$L^{\infty}$ estimates and uniqueness results for nonlinear parabolic equations with gradient absorption terms - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2012

$L^{\infty}$ estimates and uniqueness results for nonlinear parabolic equations with gradient absorption terms

Résumé

Here we study the nonnegative solutions of the viscous Hamilton-Jacobi problem \[ \left\{ \begin{array} [c]{c}% u_{t}-\nu\Delta u+|\nabla u|^{q}=0,\\ u(0)=u_{0}, \end{array} \right. \] in $Q_{\Omega,T}=\Omega\times\left( 0,T\right) ,$ where $q>1,\nu\geqq 0,T\in\left( 0,\infty\right] ,$ and $\Omega=\mathbb{R}^{N}$ or $\Omega$ is a smooth bounded domain, and $u_{0}\in L^{r}(\Omega),r\geqq1,$ or $u_{0}% \in\mathcal{M}_{b}(\Omega).$ We show $L^{\infty}$ decay estimates, valid for \textit{any weak solution}, \textit{without any conditions a}s $\left\vert x\right\vert \rightarrow\infty,$ and \textit{without uniqueness assumptions}. As a consequence we obtain new uniqueness results, when $u_{0}\in \mathcal{M}_{b}(\Omega)$ and $q<(N+2)/(N+1),$ or $u_{0}\in L^{r}(\Omega)$ and $q<(N+2r)/(N+r).$ We also extend some decay properties to quasilinear equations of the model type \[ u_{t}-\Delta_{p}u+\left\vert u\right\vert ^{\lambda-1}u|\nabla u|^{q}=0 \] where $p>1,\lambda\geqq0,$ and $u$ is a signed solution.
Fichier principal
Vignette du fichier
Bidaut-Dao-final-21mars-2013.pdf (372.84 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00669365 , version 1 (13-02-2012)
hal-00669365 , version 2 (22-03-2013)

Identifiants

Citer

Marie-Françoise Bidaut-Véron, Nguyen Anh Dao. $L^{\infty}$ estimates and uniqueness results for nonlinear parabolic equations with gradient absorption terms. 2012. ⟨hal-00669365v2⟩
151 Consultations
165 Téléchargements

Altmetric

Partager

More