real parts:

A0 and A1 are said to be Hurwitz matrices. In [2], the authors deal with the stability problem
for the planar linear switching system ẋt = (1 − ut)A0xt + utA1xt, where u: [0, ∞) → {0, 1}
is a measurable function. They provide necessary and sufficient conditions on A0 and A1 for
the system to be asymptotically stable for arbitrary switching function u. The main hypothesis
that ensures the existence of a control u such that the system is not asymptotically stable is the
following.

Assumption 1.1. There exists λ ∈ (0, 1) such that the matrix Aλ = (1 − λ)A0 + λA1 has two
real eigenvalues −λ− < 0 < λ+ with opposite signs. Let us denote by u−, u+ two associated
(real, unit) eigenvectors.

Remark 1.2. It is shown in [2] that Assumption 1.1 is equivalent to the relation

Tr(A0)Tr(A1) − Tr(A0A1) < −2
√

det(A0) det(A1). (1)

Assumption 1.1 may hold in many different cases as it is illustrated by the two following
Examples 1.3 and 1.4. The complete description of the different cases is postponed to Section 2.3.

Example 1.3. Let us define A0 and A1 by

A0 =

(

−1 2b
0 −1

)

and A1 =

(

−1 0
2b −1

)

with b > 0. Then A0 and A1 are two Jordan matrices and the eigenvalues of A1/2 are given by
−1 ± b.
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Example 1.4. Let us define A0 and A1 by

A0 =

(

−1 ab
−a/b −1

)

and A1 =

(

−1 −a/b
ab −1

)

with a, b > 0. Then A0 and A1 have conjugate complex eigenvalues and the eigenvalues of A1/2

are −1 ± a(b − 1/b)/2.

In the sequel, we suppose that Assumption 1.1 holds. Let us define λ0 = λ and λ1 = 1 − λ.
For any β > 0, consider the Markov process (X, I) on R

2 × {0, 1} driven by the generator Lβ:

Lβf(x, i) = LCf(x, i) + βLJf(x, i)

where
LCf(x, i) = Ai∇f(x, i) and LJf(x, i) = λi(f(x, 1 − i) − f(x, i)).

The operator LC corresponds to the “continuous” part (the first component x evolves along the
flow of the vector field x 7→ Aix) and βLJ gives the jumps on the second component. If ν is a
probability measure on R

2 × {0, 1}, we denote by Pν the law of the process (X, I) when the law
of (X0, I0) is ν.

Remark 1.5. One can easily construct the process (X, I) as follows. The process (It)t>0 is the
Markov process on {0, 1} with jump rates (βλi)i∈{0,1}. Then, (Xt)t>0 is the solution of

Xt = X0 +

∫ t

0
AIsXs ds, (t > 0).

Notice that (It)t>0 is a Markov process with invariant measure

βλ1

βλ0 + βλ1
δ0 +

βλ1

βλ0 + βλ1
δ1 = (1 − λ)δ0 + λδ1.

Our main result ensures that under Assumption 1.1 the norm of the continuous component
X goes to zero if the jumps are rare and to +∞ if the jumps are sufficiently numerous (and
X0 6= 0).

Theorem 1.6. Under Assumption 1.1, there exists χ(β) ∈ R such that, for any initial measure
ν such that ν({0} × {0, 1}) = 0,

1

t
log ‖Xt‖ Pν−a.s.−−−−−→

t→∞
χ(β). (2)

Moreover, there exist two constants 0 < β1 6 β2 < ∞ such that:

• if β < β1, then χ(β) is negative and ‖Xt‖ Pν−a.s.−−−−−→
t→∞

0,

• if β > β2, then χ(β) is positive and ‖Xt‖ Pν−a.s.−−−−−→
t→∞

∞.

Remark 1.7. The process ((Xt, It))t>0 is what is called a Piecewise Deterministic Markov
Process on R

2 × {0, 1} (see [4, 6] for details) where the continuous part is driven by two vectors
fields that admit a unique stable point and are exponentially stable. In [1] it is proved that if the
process is recurrent its invariant measure is often absolutely continuous. The previous theorem
shows that the recurrence may not be so easy to establish (it can depend on the jump rates).

We prove Theorem 1.6 in Section 2. We do not know if β1 = β2 under Assumption 1.1.
Nevertheless, Section 3 is dedicated to the study of Examples 1.3 and 1.4 where this "phase
transition" can be established. The exponential rate of growth of the process is given by an
expression analogous to Furstenberg formula ([5]). Generally it is difficult to compute the
element entering the Furstenberg formula (see examples in [3], [8]). For the example of Section 3
one obtains an explicit expression of the "Lyapunov" exponent of (Xt)t>0. Finally, in Section 4,
we remark that our results can be interpreted in terms of products of random matrices. We
obtain examples of products of random independent matrices, all of them contracting, with a
positive Lyapunov exponent (we are not in the frame of unimodular matrices studied in [3], [8]).
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2 The general case

The proofs of the two parts of Theorem 1.6 use different techniques. The easy part, when β is
small, follows from a martingale argument explained in Section 2.1. To study the process for
large β, we use a polar decomposition, detailed in Section 2.2. The angular process is studied
in Sections 2.3 and 2.4. In Section 2.5 we give the main line of the proof of Theorem 1.6; the
proof of a key lemma is postponed to Section 2.6.

