Remarks on the boundary set of spectral equipartitions - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2012

Remarks on the boundary set of spectral equipartitions

Pierre Bérard
Bernard Helffer
  • Fonction : Auteur
  • PersonId : 829286

Résumé

Given a bounded open set $\Omega$ in $\mathbb{R}^n$ (or a compact Riemannian manifold with boundary), and a partition of $\Omega$ by $k$ open sets $\omega_j$, we consider the quantity $\max_j \lambda(\omega_j)$, where $\lambda(\omega_j)$ is the ground state energy of the Dirichlet realization of the Laplacian in $\omega_j$. We denote by $\mathfrak{L}_k(\Omega)$ the infimum of $\max_j \lambda(\omega_j)$ over all $k$-partitions. A minimal $k$-partition is a partition which realizes the infimum. The purpose of this paper is to revisit properties of nodal sets and to explore if they are also true for minimal partitions, or more generally for spectral equipartitions. We focus on the length of the boundary set of the partition in the $2$-dimensional situation.
Fichier principal
Vignette du fichier
120309-berard-helffer-hal-2012v1-hal.pdf (509.99 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00678905 , version 1 (14-03-2012)
hal-00678905 , version 2 (04-03-2013)

Identifiants

Citer

Pierre Bérard, Bernard Helffer. Remarks on the boundary set of spectral equipartitions. 2012. ⟨hal-00678905v1⟩
151 Consultations
133 Téléchargements

Altmetric

Partager

More