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Abstract

Given a bounded open set Ω in Rn (or a compact Riemannian manifold
with boundary), and a partition of Ω by k open sets ωj , we consider
the quantity maxj λ(ωj), where λ(ωj) is the ground state energy of the
Dirichlet realization of the Laplacian in ωj .

We denote by Lk(Ω) the infimum of maxj λ(ωj) over all k-partitions.
A minimal k-partition is a partition which realizes the infimum.

The purpose of this paper is to revisit properties of nodal sets and to
explore if they are also true for minimal partitions, or more generally for
spectral equipartitions. We focus on the length of the boundary set of the
partition in the 2-dimensional situation.
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1 Introduction

Given a bounded open set Ω in Rn (or in a Riemannian manifold), and a parti-
tion of Ω by k open sets ωj , we consider the quantity maxj λ(ωj), where λ(ωj)
is the ground state energy of the Dirichlet realization of the Laplacian in ωj .



We denote by Lk(Ω) the infimum of maxj λ(ωj) over all k-partitions. A
minimal k-partition is a partition which realizes the infimum. Although the
analysis of k-minimal partitions is rather standard when k = 2 (we find the
nodal domains of a second eigenfunction), the analysis for higher values of k
becomes non trivial and quite interesting.

The purpose of this paper is to revisit various properties of nodal sets and to
explore if they are also true for minimal partitions, or more generally for spectral
equipartitions. We focus on the length of the boundary set of the partition in
the 2-dimensional situation.

2 Definitions and notations

2.1 Spectral theory

Let Ω be a bounded domain in R2, or a compact Riemannian surface, possibly
with boundary ∂Ω, which we assume to be piecewise C1. Let H(Ω) be the
realization of the Laplacian, or of the Laplace-Beltrami operator, −∆ in Ω,
with Dirichlet boundary condition (u|∂Ω = 0). Let {λj(Ω)}j≥1 be the increasing
sequence of the eigenvalues of H(Ω), counted with multiplicity. The eigenspace
associated with λk is denoted by E(λk).

A groundstate u ∈ E(λ1) does not vanish in Ω and can be chosen to be
positive. On the contrary, any eigenfunction u ∈ E(λk), k ≥ 2, changes sign in
Ω, and hence has a nonempty zero set or nodal set,

N(u) = {x ∈ Ω
∣∣ u(x) = 0}. (2.1)

The connected components of Ω \N(u) are called the nodal domains of u. The
number of nodal domains of u is denoted by µ(u).

Courant’s nodal domain theorem says:

Theorem 2.1 (Courant) Let k ≥ 1, and let E(λk) be the eigenspace of H(Ω)
associated with the eigenvalue λk. Then, ∀u ∈ E(λk) \ {0} , µ(u) ≤ k .

Except in dimension 1, the inequality is strict in general. More precisely, we
have:

Theorem 2.2 (Pleijel) Let Ω be a bounded domain in R2. There exists a
constant k0 depending on Ω, such that if k ≥ k0, then

µ(u) < k , ∀u ∈ E(λk) \ {0} .

Both theorems are proved in [Pl]. The main points in the proof of Pleijel’s
Theorem are the Faber-Krahn inequality and the Weyl asymptotic law. Faber-
Krahn’s inequality states that, for any bounded domain ω in R2,

λ1(ω) ≥ πj2

A(ω)
, (2.2)
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where A(ω) is the area of ω and j is the least positive zero of the Bessel function
of order 0 (j ∼ 2.4). Weyl’s asymptotic law for the eigenvalues of H(ω) states
that

lim
k→∞

λk(ω)

k
=

4π

A(ω)
. (2.3)

Let µ̄(k) be the maximum value of µ(u) when u ∈ E(λk) \ {0}. Combining
the results of Faber-Krahn and Weyl, we obtain,

lim sup
k→+∞

µ̄(k)

k
≤ 4/j2 < 1 . (2.4)

Remark 2.3 Pleijel’s Theorem extends to bounded domains in Rn, and more
generally to compact n-manifolds with boundary, with a constant γ(n) < 1 re-
placing 4/j2 in the right-hand side of (2.4) (Peetre [Pe], Bérard-Meyer [BeMe]).
It is also interesting to note that this constant is independent of the geometry.