2.1 Few jumps: convergence to zero

In this subsection, we suppose that β is small: the i component rarely jumps. The two flows
associated to A0 and A1 being linear and attractive, there exists ρ > 0 and two norms V0 and
V1, given by two positive symmetric matrices M0 and M1, such that, for Vi(x) = 〈x, Mix〉,

LCVi(x, i) 6 −ρVi(x).

Define, V (x, i) = Vi(x). Since |LJf(x, i)| 6 K(|f(x, 0)| + |f(x, 1)|), we get

LβV (x, i) = LCVi(x, i) + βLJVi(x, i)

6 −ρVi(x) + βK(V0(x) + V1(x))

6 −ρVi(x) + βK ′Vi(x)

by the equivalence of the norms. Therefore there exist a ρ′ > 0 and a β1 > 0 such that, for
β < β1,

∀(x, i) ∈ R
2 × {0, 1}, LβV (x, i) 6 −ρ′V (x, i).

Consequently the process (Mt)t>0 defined by Mt = eρ′tV (Xt, It) is a positive supermartingale. It
converges almost surely to a random variable which is almost surely finite. Therefore V (Xt, It)
converges almost surely to zero, and ‖Xt‖ itself converges to zero almost surely (exponentially
fast).

2.2 A polar decomposition

We begin by decomposing the deterministic dynamics. Let A be a matrix on R
2 and x ∈ R

2\{0}.
Consider (xt)t>0 the solution of

{

ẋt = Axt,

x0 = x.

First of all, since x is not 0, then, for any t > 0, xt is not equal to 0. Therefore it is possible
to define the polar coordinates (rt, θt) of xt. Call eθ the unit vector (cos θ, sin θ) and define
ut = eθt

: xt may be written rtut. Since r2
t = 〈xt, xt〉, we have:

rtṙt = 〈xt, Axt〉
A(rtut) = ẋt = ṙtut + rtu̇t.

Therefore:

ṙt = rt〈ut, Aut〉 (3)

u̇t = Aut − 〈ut, Aut〉ut. (4)

The evolution of ut on the circle is autonomous. The derivative u̇t vanishes when Aut =
〈ut, Aut〉ut that is when ut is a eigenvector of A. As a consequence, the equation (4) has

• four stationary points iff A admits two different eigenvalues,
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• two stationary points iff A is a Jordan matrix as in Example 1.3,

• no stationary points iff the eigenvalues of A are not real.

If we write equation (4) in terms of the angles θt. Since u̇t = θ̇teθt+π/2, the scalar product of (4)
with eθt+π/2 gives:

θ̇t =
〈

Aeθt
, eθt+π/2

〉

= (A22 − A11) sin(θt) cos(θt) + A21 cos2(θt) − A12 sin2(θt). (5)

The critical points of this differential equation are related to the eigenvector of A as it is pointed
out in the following lemma.

Lemma 2.1. For any matrix A, the function

d : θ 7→ d(θ) =
〈

Aeθ, eθ+π/2

〉

given by (5) is π-periodic and d(θ) = 0 iff eθ is an eigenvector of A. Finally, the function d is
constant and equal to zero iff A = λI2.

Proof. If θ is changed to θ + π then both eθ and eθ+π/2 are changed to their opposite, so that
〈

Aeθ, eθ+π/2

〉

remains unchanged. We have already seen that d(θ) = 0 if and only if eθ is an

eignevector of A.

2.3 The angular process

Let us use the polar decomposition to study the process ((Xt, It))t>0. Between jumps, the
process follows the deterministic dynamics described above, with A ∈ {A0, A1}. Since the
evolution of the angle θ is autonomous for each dynamics, the process (Θ, I) is a Markov process
on R × {0, 1}. The evolution of (Rt)t>0 is determined by the one of the process ((Θt, It))t>0, by
solving Equation (3) between the jumps. If we call A(θ, i) = 〈Aieθ, eθ〉, then

Rt = R0 exp

(
∫ t

0
A(Θs, Is)ds

)

. (6)

and Rt appears as a multiplicative functional of ((Θs, Is))06s6t.
The proof of Theorem 1.6 relies on the study of the long time behavior of (Θ, I). We will see

in the sequel that this process may be ergodic (i.e. it may admits a unique invariant measure)
or not. Let us define, for i ∈ {0, 1} and λ ∈ (0, 1),

di(θ) =
〈

Aieθ, eθ+π/2

〉

,

dλ(θ) = (1 − λ)d0(θ) + λd1(θ).

