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L∞ estimates and uniqueness results for nonlinear parabolic

equations with gradient absorption terms

Marie Françoise BIDAUT-VERON∗ Nguyen Anh DAO†

Abstract

We study the nonnegative solutions of the viscous Hamilton-Jacobi problem

{

ut − ν∆u+ |∇u|q = 0,
u(0) = u0,

in QΩ,T = Ω× (0, T ) , where q > 1, ν ≧ 0, T ∈ (0,∞] , and Ω = R
N or Ω is a smooth bounded

domain, and u0 ∈ Lr(Ω), r ≧ 1, or u0 ∈ Mb(Ω). We show L∞ decay estimates, valid for any
weak solution, without any conditions as |x| → ∞, and without uniqueness assumptions. As a
consequence we obtain new uniqueness results, when u0 ∈ Mb(Ω) and q < (N + 2)/(N + 1),
or u0 ∈ Lr(Ω) and q < (N + 2r)/(N + r). We also extend some decay properties to quasilinear
equations of the model type

ut −∆pu+ |u|λ−1
u|∇u|q = 0

where p > 1, λ ≧ 0, and u is a signed solution.

Keywords Viscous Hamilton-Jacobi equation; quasilinear parabolic equations with gradient
terms; regularity; decay estimates; regularizing effects; uniqueness results.

A.M.S. Subject Classification 35K15, 35K55, 35B33, 35B65, 35D30

1 Introduction

In this article we study a class of heat equations involving a nonlinear gradient absorption term.
We are mainly concerned by the nonnegative solutions of the viscous parabolic Hamilton-Jacobi
equation

ut − ν∆u+ |∇u|q = 0 (1.1)

in QΩ,T = Ω× (0, T ) , T ≦ ∞, where q > 1, ν ≧ 0, and Ω = R
N , or Ω is a smooth bounded domain

of RN .
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We study the Cauchy problem in R
N and the Cauchy-Dirichlet problem when Ω is bounded,

with initial data u(., 0) = u0 ≧ 0, where u0 ∈ Lr(Ω), r ≧ 1, or u0 is a bounded Radon measure on
Ω.

We also consider the (signed) solutions of quasilinear equations of the type

ut − ν∆pu+ |u|λ−1 u|∇u|q = 0 (1.2)

where p > 1 and ∆p is the p-Laplacian, and more generally

ut − div(A(x, t, u,∇u)) + g(x, u,∇u) = 0 (1.3)

with natural growth conditions on the function A, and nonnegativity conditions

A(x, t, u, η).η ≧ ν |η|p , g(x, u, η)u ≧ γ |u|λ+1 |∇u|q γ ≧ 0, ν ≧ 0, λ ≧ 0, (1.4)

without monotonicity assumption.

In the sequel we give some decay estimates, under very few assumptions on the solutions. Then
from Moser’s technique, we deduce regularizing effects : L∞ estimates, in terms of u0, and universal
estimates when Ω is bounded. We show that two types of regularizing effect can occur: the first
one is due to the gradient term |∇u|q (when γ > 0), the second one is due to the operator itself
(when ν > 0).

A part of these estimates are well known for equation (1.1) when the solutions can be approx-
imated by smooth solutions, or satisfy growth conditions as |x| → ∞ when Ω = R

N , for example
semi-group solutions. Our approach is different, and our results are valid for all the solutions of
the equation in a weak sense: in the sense of distributions for equation (1.1), in the renormalized
sense for equation (1.3). And we make no assumption of uniqueness. In the case of equation (1.1)
in R

N , we require no condition as |x| → ∞, all our assumptions are local.

As a consequence we deduce new uniqueness results for equation (1.1) in R
N or in a bounded

domain Ω.

2 Main results

We denote by Mb(Ω) the set of bounded Radon measures in Ω, andM+
b (Ω) the cone of nonnegative

ones.
We set QΩ,s,τ = Ω× (s, τ) , for any 0 ≦ s < τ ≦ ∞, thus QΩ,T = QΩ,0,T .
As usual, for any θ ≧ 1 we note by θ′ = θ/(θ − 1) the conjugate of θ.