Remark 2.4 It follows from Pleijel’s Theorem that the equality µ̄(k) = k can
only occur for finitely many values of k. The analysis of the equality case is
very interesting. We refer to [HHOT1] for more details.

Remark 2.5 In dimension 1, counting the nodal domains of an eigenfunction
of a Dirichlet Sturm-Liouville problem in some interval [a, b] is the same as
counting the number of zeroes of the eigenfunction. An analog in dimension 2
is to consider the length of the nodal set of eigenfunctions. We shall come back
to this question in Section 3.

2.2 Partitions

For this section, we refer to [HHOT1]. Let k be a positive integer. A (weak)
k-partition of the open bounded set Ω is1 a family D = {Dj}kj=1 of pairwise

disjoint sets such that ∪kj=1Dj ⊂ Ω. We denote by Dk = Dk(Ω) the set of
k-partitions such that the domains Dj are open and connected.

Given D ∈ Dk, we define the energy Λ(D) of the partition as,

Λ(D) = max
j
λ(Dj), (2.5)

where λ(Dj) is the groundstate energy of H(Dj). We now define the number
Lk(Ω) as:

Lk(Ω) = inf
D∈Dk

Λ(D) . (2.6)

A partition D is called minimal if Lk(Ω) = Λ(D).

Example. The nodal domains of an eigenfunction u ∈ E(λ) \ {0} of H(Ω)
form a µ(u)-partition of Ω denoted by D(u). Such a partition is called a nodal

1Note that we start from a very weak notion of partition. We refer to [HHOT1] for a more
precise definition of classes of k-partitions and for the notion of regular representatives.
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partition.

It turns out that L2(Ω) = λ2(Ω) and that minimal 2-partitions are nodal
partitions. The situation when k ≥ 3 is more complicated, and more interesting.

A partition D = {Dj}kj=1 ∈ D(Ω) is called strong if,

Int(∪jDj) = Ω . (2.7)

The boundary set N(D) of a strong partition D = {Dj}kj=1 ∈ D(Ω) is the
closed set,

N(D) = ∪j(∂Dj ∩ Ω) . (2.8)

The set R(Ω) of regular partitions is the subset of strong partitions in D(Ω)
whose boundary set N = N(D) satisfies the following properties:

(i) The set N is locally a regular curve in Ω, except possibly at finitely many
points {yi} ∈ N ∩Ω, in the neighborhood of which N is the union of ν(yi)
smooth semi-arcs at yi, ν(yi) ≥ 3.

(ii) The set N ∩ ∂Ω consists of finitely many points {zj}. Near the point zj ,
the set N is the union of ρ(zj) ≥ 1 semi-arcs hitting ∂Ω at zj .

(iii) The set N has the equal angle property. More precisely, at any interior
singular point yi, the semi-arcs meet with equal angles; at any bound-
ary singular point zj , the semi-arcs form equal angles together with the
boundary ∂Ω.

Example. A nodal partition D(u) provides an example of a regular parti-
tion, and the boundary set N

(
D(u)

)
coincides with the nodal set N(u). Note

that for a regular partition, the number ν(yi) of semi-arcs at an interior singular
point may be odd, whereas it is always even for a nodal partition.

2.3 Results on minimal partitions

The first important results are that minimal partitions exist ([CTV1, CTV2,
CTV3]), and that any minimal partition has a representative (modulo sets of
capacity 0) which is regular ([HHOT1]). Let us now introduce:

Definition 2.6 We call spectral equipartition a strong k-partition D = {Dj}kj=1

such that λ(Dj) = Λ(D) , for j = 1, . . . , k. The number Λ(D) is called the en-
ergy of the equipartition.