The generator of the Markov process (Θ, I) is given by:

Lβf(θ, i) = LCf(θ, i) + βLJf(θ, i)

where
LCf(θ, i) = di(θ)∂θf(θ, i) and LJf(θ, i) = λi(f(θ, 1 − i) − f(θ, i)). (7)

Once again, LC is the continuous drift and βLJ is the jump part. Let us also introduce the
averaged (deterministic) dynamic:

LAf(θ, i) = dλ(θ)∂θf(θ, i).
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Under Assumption 1.1, Lemma 2.1 ensures that the vector field F λ = dλ∂θ has exactly four
critical points on [0, 2π). As dλ is π-periodic it suffices to describe it only on an interval of length
π separating two zeros of dλ corresponding to the negative eigenvalues of Aλ. Let [θ−, θ− + π)
this interval. The function dλ vanishes only once on (θ−, θ− + π) at a point θ+ correponding to
the positive eigenvalues of Aλ. We have

dλ(θ)

{

> 0 if θ ∈ (θ−, θ+),

< 0 if θ ∈ (θ+, θ− + π).
(8)

Let us firstly notice that, under Assumption 1.1, the critical points d0, d1 and dλ are different.

Lemma 2.2. Under Assumption 1.1 if θ is a critical point of dλ then d0(θ)d1(θ) < 0. In
particular, θ is not a critical point of di, i ∈ {0, 1}.

Proof. Assume that there exists θ such that dλ(θ) = 0 = d0(λ). Then d1(θ) = 0. As a
consequence, uθ is an eigenvector for A0, A1 and Aλ associated to the respective eigenvalues η0,
η1 and ηλ. By definition, ηλ = (1 − λ)η0 + λη1. This implies that the second eigenvalue of Aλ is
also a convex combination of two complex numbers with negative real part (consider the relation
Tr(Aλ) = (1−λ)Tr(A0)+λTr(A0)). This cannot hold under Assumption 1.1. As a consequence,
d0(θ)d1(θ) 6= 0. Since dλ(θ) = 0, we get that d0(θ) and d1(θ) have opposite signs.

Without loss of generality we can assume that d0(θ+) < 0 and d1(θ+) > 0. Because of the
equality dλ = (1 − λ)d0(θ) + λd1(θ) we have constraints on the signs of the di. Let us list all the
possibilities:

(a) d1 does not vanish and d0 vanishes 0, 1 or 2 times on (θ−, θ+),

(b) d0 does not vanish and d1 vanishes 0, 1 or 2 times on (θ+, θ− + π),

(c) d1 vanishes 2 times on (θ+, θ− + π) at points θ1m < θ1M and d0 vanishes 1 or 2 times on
(θ1m, θ1M ),

(d) d0 vanishes 2 times on (θ−, θ+) at points θ0m < θ0M and d1 vanishes 1 or 2 times on
(θ0m, θ0M ),

(e) d1 vanishes 1 or 2 times on (θ+, θ− + π) at points θ1m 6 θ1M and d0 vanishes 1 or 2 times
on (θ−, θ+) at points θ0m 6 θ0M ,

(f) d0 vanishes 2 times at points θ0m < θ0M and d1 vanishes 2 times at points θ1m < θ1M such
that θ1m < θ0m < θ+ < θ1M < θ0M .

In the last two cases we have a subinterval of (θ−, θ− + π) that is invariant for both of the
systems θ̇t = di(θt) : (θ0M , θ1m) in case (e), (θ0m, θ1M ) in case (f) (see Figure 1).

2.4 Ergodic properties of the angular process

Since the asymptotic behavior of Rt = ‖Xt‖ depends on the long time behavior of the process
(U, I) = (eΘ, I), let us briefly study its ergodicity (recurrent and transient points, number of
invariant measures...).

Firstly, remark that when Assumption 1.1 is satisfied there exists ε > 0 such that

• the points {(θ, i) : θ ∈ (θ− − ε, θ− + ε, ), i = 0, 1} lead with positive probability to (θ+, j)
and (θ+ − π, j), j = 0, 1,

• the points {(θ, i) : θ ∈ (θ− + π − ε, θ− + π + ε, ), i = 0, 1} lead with positive probability
to (θ+, j) and (θ+ + π, j), j = 0, 1.
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θ0m

θ0M

θ1m

θ1M

θ
−

θ
−

+π

θ+

invariant by both flows

Case (e)

θ0m

θ0M

θ1m

θ1M

θ
−

θ
−

+π

θ+

invariant by both flows

Case (f)

The outer arrows, in red, represent the flow of d1. The middle ones, in blue, represent d0 and the inner

ones the averaged flow dλ. In the two cases, there is a region around θ+ that is left invariant by both

flows. The regions on each side are unstable and lead back to the invariant region.

Figure 1: The three flows in cases (e) and (f).

Thus if one of the sets (θ− − ε, θ− + ε) × {0, 1} or (θ− + π − ε, θ− + π + ε) × {0, 1} is attained
with positive probability starting from (θ+, 0), then the Markov process (Ut, It) on the circle is
recurrent. This is the case in the situations (a), (b), (c), (d) described above. In these situations
the process (Ut, It) is irreducible and has a unique invariant measure.