In Section 3, we give some key tools for obtaining regularizing properties. The main one is
an iteration property based of Moser’s method, inspired by [38]:

Lemma 2.1 Let m > 1, θ > 1 and λ ∈ R and C0 > 0. Let v ∈ C([0, T ) ;L1
loc(Ω)) be nonnegative,

and v0 = v(x, 0) ∈ Lr(Ω) for some r ≧ 1 such that

r > θ′(1−m− λ). (2.1)
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If r > 1 we assume that for any 0 ≦ s < t < T and any α ≧ r − 1, there holds

1

α+ 1

∫

Ω
vα+1(., t)dx +

C0

βm

∫ t

s
(

∫

Ω
vβmθ(., τ)dx)

1
θ dτ ≦

1

α+ 1

∫

Ω
vα+1(., s)dx, (2.2)

where β = β(α) = 1 + (α+ λ) /m, and the right-hand side can be infinite.

If r = 1 we make one of the two following assumptions:

(H1) (2.2) holds for any α ≧ 0,

(H2)
∫

Ω v(., t)dx ≦
∫

Ω v0dx for any t ∈ (0, T ), and v0 ∈ Lρ(Ω) for some ρ > 1 such that
ρθ′(1 −m− λ) < 1 and (2.2) holds for any α ≧ ρ− 1.

Then there exists C > 0, depending on N,m, r, λ,C0, and possibly ρ, such that for any t ∈ (0, T ),

‖v(., t)‖L∞(Ω) ≦ Ct−σr,m,λ,θ‖v0‖̟r,m,λ,θ

Lr(Ω) , (2.3)

where

σr,m,λ,θ =
1

r
θ′ + λ+m− 1

=
θ′

r
̟r,m,λ,θ. (2.4)

This Lemma allows to obtain L∞ estimates for the solutions of equation (1.1), when q ≦ N,
or 2 ≦ N , and for equation (1.2) when p ≦ N . In the other cases the L∞ estimates follow from
the Gagliardo-Nirenberg inequality, see Lemma 3.4. Moreover we deduce universal L∞ estimates
when Ω is bounded, see Lemma 3.3.

In Section 4 we study the Cauchy Hamilton-Jacobi problem in R
N :

{

ut − ν∆u+ |∇u|q = 0, in QRN ,T ,

u(x, 0) = u0 ≧ 0 in R
N ,

(2.5)

This equation is the objet of a huge literature, see [2], [12], [7], [15], [36], and the references therein,
and also [7], [14], [28].

The first studies concern smooth initial data u0 ∈ C2
b

(

R
N
)

. From [2], (2.5) has a unique global
solution u ∈ C2,1(RN × [0,∞)), and u satisfies decay properties:

‖u(., t)‖L∞(RN ) ≦ ‖u0‖L∞(RN ) ,

‖∇u(., t)‖L∞(RN ) ≦ ‖∇u0‖L∞(RN ) .

Estimates of the gradient have been obtained for this solution, by using the Bersnstein technique,
which consists in computing the equation satisfied by |∇u|2 : first from [31],

‖∇u(., t)‖q
L∞(RN )

≦ t−1 ‖u0‖L∞(RN ) ,

then from [12], when ν > 0,

‖∇(u
1
q′ )(., t)‖L∞(RN ) ≦ C(q, ν)t−

1
2 ‖u0‖

1
q′

L∞(RN )
, , (2.6)
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∥

∥

∥
∇(u

1
q′ )(., t)

∥

∥

∥

L∞(RN )
≦

(q − 1)
1
q′

q
t
− 1

q , that is |∇u(., t)|q ≦ t−1u(., t)

q − 1
, a.e.in R

N . (2.7)

If one only assumes u0 ∈ Cb

(

R
N
)

, then (2.5) still has a unique solution u such that u ∈ C2,1(QRN ,∞)

and u ∈ C(RN × [0,∞) ∩ L∞(RN × (0,∞)) see [29], and estimates (2.6) and (2.7) are still valid,
from [7].

In case of rough initial data u0 ∈ M+
b (R

N ) or u ∈ Lr(RN ), r ≧ 1, assuming ν > 0, the solutions
have been searched in an integral form

u(., t) = et∆u0(.)− ν

∫ t

0
e(t−s)∆|∇u(., s)|qds, (2.8)

involving the semi-group of heat equation et∆. Existence results hold in corresponding classes of
solutions, involving integral conditions on the gradient in space and time, of global type:

• If u0 ∈ M+
b (R

N ) and 1 < q < (N +2)/(N +1), the existence of a solution u ∈ C2,1(QRN ,∞) is
proved in [12] by approximation, and independently in [15], from the Banach fixed point theorem.