It is easy to see that minimal k-partitions are spectral equipartitions of
energy Lk. Note that for a k-equipartition of energy Λ, we deduce from the
Faber-Krahn inequality that

Λ ≥ πj2

A(Ω)
k . (2.9)
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In particular, for minimal k-partitions we have (see also Section 4)

Lk(Ω) ≥ πj2

A(Ω)
k . (2.10)

2.4 Euler formula

Let Ω ⊂ M be a bounded domain with piecewise smooth boundary ∂Ω. Let
N ⊂ Ω be a regular closed set (in the sense of Section 2.2, properties (i)-(iii))
such that the family D = {D1, . . . , Dk} of connected components of Ω\N is
a regular, strong partition of Ω. Recall that for a singular point y ∈ N ∩ Ω,
ν(y) is the number of semi-arcs at y, and that for a singular point z ∈ N ∩ ∂Ω,
ρ(z) is the number of semi-arcs at z, not counting the two arcs contained in ∂Ω.
Let S(D) denote the set of singular points of N(D), both interior or boundary
points, if any. We define the index of a point x ∈ S(D) to be,

ι(x) =

{
ν(x)− 2 , if x is an interior singular point,
ρ(x) , if x is a boundary singular point.

(2.11)

We introduce the number σ(D) to be,

σ(D) =
∑

x∈S(D)

ι(x) . (2.12)

For a regular strong k-partition D = {Dj}kj=1 of Ω, we have Euler’s formula,

χ(Ω) +
1

2
σ(D) =

k∑
j=1

χ(Dj) . (2.13)

We refer to [HOMN] for a combinatorial proof of this formula in the case of an
open set of R2. One can give a Riemannian proof using the global Gauss-Bonnet
theorem. For a domain D with piecewise smooth boundary ∂D consisting of
piecewise C1 simple closed curves {Ci}ni=1, with corners {pi,j} (i = 1, . . . , n and
j = 1, . . . ,mi) and corresponding interior angles θi,j , we have

2πχ(D) =

∫
D

K +

n∑
i=1

β(Ci) , (2.14)

where

β(Ci) =

∫
Ci

〈k, νD〉+

mi∑
j=1

(π − θi,j) .

In this formula, k is the geodesic curvature vector of the regular part of the
curve Ci, and νD is the unit normal to Ci pointing inside D.

To prove (2.13), it suffices to sum up the Gauss-Bonnet formulas relative to
each domain Dj and to notice that
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• the integrals of the Gaussian curvature over the Dj ’s add up to the integral
of the Gaussian curvature over Ω,

• cancellations occur when adding the integrals of the geodesic curvature
over the curves bounding two adjacentDj (the unit normal vectors point in
opposite directions), while they add up to give the integral of the geodesic
curvature over the boundary of Ω,

• there are contributions coming from the angles associated with the singular
points of N and, when summed up, these contributions yield the second
term in the left-hand side of (2.13).

Note that the proof of (2.13) does not use the fact that the semi-arcs meet
at the singular points of N with equal angles.

3 Lower bounds for the length of the boundary
set of a regular equipartition

3.1 Introduction

Let D = {D1, . . . , Dk} be a regular equipartition with energy Λ = Λ(D). The
boundary set N(D) of the partition consists of singular points {yi}ai=1 inside Ω,
of singular points {zi}bi=1 on ∂Ω, of C1 arcs {γi}ci=1 which bound two adjacent
domains of the partition, and of arcs {δi}di=1 contained in ∂Ω. We define the
length of the boundary set N(D) by the formula,

P (D) :=

c∑
i=1

`(γi) +
1

2
`(∂Ω), (3.1)

where ` denotes the length of the curves. Note that `(∂Ω) =
∑d
i=1 `(δi).

In this section, we investigate lower bounds for P (D) in terms of the energy
Λ(D) and the area A(Ω).

As a matter of fact, we show that the methods introduced in [BrGr, Br, Sa1]
apply in the above context of a regular equipartition, and hence to minimal
partitions. We provide three estimates.

1. The first estimate holds for plane domains, and follows the method of
[BrGr].

2. The second estimate applies to a compact Riemannian surface (with or
without boundary), and follows the method of [Sa1].