In the cases (e) and (f), (Ut, It) has exactly two distinct recurrent classes and two invariant
measures supported by two intervals on the circles corresponding to the invariant interval defined
above and its symmetric. Let µβ and µ̃β be these two ergodic invariant measures. For any initial
measure µ on T × {0, 1},

1

t

∫ t

0
f(Us, Is)ds

Pµ a.s.−−−−→
t→∞

P

∫

f(u, i)dµβ(u, i) + (1 − P )

∫

f(u, i)dµ̃β(u, i)

where P ∈ {0, 1} is a random variable such that P(P = 1) is the probability that (U, I) reaches
the class of (eθ+

, 0) when the law of (U0, I0) is µ. Now by symmetry we have

∫

f(u, i)dµ̃β(u, i) =

∫

f(−u, i)dµβ(u, i),

so that, if f(−u, i) = f(u, i), in all the cases, we have

1

t

∫ t

0
f(Us, Is)ds

Pµ a.s.−−−−→
t→∞

∫

f(u, i)dµβ(u, i).

Finally notice that the invariant measures are always absolutely continuous with respect to
λT ⊗ (δ0 + δ1) where λT is the Lebesgue measure on T.

2.5 Many jumps: blow up

In the sequel, µβ stands for any invariant measure of (U, I) and we identify u = eθ with θ. As
A(θ, i) = 〈Aieθ, eθ〉 = A(θ + π, i) we get (see the expression (6)):

1

t
log (Rt/R0)

a.s−−−→
t→∞

∫

A(θ, i) dµβ(θ, i).
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Thus, for any probability measure ν on R
2 × {0, 1} such that ν({0} × {0, 1}) = 0, the conver-

gence (2) in Theorem 1.6 holds with

χ(β) =

∫

A(θ, i) dµβ(θ, i).

In order to prove that χ(β) is positive when β is large we use the following lemma, which will
be proved in Section 2.6.

Lemma 2.3. When β is large, the invariant measures are concentrated around the stable points
θ+ and θ̃+ = θ+ + π of the averaged dynamical system. More precisely, for any ǫ > 0, and any
neighborhood K ⊂ T of the set {θ+, θ̃+}, there exists a β(K, ǫ) such that, for any β > β(K, ǫ),

µβ(K × {0, 1}) > 1 − ǫ.

Thanks to this result, we can now prove:
∫

A(θ, i)dµβ(θ, i) > 0

for β large enough. For θ = θ+ or θ = θ̃+, we know that
∫

A(θ+, i)dµβ(θ, i) =
〈

Aλeθ+
, eθ+

〉

= λ+ > 0.

Moreover A(·, i) is continuous for i = 0, 1. Choose K, a neighborhood of θ+, θ̃+, such that

∀(θ, i) ∈ K × {0, 1}, A(θ, i) >
2λ+

3
.

Thanks to Lemma 2.3, for β large enough,

µβ(K × {0, 1}) > 1 − λ+

6‖A‖∞

.

Therefore:
∣

∣

∣

∣

∫

A(θ, i)dµβ(θ, i) − λ+

∣

∣

∣

∣

6

∫

|A(θ, i) − A(θ+, i)|1θ∈Kdµβ +

∫

|A(θ, i) − A(θ+, i)|1θ /∈Kdµβ

6
λ+

3
+ 2‖A‖∞µβ(K̄ × {0, 1})

6
2λ+

3
.

This shows that χ(β) > λ+

3 > 0. Hence Rt converges a.s. to infinity; this concludes the proof of
Theorem 1.6.

2.6 The invariant measures concentrate near the attractive points

This section is devoted to the proof of Lemma 2.3. The idea is that the averaged system gets
back quickly to the stable points, so most of the mass of the invariant measure µβ should be
located near these stable points. To quantify this attraction to the stable points, we find a
Lyapunov function, in the following sense.

Lemma 2.4. Suppose that there exists a function (θ, i) 7→ fβ(θ, i) that satisfies:

fβ(θ, i) > a > 0,

Lβfβ(θ, i) 6 −ρfβ(θ, i) + C1{θ∈K}, (9)

Then µβ(K) > aρ/C.
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Proof. Integrating (9) with respect to the invariant measure µβ, we get:

0 =

∫

Lβfβdµβ 6 −ρ

∫

fβdµβ + Cµβ(K),

which proves the result.

The Lyapunov function fβ will be constructed by the classical “perturbation” method (for
details see e.g. [7]). We start from a test function f (depending only on θ) adapted to the
averaged dynamical system driven by dλ, and build a perturbation fβ = f −β−1g of this function
such that Lβfβ ≈ LAf ; this perturbed function will satisfy the hypotheses of Lemma 2.4 with
appropriate constants.