• If u0 ∈ Lr(RN ), r ≧ 1, existence holds for any q ≦ 2 from [15]. When q > 2, it is required
that u0 is a limit of a monotone sequence of continuous functions, and existence is not known in
the general case.

In those classes, decay properties and a regularizing effect follow directly from the semigroup
et∆, since u(., t) ≦ et∆u0. Our first main results shows that decay properties and L∞ estimates are
valid for any weak solution, for any ν ≧ 0, without any condition as |x| → ∞:

Theorem 2.2 Let u ∈ L1
loc(QRN ,T ), with |∇u| ∈ Lq

loc(QRN ,T ), be any nonnegative solution of
equation (1.1) in D′(QRN ,T ).

(i) Let u0 ∈ Lr(RN ), r ≧ 1. Assume that u ∈ C([0, T ) ;Lr
loc(R

N )) and u(., 0) = u0. Then
u ∈ C([0, T ) ;Lr(RN )); and for any t ∈ (0, T ), u(., t) ∈ L∞(RN ) and

‖u(., t)‖Lr(RN ) ≦ ‖u0‖Lr(RN ), (2.9)

‖u(., t)‖L∞(RN ) ≦

{

Ct−σr,q,N‖u0‖̟r,q,N

Lr(RN )
, C = C(N, q, r), if q 6= N,

Cεt
−(1+ε)σr,N,N ‖u0‖(1+ε)̟r,q,N

Lr(RN )
, ∀ε > 0, Cε = C(N, q, r, ε), if q = N,

(2.10)
where

σr,q,N =
1

rq
N + q − 1

=
N

rq
̟r,q,N . (2.11)

And if ν > 0, then

‖u(., t)‖L∞(RN ) ≦

{

Ct−
N
2r ‖u0‖Lr(RN ), C = C(N, r, ν), if N 6= 2,

Cεt
− 1+ε

r ‖u0‖Lr(RN ), ∀ε > 0, Cε = C(N, r, ν, ε), if N = 2.
(2.12)

(ii) Let u0 ∈ M+
b (R

N ). Assume that u(., t) converges weakly ∗ to u0 as t → 0. Then u ∈
C((0, T );L1(RN )), and for any t ∈ (0, T ), the conclusions above with r = 1 are still valid with

‖u0‖L1(RN ) replaced by

∫

RN

du0.
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Note that estimates (2.9) are not valid for any weak subsolution of the heat equation. Here we
prove that the result of (2.9) is essentially due to the gradient term |∇u|q , which has a main regu-
larizing effect on the equation. And then a second regularizing effect holds, due to the Laplacian,
when ν > 0.

For any q ≤ 2, we deduce estimates of the gradient, obtained from (2.6). As a consequence we
deduce new uniqueness results, where the assumptions are only of local type:

Theorem 2.3 (i) Let 1 < q < (N + 2)/(N + 1), and u0 ∈ M+
b (R

N ). Then there exists a unique
nonnegative function u ∈ L1

loc(QRN ,T ), such that |∇u| ∈ Lq
loc(QRN ,T ), solution of equation (1.1) in

D′(QRN ,T ) such that

lim
t→0

∫

RN

u(., t)ψdx =

∫

RN

ψdu0, ∀ψ ∈ Cc(R
N ).

(ii) Let u0 ∈ Lr(RN ), r ≧ 1 and 1 < q < (N + 2r)/(N + r). Then there exists a unique
nonnegative solution u as above, such that u ∈ C

(

[0, T ) ;Lr
loc(R

N )
)

and u(., 0) = u0.

This improves the former uniqueness results of [12] and [15, Theorem 4.1], given in classes of
semigroup solutions, satisfying conditions up to t = 0 for the gradient: |∇u|q ∈ L1

loc([0, T ) ;L
1
(

R
N
)

)
in case (i), and |∇u|q ∈ L1

loc([0, T ) ;L
r
(

R
N
)

) in case (ii).