3. The third estimate is a local estimate based on the method of [Br].

When applied to minimal k-partitions, one may consider the asymptotic
behaviour of the estimates as k tends to infinity. The estimates deduced from

6



[BrGr] are sharper (but restricted to domains in the Euclidean plane). The
third estimate is quite loose, but it is valuable for its local character. It is not
clear how to apply the isoperimetric methods of [BrGr, Sa1] to obtain a sharper
local estimate.

Let D = {Di}ki=1 be a regular equipartition with energy Λ. Let R(Di) be
the inner radius of the set Di. Recall that j denotes the least positive zero of
the Bessel function of order 0.

3.2 The method of Brüning-Gromes

In this section, Ω is a bounded domain in R2, with piecewise C1 boundary. We
only sketch the method which relies on three inequalities.

1. The monotonicity of eigenvalues and the characterization of the ground
state imply that

∀i, 1 ≤ i ≤ k, R(Di) ≤
j√
Λ
. (3.2)

2. The Faber-Krahn inequality and the isoperimetric inequality imply that

∀i, 1 ≤ i ≤ k, 2πj√
Λ
≤ `(∂Di) . (3.3)

3. The generalized Féjes-Toth isoperimetric inequality ([BrGr], Hilfssatz 2)
asserts that, for 1 ≤ i ≤ k,

A(Di) ≤ R(Di)`(∂Di)− χ(Di)πR
2(Di) . (3.4)

Using that χ(Di) ≤ 1, we immediately see that the function r → r`(∂Di) −
χ(Di)πr

2 is non-decreasing for 2π r ≤ `(∂Di).
Using inequalities (3.2) and (3.3), it follows that one can substitute j√

Λ
to

R(Di) in (3.4) and obtain,

A(Di) ≤
j√
Λ
`(∂Di)− χ(Di)π

( j√
Λ

)2
, for 1 ≤ i ≤ k. (3.5)

Summing up the inequalities (3.5), for 1 ≤ i ≤ k, we obtain

A(Ω) ≤ j√
Λ

∑
i

`(∂Di)−
∑
i

χ(Di)π
j2

Λ
.

Using Euler’s formula (2.13), we conclude that

A(Ω) ≤ 2j√
Λ
P (D)−

[
χ(Ω) +

1

2
σ(D)

]
π

j2

Λ
.
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We finally conclude with the following estimate from below for the length P (D)
of the boundary set of the partition D.

A(Ω)

2j

√
Λ +

πj

2
√

Λ

[
χ(Ω) +

1

2
σ(D)

]
≤ P (D) . (3.6)

Note that (3.6) is actually slightly better than the estimate in [BrGr] which
does not take into account the term σ(D) when D is the nodal partition for
an eigenfunction u associated with the eigenvalue Λ. This fact is suggested in
[Sa1].

3.3 The method of Savo

In this section, we follow the method of Savo [Sa1], and keep the same notations
and assumptions. We sketch the proof in the case with boundary as it is not
detailed in [Sa1]. Here, Ω is a compact Riemannian surface with boundary. We
denote the Laplace-Beltrami operator by ∆ and the Gaussian curvature by K.
We write K = K+ −K− (the negative and positive parts of the curvature).
We assume that α ≥ 0 and D are given such that:

K ≥ −α2 ,

and the diameter δ(Ω) of Ω satisfies

δ(Ω) ≤ D .

Finally, we define the numbers

B(Ω) =

∫
Ω

K+ − 2πχ(Ω)

and

C(α,D) =

√
π2 +

1

4
α2D2 .

We recall the following results from [Sa1].

Lemma 3.1 Let Ω be a compact Riemannian surface with piecewise C1 bound-
ary. Then

2

π
A(Ω)

√
λ(Ω) ≤ `(∂Ω) +R(Ω) max{B(Ω), 0} , (3.7)

where λ(Ω) is the ground state energy of the Dirichlet realization fo the Laplacian
in Ω, and R(Ω) the inner radius of Ω.