Let K be a small neighborhood of the stable points θ+, θ̃+ and ǫ > 0. There exists a
2π-periodic function f that satisfies the following properties:

1. f is C2(R),

2. f(θ−) = f(θ̃−) = 2, f(θ+) = f(θ̃+) = 1,

3. f ′(θ−) = f ′(θ+) = f ′(θ̃+) = f ′(θ̃−) = 0,

4. f ′′(θ−) = −1, f ′′(θ+) = ǫ,

5. f is monotonous between its critical points.

Notice that, by design, f decreases along the trajectories of the averaged system:

∀θ ∈ [0, 2π], LAf(θ) = dλ(θ)f ′(θ) 6 0. (10)

Let us define g on T × {0, 1} by

g(θ, i) = LAf(θ) − LCf(θ, i)

where LC is the continuous part of the Lβ defined in (7). One can notice that, for any θ ∈ T,
i 7→ g(θ, i) is the solution of the Poisson equation

LJg(θ, ·) = LCf(θ, ·) − LAf(θ) = −g(θ, ·)

since, for any θ ∈ T,

LAf(θ) =

∫

LCf(θ, i)d(λδ1 + (1 − λ)δ0)(i).

Finally, define fβ on T × {0, 1} by

fβ(θ, i) = f(θ) − 1

β
g(θ, i).

Applying the generator, we get

Lβfβ(θ, i) = LCf(θ, i) − β−1LCg(θ, i) + βLJf(θ, i) − LJg(θ, i)

= LAf(θ) − β−1LCg(θ, i).

The definition of g ensures that

Lβfβ(θ, i) = LAf(θ) + β−1Rf(θ, i) where Rf(θ, i) = LCLCf(θ, i) − LCLAf(θ, i), (11)

with

LCLCf(θ, i) = di(θ)2f ′′(θ) + di(θ)d′
i(θ)f ′(θ)

LCLAf(θ, i) = di(θ)dλ(θ)f ′′(θ) + di(θ)d′
λ(θ)f ′(θ).
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Thus there exists R̄ǫ such that for any (θ, i) ∈ R × {0, 1}, |Rf(θ, i)| 6 R̄ǫ. In particular, if β is
sufficiently large, one can assume that

1

2
6 1 − ǫ 6 fβ(θ, i) 6 3. (12)

Let us prove (9) between two critical points θ− < θ+ splitting the interval [θ−, θ+] in three
regions

[θ−, θ− + l−], [θ− + l−, θ+ − l+] and [θ+ − l+, θ+]

where l− and l+ depend on f , ε and K (but not on β).

First region. Since θ− is a critical point of dλ, one has LAf(θ−) = 0. Moreover f ′(θ−) is
equal to 0 since f reaches its minimum at θ−. From (11), the expressions of LCLCf and LCLAf ,
we get that

Lβfβ(θ−, i) = β−1Rf(θ−, i) = β−1di(θ−)2f ′′(θ−) 6 −β−1cu

where
cu = min

(

d0(θ−)2, d1(θ−)2
)

> 0. (13)

By continuity, we can find l− > 0 (that does not depend on β) such that Rf(θ, i) 6 −cu/2 for
θ ∈ [θ−, θ− + l−]. Remembering (10), we obtain:

Lβfβ(θ, i) 6 β−1Rf(θ, i)

6 −cu

2
β−1

6 −cu

6
β−1fβ(θ, i), (14)

where the last line follows from (12).

Second region. For θ ∈ [θ− + l−, θ+ − l+], |dλ(θ)| and |f ′(θ)| are bounded below, so LAf(θ) 6
−ρ for some ρ > 0 that does not depend on β. Since Rf is bounded,

Lβfβ 6 −ρ

2

for β large enough. Then (14) also holds when β is large.

Third region. Since θ+ is a critical point of dλ and an extremum of f , LAf(θ+) = 0 and from
(11)

Lβfβ(θ+, i) = β−1Rf(θ+, i) = β−1di(θ+)2f ′′(θ+) 6 β−1cdǫ

where
cd = max

(

d0(θ+)2, d1(θ+)2
)

. (15)

By continuity, we can find l+ > 0 such that, for any θ ∈ [θ+ − l+, θ+],

0 6 Rf(θ, i) 6 2cdǫ and 1 6 f(θ, i) 6 1 + ǫ.

Notice that l+ does not depend on β. Without loss of generality, one can assume that K contains
[θ+ − l+, θ+]. We use (10) once more to get, for θ ∈ [θ+ − l+, θ+],

Lβfβ(θ, i) 6 2cdǫβ−1

6 −cu

6
β−1fβ(θ, i) +

cu

6
β−1fβ(θ, i) + 2cdǫβ−1

6 −cu

6
β−1fβ(θ, i) + β−1

(

(1 + ǫ)
cu

6
+ 2cdǫ

)

.
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Conclusion. Gathering the three estimates provides (9) with:

a = min
θ,i

fβ(θ, i), ρ =
cu

6
β−1 and C = β−1

(

(1 + ǫ)
cu

6
+ 2cdǫ

)

.

By (10), a > 1 − ǫ when β is large. By Lemma 2.4,

µ(K) >
(1 − ǫ)ρ

C
=

1 − ǫ

1 + ǫ + 12(cd/cu)ǫ
.