We also find again in a shorter way the existence result of [15, Theorem 4.1], see Proposition
4.26. Finally we improve the estimate (2.9) when q < (N + 2r)/(N + r), see Theorem 4.28.

In Section 5 we study the Cauchy-Dirichlet problem in a bounded domain Ω:







ut − ν∆u+ |∇u|q = 0, in QΩ,T ,
u = 0, on ∂Ω× (0, T ),
u(x, 0) = u0 ≧ 0,

(2.13)

Here also the problem is the object of many works, such as [22], [8], [37], [9], [33].

If u0 ∈ C1
0

(

Ω
)

, from [22], (2.13) admits a unique nonnegative solution u ∈ C2,1 (Ω× (0,∞))∩
C
(

Ω× [0,∞)
)

, such that |∇u| ∈ C
(

Ω× [0,∞)
)

. Universal a priori estimates hold: there exist
C = C(N, q,Ω) > 0 and a function D ∈ C((0,∞) such that

u(., t) ≦ C(1 + t−
1

q−1 )d(x, ∂Ω), |∇u(., t)| ≦ D(t), (2.14)

see [16, Remark 2.8]. The estimate on u is based on the construction of supersolutions, and the
estimate of the gradient is deduced from the first one by the Bernstein technique.

In case of rough initial data, a notion of mild solutions has been introduced by [8] (see definition
5.8). Such solutions satisfy |∇u|q ∈ L1

loc([0, T ) ;L
1 (Ω)).

• If u0 ∈ M+
b (Ω) and 1 < q < (N +2)/(N +1), there is a unique nonnegative mild solution, see

[8], [1]. If u0 ∈ L1(Ω), and 1 < q ≦ 2, there exists at least a solution, such that u ∈ C
(

[0, T ) ;L1(Ω
)

).
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• If 1 < q < (N + 2r)/(N + r) uniqueness holds in the class of mild solutions such that
u ∈ C ([0, T ) ;Lr(Ω))∩ Lq

loc ([0, T ) ;W
qr (Ω)) .

Next we give decay properties and regularizing effects valid for any weak solution of the problem,
in particular the universal estimate

‖u(., t)‖L∞(Ω) ≦ Ct
− 1

q−1 in (0, T ) ,

where C = C(N, q), see Theorem 5.12. As above we deduce uniqueness results:

Theorem 2.4 Assume that Ω is bounded.

(i) Let 1 < q < (N+2)/(N+1), and u0 ∈ M+
b (Ω). Then there exists a unique nonnegative function

u ∈ C((0, T );L1 (Ω)) ∩ Lq
loc((0, T );W

1,q
0 (Ω)), solution of equation (1.1) in D′(QΩ,T ), such that

lim
t→0

∫

Ω
u(., t)ψdx =

∫

Ω
ψdu0, ∀ψ ∈ Cb(Ω).

(ii) Let u0 ∈ Lr(Ω), r ≧ 1, u0 ≧ 0, and 1 < q < (N + 2r)/(N + r). Then there exists a unique
nonnegative solution u as above, such that u ∈ C ([0, T ) ;Lr(Ω)) and u(., 0) = u0.

This improves the results of [8], which required assumptions up to t = 0 for the gradient:
|∇u|q ∈ L1

loc([0, T ) ;L
1 (Ω)) in case (i), |∇u| ∈ Lq

loc([0, T ) ;L
r (Ω)) in case (ii).

Finally we show the existence of weak solutions for any u0 ∈ Lr(Ω), r ≧ 1, such that u ∈
C ([0, T ) ;Lr(Ω)), see Proposition 5.17.

In Section 6 we extend some results of Section 5 to the case of the quasilinear equations (1.3),
with initial data u0 ∈ Lr (Ω) or u0 ∈ Mb (Ω), and u may be a signed solution. In the case of
equation

ut −∆pu = 0,

several local or global L∞ estimates and Harnack properties have been obtained in the last decades,
see for example [38], [24], [25], [30], and [23], [20] and references therein. Regularizing properties
for equation (1.2) are given in [33] in a Hilbertian context in case g = 0 or p = 2.