This is Proposition 3 in [Sa1] (p. 137). Note that when M is flat and Ω is
simply or doubly connected, we recover Polya’s inequality [P] which reads:

2

π
A(Ω)

√
λ(Ω) ≤ `(∂Ω) . (3.8)
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Lemma 3.2 Let Ω be a compact Riemannian surface with piecewise C1 bound-
ary. Then,

R(Ω)
√
λ(Ω) ≤ min

{
C(α,D),

√
π2 +

α2C2(α,D)

4λ(Ω)

}
=: ψ(α;D;λ(Ω)).

This is Lemma 10 in [Sa1] (p. 141) using λ(Ω) instead of λ.

Lemma 3.3 Let Ω be a compact Riemannian surface with piecewise C1 bound-
ary. Assume that B(Ω) < 0. Then,

2|B(Ω)| ≤ λ(Ω)A(Ω) ≤ π

2

√
λ(Ω)`(∂Ω) .

This is Lemma 11 in [Sa1] (p. 141), which relies on Dong’s paper [Dong].
Note that the second inequality follows from Lemma 3.1.

Let us now proceed with the lower estimate when Ω is a Riemannian surface
with boundary.

Proposition 3.4 Let Ω be a compact Riemannian surface with piecewise C1

boundary. The length P (D) of the boundary set of a regular equipartition D,
with energy Λ, satisfies the inequality

P (D) ≥ 4A(Ω)
√

Λ

4π + π2ψ(α,D; Λ)
− 2πψ(α,D; Λ)√

Λ
(
4π + π2ψ(α,D; Λ)

)(B(Ω)− πσ(D)
)
. (3.9)

Proof. The proof follows the ideas in [Sa1] closely. Since Savo does not pro-
vide all the details for the case with boundary, we provide them here. Lemma 3.1
applied to each Dj gives,

2

π
A(Dj)

√
λ(Dj) ≤ `(∂Dj) +R(Dj) max{B(Dj), 0}.

Since λ(Dj) = Λ for all j, summing up in j, we find that

2

π
A(Ω)

√
Λ ≤ 2P (D) +

k∑
j=1

R(Dj) max{B(Dj), 0}. (3.10)

Call T the second term in the right-hand side of the preceding inequality
and define the sets,

J+ := {j | 1 ≤ j ≤ k, B(Dj) > 0}, J− := {j | 1 ≤ j ≤ k, B(Dj) ≤ 0}.

By Lemma 3.2, we have

T =
∑
j∈J+

R(Dj)B(Dj) ≤
ψ(α,D; Λ)√

Λ

∑
j∈J+

B(Dj). (3.11)
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Using the definition of B(Dj), we find that∑k
j=1B(Dj) =

∫
Ω
K+ − 2π

∑k
j=1 χ(Dj)

= B(Ω) + 2πχ(Ω)− 2π
∑k
j=1 χ(Dj)

and hence, using Euler’s formula (2.13),

k∑
j=1

B(Dj) = B(Ω)− πσ(D).

On the other hand, we have∑
j∈J+ B(Dj) =

∑k
j=1B(Dj)−

∑
j∈J− B(Dj)

= B(Ω)− πσ(D) +
∑
j∈J− |B(Dj)|,

and we can estimate the last term in the right-hand side using Lemma 3.3.
Namely, ∑

j∈J−

|B(Dj)| ≤
π

4

√
Λ
∑
j∈J−

`(∂Dj) ≤
π

2

√
ΛP (D).

Finally, we obtain the following estimate for T ,

T ≤ ψ(α,D; Λ)√
Λ

{
B(Ω)− πσ(D) +

π

2

√
ΛP (D)

}
.

Using (3.10), it follows that

A(Ω)
√

Λ ≤
{
π +

π2

4
ψ(α,D; Λ)

}
P (D) +

πψ(α,D; Λ)

2
√

Λ

{
B(Ω)− πσ(D)

}
. (3.12)

This proves the proposition. 2

3.4 A loose local lower estimate for P (D)

For simplicity, we now assume that Ω is a bounded domain in R2, with piecewise
C1 boundary. We also assume that we are given some point x0 ∈ Ω, some radius
R and some positive number ρ, small with respect to R, such that B(x0, R+ρ) ⊂
Ω. Note that the ball B(x0, R) could be replaced by any regular domain.