This can be arbitrarily close to 1 if we choose ǫ small enough.

3 Two explicit examples with a phase transition

In this section we perform a detail study of Examples 1.3 and 1.4. It has been pointed out in
Section 2.4 that the angular processes associated to these two examples are of different type.
The first one has two recurrent classes whereas the second one is ergodic. Nevertheless, we are
able to get a perfect picture of the asymptotic of ‖Xt‖ as a function of β for these two examples.
As the studies are similar we present precisely the analysis of Example 1.4 and we provide more
briefly the key expressions for Example 1.3.

3.1 Example 1.4

Let a and b be two positive real numbers, λ = 1/2 and set

A0 =

(

−1 ab
−a/b −1

)

A1 =

(

−1 −a/b
ab −1

)

and

A1/2 =
A1 + A0

2
=

(

−1 a(b − 1/b)/2
a(b − 1/b)/2 −1

)

.

The eigenvalues of A0 and A1 are equal to −1 ± ia whereas the eigenvalues of A1/2 are −1 ±
a(b − 1/b)/2. If a(b − 1/b) > 2, i.e. b > 1 +

√
1 + a2, the matrix A1/2 admits a positive and

a negative eigenvalue. The associated eigenvectors are (1, 1) and (1, −1). The generator of the
process (Θt, It) is given by

Lβf(θ, i) = di(θ)∂θf(θ, i) +
β

2
(f(θ, 1 − i) − f(θ, i)),

where

d0(θ) = −a/b cos2(θ) − ab sin2(θ) < 0

d1(θ) = ab cos2(θ) + a/b sin2(θ) > 0.

Lemma 3.1. The invariant measure µβ of the angular process is given by

µβ(dθ, i) =
1

C(β)

1

|di(θ)|e
βv(θ)

1[0,2π](θ) dθ,

where

v(θ) =







1

2a
(arctan(b tan(θ)) − arctan(b−1 tan(θ))) if θ 6= ±π

2
,

0 otherwise.
(16)

and

C(β) =

∫ 2π

0

[

1

d1(θ)
− 1

d0(θ)

]

eβv(θ) dθ.

10



Remark 3.2. Notice that v belongs to C∞(T) and is π-periodic. Moreover, v′(θ) = 0 if and only
if θ = ±π/4 + kπ. Finally, the function v reaches its maximum at π/4 + kπ and its minimum
at −π/4 + kπ.

Proof of Lemma 3.1. If µβ is an invariant measure for (Θ, I), then, for any smooth function f
on T × {0, 1}, one has

∫

T×{0,1}
Lβf(θ, i)dµβ(θ, i) = 0.

Let us look for an invariant measure µβ on T × {0, 1} that can be written as

µβ(dθ, i) = ρ0(θ)10(i) dθ + ρ1(θ)11(i) dθ,

where ρ0 and ρ1 are two smooth and 2π-periodic functions. If f does not depend on the discrete
variable i ∈ {0, 1}, i.e. f(θ, i) = f(θ), then

∫

T×{0,1}
Lβf(θ)dµβ(θ, i) =

∫

T

∂θf(θ)(d0ρ0)(θ)dθ +

∫

T

∂θf(θ)(d1ρ1)(θ)dθ,

and an integration by parts leads to
∫

T×{0,1}
Lβf(θ)dµβ(θ, i) = −

∫

T

f(θ)[d0ρ0 + d1ρ1]′(θ)dθ

This ensures that d0ρ0 + d1ρ1 must be constant. Let us assume that one can find ρ0 and ρ1 such
that d0ρ0 + d1ρ1 = 0. Now, if f is such that f(θ, 0) = f(θ) et f(θ, 1) = 0, we get

∫

T×{0,1}
Lβf(θ, i)dµβ(θ, i) =

∫

T

[

d0(θ)∂θf(θ) − β

2
f(θ)

]

ρ0(θ)dθ +

∫

T

β

2
f(θ)ρ1(θ)dθ

and, after an integration by parts,
∫

T×{0,1}
Lβf(θ, i)dµβ(θ, i) =

∫

T

f(θ)

[

−(d0ρ0)′(θ) +
β

2
(ρ1(θ) − ρ0(θ))

]

dθ.

Let us define φ = d0ρ0. Then ρ0 = φ
d0

and ρ1 = − φ
d1

. The function φ is solution of the following
ordinary differential equation:

φ′ = −β

2

(

1

d1
+

1

d0

)

φ. (17)

This equation admits a solution on T (i.e. 2π-periodic) since the integral of 1
d1

+ 1
d0

on [−π, π] is
equal to 0. In fact this is already true on [−π/2, π/2]. Since d0 and d1 are explicit trigonometric
functions, one can find an explicit expression for φ. Notice that

[

arctan
(

b−1 tan(θ)
)]′

=
1

b
· 1 + tan2(θ)

1 + tan2(θ)
b2

=
1

b cos2(θ) + 1
b sin2(θ)

=
a

d1(θ)

[arctan(b tan(θ))]′ = − a

d0(θ)
.