Here we combine our iteration method of Section 3 with a notion of renormalized solution,
developped by many authors [18], [32],[35], well adapted to rough initial data. We do not require
that u(., t) ∈ L2(Ω), but we only assume that the truncates Tk(u) of u by ±k (k > 0) lie in
Lp((0, T );W 1,p(Ω)). We prove decay and L∞ estimates of the following type: if γ > 0, for any
r ≧ 1, p > 1 and (for simplicity) q 6= N, then

‖u(., t)‖L∞(Ω) ≦ Ct−σ‖u0‖̟Lr(Ω), σ =
1

rq
N + λ+ q − 1

=
N

rq
̟,

If ν > 0, then for any r ≧ 1, and p 6= N such that p > 2N/(N + 2),

‖u(., t)‖L∞(Ω) ≦ Ct−σ̃‖u0‖ ˜̟
Lr(Ω), σ̃ =

1
rp
N + p− 2

=
N

rp
˜̟ .

And we deduce universal estimates as before:

‖u(., t)‖L∞(Ω) ≦ Ct
− 1

q−1+λ if γ > 0; ‖u(., t)‖L∞(Ω) ≦ Ct
− 1

p−2 if ν > 0 and p > 2.

Such methods can also be extended to porous media equations, and doubly nonlinear equations
involving operators of the form u 7→ −∆p(|u|m−1 u).
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3 Regularization lemmas

We begin by a simple bootstrap property, used for example in [38]. We recall the proof for simplicity:

Lemma 3.1 Let ω ∈ (0, 1) and σ > 0, and K,M > 0. Let y be any positive function on (0, T ) such
that y(t) ≦Mt−σ, and for any 0 < s < t < T,

y(t) ≦ K(t− s)−σyω(s),

Then y satisfies an estimate independent of M : for any t ∈ (0, T ) ,

y(t) ≦ 2σ(1−ω)−2
(Kt−σ)(1−ω)−1

(3.1)

Proof. We get by induction, for any n ≧ 1

yω
n−1

(t/2n−1) ≦ Kωn−1
2nσω

n−1
t−σωn−1

yω
n
(t/2n), , yω

n
(t/2n) ≦ 2nσω

n
t−σωn

Mωn
.

Then
y(t) ≦ K

∑n−1
k=0 ̟k

t−σ
∑n

k=0 ̟
k
2σ

∑n
k=0(k+1)̟k)Mωn+1

,

implying (3.1) as n→ ∞, since limn→∞Mωn+1
= 1.

Next we show the Moser’s type property:

Proof of Lemma 2.1. (i) Let α be any real such that α ≧ r− 1, and v(., s) ∈ Lα+1(Ω). From
(2.2),

∫

Ω v
α+1(t)dx is decreasing for t > s. And

∫

Ω v
βmθ(., ξ)dx is finite for almost any ξ ∈ (s, t) ,

hence for a sequence (ξn) decreasing to s,

∫

Ω
vα+1(., t)dx +

C0(α+ 1)

βm

∫ t

ξn

(

∫

Ω
vβmθ(., ξ)dx)

1
θ dξ ≦

∫

Ω
vα+1(., ξn)dx ≦

∫

Ω
vα+1(., s)dx.

From (2.1), there holds βmθ > r. Applying again (2.2) with βmθ − 1 instead of α, and ξn instead
of s, we deduce that

∫

Ω v
βmθ(t)dx is decreasing for t > s, thus

∫

Ω
vα+1(., t)dx+

C0(α+ 1)

βm
(t− ξn)(

∫

Ω
vβmθ(., ξn)dx)

1
θ
≦

∫

Ω
vα+1(., s)dx.

As n → ∞, v(., ξn) → v(., s) in L1
loc(Ω), and after extraction, a.e. in Ω. Then from the Fatou

lemma,
∫

Ω
vα+1(., t)dx+

C0(α+ 1)

βm
(t− s)(

∫

Ω
vβmθ(., s)dx)

1
θ
≦

∫

Ω
vα+1(., s)dx.