3.4.1 A local estimate à la Brüning-Gromes : eigenvalues

Lemma 3.5 Let λ be an eigenvalue of H(Ω), and let u ∈ E(λ) be a non-zero
eigenfunction associated with λ. If λr2 > j2, then any disk B(x, r) ⊂ Ω contains
at least a point of the nodal set N(u).

This follows immediately from the monotonicity of the Dirichlet eigenvalues
with respect to domain inclusion.
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Lemma 3.6 Let λ be an eigenvalue of H(Ω), and let r > 0 be such that 0 <
r ≤ ρ < R

10 , and λr2 > 4j2. Then there exists a family of points {x1, . . . , x`}
such that

(1) For 1 ≤ j ≤ N , xj ∈ N(u) ∩B(x0, R− r
2 ).

(2) The balls B(xj ,
r
2 ), 1 ≤ j ≤ N , are pairwise disjoint and contained in

B(x0, R) ⊂ Ω.

(3) We have the inclusion B(x0, R− r) ⊂ ∪Nj=1B(xj , 2r).

(4) The number N satisfies, r2N ≥ 0.2R2.

Proof. (a) Consider the ball B(x0, R−r) and take y1, y2 to be the end points
of a diameter of the closed ball. Because r ≤ ρ < R/10 and r2λ > 4j2, we have
that B(yi,

r
2 ) ⊂ B(x0, R − r

2 ) ⊂ Ω and B(yi,
r
2 ) ∩ N(u) 6= ∅. Choose xi in

B(yi,
r
2 ) ∩N(u). Then, xi ∈ N(u) ∩B(x0, R− r

2 ), B(x1,
r
2 ) ∩B(x2,

r
2 ) = ∅ and

B(xi,
r
2 ) ⊂ B(x0, R) ⊂ Ω.

(b) Take a maximal element {x1, . . . , xN} (with respect to inclusion) in the
set

F :=
{

(x1, . . . , xk) | xi ∈ N(u) ∩B(x0, R−
r

2
), B(xi,

r

2
) pairwise disjoint

}
,

so that the family {x1, . . . , xN} satisfies (1) and (2).

We claim that (3) holds. Indeed, otherwise we could find y ∈ B(x0, R − r)
with d(xi, y) ≥ 2r, for 1 ≤ i ≤ N . Because B(y, r2 ) ∩N(u) 6= ∅, we would find
some z ∈ B(x0, R− r

2 )∩N(u)∩B(y, r2 ) such that B(z, r2 )∩
(
∪Nj=1B(xj ,

r
2 )
)

= ∅.
This would contradict the maximality of the family.

(c) Assertion (3) implies that π(R− r)2 ≤
∑N
j=1A(B(xj , 2r)) = 4πNr2 and

since r ≤ ρ < R/10, we get r2N ≥ (0.9)2 1
4R

2. The Lemma is proved. 2

Recall that N(u) consists of finitely many points and finitely many C1 arcs
with finite length.

Lemma 3.7 Let {x1, . . . , xN} be a maximal family as given by Lemma 3.6.
Assume that r2λ < 16 j2. Then there exists no nodal curve γ ⊂ N(u) which is
simply closed and contained in any of the balls B(xj ,

r
4 ), 1 ≤ j ≤ N .

Proof. Indeed, otherwise, there would be a nodal domain contained in one

of the balls B(xj ,
r
4 ) and hence we would have λ ≥ 16 j2

r2 .

We can now prove the following local estimate.