The differential equation (17) becomes φ′ = βv′φ where v is given by (16) and its solutions are
given by

φ = K exp(βv).

This relation provides the expression of ρ0 and ρ1 up to the multiplicative constant K. Since
we are looking for probability measures, K is such that

K

∫

T

(

1

d0(θ)
− 1

d1(θ)

)

φ(θ)dθ = 1.

Conversely, it is easy to check that the measure given in Lemma 3.1 is invariant for Lβ.

11



Let us now consider the function χ given by

χ(β) =

∫

A(θ, i) dµβ(θ, i).

Lemma 3.3. The function β 7→ χ(β) is a C1 and monotonous application on [0, +∞) such that
χ′ has the sign of b2 − 1 and

χ(0) = −1, lim
β→∞

χ(β) =
a(b2 − 1)

2b
− 1.

Proof. From the definition of Ai and A, we get that, for i ∈ {0, 1},

A(θ, i) = 〈Aieθ, eθ〉 =
a(b2 − 1)

2b
sin(2θ) − 1.

For sake of simplicity, A(θ) stands for A(θ, 0) = A(θ, 1). Thus, χ(β) is given by

χ(β) =

∫ 2π

0
A(θ)µ̃β(dθ),

where

µ̃β(dθ) =
1

C(β)

(

1

d1(θ)
− 1

d0(θ)

)

eβv(θ)
1[0,2π] dθ.

Its derivative is given by

χ′(β) =

∫ 2π

0
A(θ)v(θ)µ̃β(dθ) − C ′(β)

C(β)

∫ 2π

0
A(θ)µ̃β(dθ)

=

∫ 2π

0
A(θ)v(θ)µ̃β(dθ) −

∫ 2π

0
v(θ)µ̃β(dθ)

∫ 2π

0
A(θ)µ̃β(dθ).

In other words, one has

χ′(β) = Covµ̃β
(A(·), v(·))

=
a(b2 − 1)

2b
Covµ̃β

(sin(2·), v(·)).

The mean of sin(2·) with respect to µ̃β is equal to 0. Besides, θ 7→ v(θ) sin(2θ) is nonnegative
(and non constant) on T. Thus, χ′ has the sign of b2 − 1.

If β = 0, one has

χ(0) =
1

C(0)

∫ 2π

0

(

a(b2 − 1)

2b
sin(2θ) − 1

)

(

1

d1(θ)
− 1

d0(θ)

)

dθ

= − 1

C(0)

∫ 2π

0

(

1

d1(θ)
− 1

d0(θ)

)

dθ = −1 < 0.

Finally, as β goes to ∞, the probability measure νβ converges to a probability measure concen-
trated on the points {π/4, 5π/4, } where v reaches its maximum. We get

lim
β→+∞

χ(β) =
a(b2 − 1)

2b
− 1.

This concludes the proof.

Corollary 3.4. If b > 1 +
√

1 + a2, then there exists βc ∈ (0, +∞) such that χ is negative on
(0, βc) and positive on (βc, +∞).
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3.2 Example 1.3

Let us define A0 and A1 by

A0 =

(

−1 2b
0 −1

)

and A1 =

(

−1 0
2b −1

)

with b > 0. Then A0 and A1 are two Jordan matrices and the eigenvalues of A1/2 are given by
−1 ± b. In this case,

d0(θ) = −2b sin2(θ) 6 0 and d1(θ) = 2b cos2(θ) > 0,

and (Θ, I) has two recurrent classes

C1 = {(θ, i) : θ ∈ (0, π/2), i = 0, 1} and C2{(θ, i) : θ ∈ (π, 3π/2), i = 0, 1}.

It can be shown, following the lines of the previous section that the ergodic invariant measure
µβ of the angular process on C1 is given by

µβ(dθ, i) =
1

C(β)
· 1

|di(θ)|e
βv(θ)

1(0,π/2)(θ) dθ,

where

v(θ) = − 1

2b sin(2θ)
and C(β) =

2

b

∫ π/2

0

1

sin2(2θ)
eβv(θ) dθ.

Moreover, for any β > 0,

χ(β) = −1 +
1

C(β)

∫ π/2

0

2

sin(2θ)
eβv(θ) dθ.

In particular, the function β 7→ χ(β) is a C1 increasing application on [0, +∞) such that

χ(0) = −1, lim
β→∞

χ(β) = −1 + b.

Corollary 3.5. If b > 1, then there exists βc ∈ (0, +∞) such that χ is negative on (0, βc) and
positive on (βc, +∞).

4 Application to matrix products

The process studied in the preceding sections is linked to some products of random matrices.
Let us consider the embedded chain of our process defined by the sequence of the positions of the
process X at the times when the second coodinate I changes, that is the positions at the times
when one changes the flow. The jump times are given by sums of independent random variables
with exponential law of parameters λ0β and λ1β. To study this embedded chain is to study the
linear images of vectors by products of independent random matrices which distributions are
the image laws of exponential law of parameter 1 by the two mappings

s 7→ exp((s/βλ0)A0) and s 7→ exp((s/βλ1)A1).

Let us denote (Tk)k>0 the sequence of the jump times of the second coordinate (with the con-
vention T0 = 0) and (Zk)k>0 the sequence of the positions of X at these times:

Zk = XTk
.
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The embedded chain and the process (Xt)t > 0 are linked as follows. For t ∈]Tk, Tk+1] one has :

Xt = exp

(

t − Tk

βλik

Aik

)

Zk,

where ik is 0 or 1 depending on the evenness of k. Thus,

Zk = UkUk−1 . . . U1X0 where Ul = exp

(

Tl − Tl−1

βλil−1

Ail−1

)

.

For example we can fix that i0 = 0, which means that at time 0, X is driven by the vector field
x 7→ A0x.

Let e(1) and e(2) be the element of the canonical basis of R
2, X

(1)
t and X

(2)
t the processes

starting from e(1) and e(2) respectively. From the equality

X
(1)
t = exp

(

t − Tk

βλik

Aik

)

UkUk−1 . . . U1e(1),

we get

‖UkUk−1 . . . U1‖ > ‖UkUk−1 . . . U1e(1)‖
> ‖ exp(−((t − Tk)/βλik

)Aik
)X

(1)
t ‖

> ‖ exp(((t − Tk)/βλik
)Aik

)‖−1‖X
(1)
t ‖.

On the other hand, for t ∈]Tk, Tk+1], we have

‖UkUk−1 . . . U1‖ 6 ‖UkUk−1 . . . U1e(1)‖ + ‖UkUk−1 . . . U1e(2)‖

=
2
∑

j=1

‖ exp(−((t − Tk)/βλik
)Aik

)‖‖X
(j)
t ‖

6 2‖ exp(−((t − Tk)/βλik
)Aik

)‖ max(‖X
(1)
t ‖, ‖X

(2)
t ‖).

According to Theorem 1.6 almost surely both limits

lim
t→∞

1

t
log ‖X

(1)
t ‖ and lim

t→∞

1

t
log ‖X

(2)
t ‖

exist and are equal to χ(β). Moreover, almost surely, the ratio (t − Tk)/t tends to 0 and, as Tk

is the sum of independent random variables of parameter λβ and (1 − λ)β, the strong law of
large numbers gives

T2k

2k
−−−→
k→∞

1

2λβ
+

1

2(1 − λ)β
=

1

2λ(1 − λ)β
,

so that Tk/k almost surely tends toward (2λ(1 − λ)β)−1. Putting things together we get that,
almost surely,

lim
k→∞

1

k
log ‖UkUk−1 . . . U1‖ =

χ(β)

2λ(1 − λ)β
.

In particular this limit has the same sign as χ(β), it is negative for small β and positive for large
β.

This does give an example of a product of contracting independent matrices with a positive
Lyapunov exponent but in this case the matrices (Uk)k do not have the same distribution : it
depends on the evenness of k. If we group the Uk by 2 we get a product of independent matrices
with the same distribution but they are not always contracting: some matrices in the image of

(s, t) 7→ exp

(

t

βλ1
A1

)

exp

(

s

βλ0
A0

)
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are hyperbolic.
So let us slightly modifiy the process we began with. When the second coordinate is i ∈ {0, 1},

at each date given by the sum of independent random variables with exponential law of parameter
λiβ one chooses independently with probability 1/2 to keep the flow i or with probability 1/2
to flip to the flow 1 − i. As an independent geometric random sum of exponential independent
random variables is still an exponential random variable, in continuous time, this modification is
simply a change of parameter β (replaced par β/2). The embedded chain defined by the position
at times given by (not the changes of flow but) the sums of exponential random variables, also
corresponds to a products of independent random matrices, and this time, all matrices considered
are contracting.

Let (Dk) denotes the sequence of dates considered in this case. It is a sum of k independent
exponential variables of parameters βλ0 and βλ1 and, almost surely, asymptotically, half of
them are of parameter βλ0, half of them of parameter βλ1. So that, as before, Dk/k almost
surely tends to (2λ(1 − λ)β)−1. These remarks and the preceding computation give the following
proposition.

Proposition 4.1. Let A0 and A1 two matrices such that Assumption 1.1 is satisfied. Let
(Vk)k>1 be a sequence of independent matrices with distribution given by the half sum of the
image measures of the exponential law of parameter 1 by the two mappings

s 7→ exp

(

s

βλ0
A0

)

and t 7→ exp

(

t

βλ1
A1

)

.

Then almost surely, one has

lim
k→∞

1

k
log ‖VkVk−1 . . . V1‖ =

χ(β/2)

2λ(1 − λ)β
,

and if β is sufficiently large this limit is positive.

Thus we have obtained examples of product of random independent identically distributed
matrices, all contracting, with a positive Lyapounov exponent.
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