Proposition 3.8 Let λ be an eigenvalue of H(Ω), and let u be a non-zero
eigenfunction associated with λ. Then, the length of the nodal set N(u) inside
B(x0, R) is bounded from below by 10−2R2

√
λ.
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Proof. Choose (r, λ) so that 4 j2 < r2λ < 16 j2, with r ≤ ρ < R/10. By
Lemma 3.6, the N balls B(xj ,

r
4 ) are pairwise disjoint with center on N(u). By

Lemma 3.7, the length of N(u) ∩B(xj ,
r
4 ) is at least r

2 . It follows that

`
(
N(u) ∩B(x0, R)

)
≥
∑
j

`
(
N(u) ∩B(xj ,

r

4
)
)
≥ N r

2
, (3.13)

and the result follows in view of the estimates r2N ≥ 0.2 r2 and r2λ < 16 j2.

Remark 3.9 Proposition 3.8 can be generalized to the case of a compact Rie-
mannian surface with or without boundary. In that case, one needs to consider
balls with radii less than the injectivity radius of the surface, and replace the
Faber-Krahn inequality by a local Faber-Krahn inequality, using the fact that
the metric can be at small scale compared with a Euclidean metric (see [Br] for
more details).

3.4.2 A local estimate à la Brüning-Gromes : spectral equipartitions

The above proof applies to a regular equipartition of energy λ. It is enough in
the statements to replace the nodal set N(u) of u by the boundary set N

(
D
)

of the partition D. We just rewrite the first statement.

Lemma 3.10 Let λ be the energy of a regular equipartition. If λr2 > j2, then
any disk B(x, r) ⊂ Ω contains at least one point of boundary set of the partition.

This follows immediately from the monotonicity of the Dirichlet eigenvalues
with respect to domain inclusion.

4 The problem for k large

Recall Weyl’s asymptotic estimate for the eigenvalues of H(Ω),

A(Ω) lim
k→∞

λk(Ω)

k
= 4π.

In view of this result, it is natural to investigate the behaviour of Lk(Ω) when
k tends to infinity.

4.1 On the asymptotics of Lk(Ω)

We recall two conjectures2 for domains in R2 which were proposed and analyzed
in the recent years (see [BHV, BBO, CL, HHOT1, Hel]). The first one is that

Conjecture 4.1 The limit of Lk(Ω)/k as k → +∞ exists.

2The second author was informed of these conjectures by M. Van den Berg.
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The second one is that this limit is more explicitly given by

Conjecture 4.2

A(Ω) lim
k→+∞

Lk(Ω)

k
= λ(Hexa1) ,

where Hexa1 is the regular hexagon in R2, with area 1.

This last conjecture says in particular that the limit is independent of the
geometry of Ω if Ω is a regular domain.

Of course the optimality of the regular hexagonal tiling appears in various
contexts in Physics. It is easy to show the upper bound in the second conjec-
ture, and Faber-Krahn’s inequality gives a weak lower bound involving the first
eigenvalue of the disk. More precisely, we have

πj2

A(Ω)
≤ lim inf

k→+∞

Lk(Ω)

k
≤ lim sup

k→+∞

Lk(Ω)

k
≤ λ(Hexa1)

A(Ω)
. (4.1)

It is explored numerically in [BHV] why the second conjecture above looks
reasonable.

One can also consider the spectral quantities

Lk,1(Ω) =
1

k
inf
D∈Dk

k∑
j=1

λ(Dj).

It is clear that Lk,1(Ω) ≤ Lk(Ω) for any k. The Faber-Krahn inequalities yields
lower bounds for Lk,1(Ω). In particular, for domains in R2, one obtains

πj2

A(Ω)
≤ Lk,1(Ω),

which improves (4.1) to

πj2

A(Ω)
≤ lim inf

k→+∞

Lk,1(Ω)

k
≤ lim inf

k→+∞

Lk(Ω)

k
.

Note that Caffarelli and Lin [CL], mention Conjecture 4.2 in relation with
Lk,1(Ω).
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The recent numerical computations by Bourdin-Bucur-Oudet [BBO] for the
asymptotic structure of the minimal partitions for Lk,1(Ω) are very enlightning,
see Figure 4.1.

Figure 4.1: Computations of Bourdin-Bucur-Oudet for the periodic square.
(Minimization of the sum)

The lower and upper bounds (4.1) are proved for a bounded domain in R2.
As a matter of fact, the lower bound holds for a general compact surface Ω with
smooth boundary. This follows from the following asymptotic isoperimetric and
Faber-Krahn inequalities (which actually hold in arbitrary dimension).

Lemma 4.3 ([BeMe], Lemma II.15, p. 528) Let (Ω, g) be a compact Rie-
mannian surface. For any ε > 0, there exists a positive number a(M, g, ε)
such that for any regular domain ω ⊂ Ω with area A(ω) less than or equal to
a(M, g, ε), {

`(∂ω) ≥ (1− ε)`(∂ω∗),
λ(ω) ≥ (1− ε)2 πj2

A(ω) ,

where ω∗ is a Euclidean disk of area A(ω).

Let D = {D1, . . . , Dk} be a k-equipartition of Ω. Let

Jε =
{
i ∈ {1, . . . , k} | A(Di) > a(M, g, ε)

}
.
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The number of elements of this set is bounded by

](Jε) ≤
A(Ω)

a(M, g, ε)
. (4.2)

For any i 6∈ Jε, we can write,

λ(Di) ≥ (1− ε)2 πj2

A(Di)

and hence,

Λ(D)A(Ω) ≥ (1− ε)2(k − A(Ω)

a(M, g, ε)
)πj2.

Finally, we obtain that

A(Ω) lim inf
k→∞

Lk(Ω)

k
≥ (1− ε)2πj2.

We can now let ε tend to zero to get the estimate,

A(Ω) lim inf
k→∞

Lk(Ω)

k
≥ πj2. (4.3)

We point out that the lower bound does not depend on the geometry of Ω.

Inequality (4.3) can also be deduced from [Pe] when Ω is a bounded domain
in a simply-connected surface M , with Gaussian curvature K, such that Ω ⊂ Ω0,
a simply-connected domain satisfying A(Ω0) supΩ0

K+ ≤ π. Let us mention two
particular cases.

1. If M is a simply-connected surface with non-positive curvature, then ac-
cording to [Pe], λ(Ω)A(Ω) ≥ πj2 for any bounded domain Ω and we con-
clude that

A(Ω)
Lk(Ω)

k
≥ πj2

for all k ≥ 1, as in the Euclidean case.

2. If M is the standard sphere, then according to [Pe],

λ(D)A(D) ≥ πj2
(

1− A(D)

4π

)
for any domain D, and one can conclude that, for any domain Ω,

A(Ω)
Lk(Ω)

k
≥ πj2 − j2

4k
A(Ω) ,

for all k ≥ 1.

Note that these estimates actually hold for Lk,1(Ω).

15



4.2 Asymptotics of the length of the boundary set of min-
imal k-partitions for k large.

Of course the hexagonal conjecture leads to a natural conjecture for the length.
The “hexagonal conjecture” for the length will be

lim
k→+∞

(P (Dk)/
√
k) =

1

2
`(Hexa1)

√
A(Ω) , (4.4)

where `(Hexa1) is the length of the boundary of the hexagon of area 1:

`(Hexa1) = 2

√
2
√

3 .

But we can at least get an asymptotic lower bound for the length in the following
way. Knowing that Lk(Ω)→ +∞ as k → +∞ (a consequence of Faber-Krahn’s
inequality), we deduce from (3.6) that,

lim inf
k→+∞

(P (Dk)/
√
k) ≥ 1

2j

√
lim inf
k→+∞

(
Lk(Ω)

k
) . (4.5)

Together with Faber-Krahn’s inequality, this gives:

lim inf
k→+∞

(P (Dk)/
√
k) ≥

√
π

2

√
A(Ω) . (4.6)

Assuming that the elements of the minimal partitions have no hole, we could
apply (3.8) and would get instead the sharper estimate

lim inf
k→+∞

(P (Dk)/
√
k) ≥ j√

π

√
A(Ω) . (4.7)
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