Hence

‖v(t)‖βmθ
Lβmθ(Ω)

≦

(

βm

C0(α+ 1)

1

t− s
‖v(s)‖α+1

Lα+1(Ω)

)θ

, (3.2)

• Case r > 1.We start from s = 0, we have v0 ∈ Lr(Ω).We take α0 = r−1, thus
∫

Ω v
α0+1(t)dx

is finite, and set β0 = 1+(α0 + λ) /m. We define sequences (tn) , (αn) , (rn) , (βn) , by t0 = 0, r0 = r
and for any n ≧ 1,

tn = t(1− 1

2n
), rn = αn + 1, βn = 1 +

αn + λ

m
, rn+1 = βnmθ = (rn + λ+m− 1)θ,
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hence (rn) , (βn) are increasing, since r1 > r from (2.1). In (3.2), we replace s, t, α, βmθ, by
tn, tn+1rn, rn+1, and get

‖v(tn+1)‖Lrn+1 (Ω) ≦

(

1

C0(mθ)m
rmn+1

rn

1

tn+1 − tn

)
θ

rn+1 ‖v(tn)‖
θ.rn
rn+1

Lrn (Ω). (3.3)

From (2.2), it follows that

‖v(t)‖Lrn+1 (Ω) ≦ ‖v(tn+1)‖Lrn+1 (Ω) ≦ InJnLn‖v0‖
θn+1.r
rn+1

Lr(Ω) , (3.4)

where

In =
n+1
∏

k=1

(
rmk
rk−1

)
θn+2−k

rn+1 , Jn =
n+1
∏

k=1

(

1

tk − tk−1

)
θn+2−k

rn+1

, Ln = (C0(mθ)
m)

−∑n+1
k=1

θn+2−k

rn+1 .

Since rn = θn(r + (λ+m− 1)θ′(1− θ−n)), we find

lim
n→∞

θn+1r

rn+1
= ̟r,m,λ,θ, lim

n→∞
1

rn+1

n+1
∑

k=1

θn+2−k = σr,m,λ,θ, lim
n→∞

n+1
∑

k=1

kθ1−k = θ′2 (3.5)

As a consequence

lim
n→∞

Jn = 2−
̟r,m,λ,θ

r
θ′2t−σr,m,λ,θ , lim

n→∞
Ln = (C0(mθ)

m)−σr,m,λ,θ . (3.6)

Otherwise

ln In =
m

rn+1

n+1
∑

k=1

θn+2−k ln rk −
1

rn+1

n
∑

k=0

θn+1−k ln rk =
θn+1

rn+1
(mθ

n+1
∑

k=1

θ−k ln rk −
n
∑

k=0

θ−k ln rk)

and the sum S =
∑∞

k=0 θ
−k ln rk is finite, since rk ≦ θk(r + |λ+m− 1| θ′). Then In has a finite

limit ℓ = ℓ(N,m, r, λ, θ) = exp(r−1̟r,m,λ,θ((mθ − 1)S −mθ ln r)). Thus we can go to the limit in
(3.4), and the conclusion follows.

• Case r = 1. If (H1) holds we can take α0 = r − 1 = 0 and the proof is done. Next assume
(H2). Then we obtain, for any 0 ≦ s < t < T, and a constant C as before,

‖v(., t)‖L∞(Ω) ≦ C(t− s)−σρ,m,λ,θ‖v(., s)‖̟ρ,m,λ,θ

Lρ(Ω)

≦ C(t− s)−σρ,m,λ,θ‖v(., s)‖̟ρ,m,λ,θ(ρ−1)/ρ

L∞(Ω)
‖v(., s)‖̟ρ,m,λ,θ/ρ

L1(Ω)

≦ C‖v0‖̟ρ,m,λ,θ/ρ

L1(Ω)
(t− s)−σρ,m,λ,θ‖v(., s)‖̟ρ,m,λ,θ(ρ−1)/ρ

L∞(Ω)

Let y(t) = ‖v(., t)‖L∞(Ω). We can apply Lemma 3.1 to y, with

σ = σρ,m,λ,θ, ω =
̟ρ,m,λ,θ

ρ′
, K = C‖v0‖̟ρ,m,λ,θ/ρ

L1(Ω)
, M = C‖v0‖

̟ρ,m,λ,θ/ρ

Lρ(Ω) .
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Indeed ω < 1 since ρθ′(1 −m− λ) < 1. Then there holds

‖v(., t)‖L∞(Ω) ≦ 2σ(1−ω)−2
(Kt−σ)(1−ω)−1

= 2σ(1−ω)−2
C(1−ω)−1

t−σ(1−ω)−1‖v0‖̟ρ,q,λ,θ/ρ((1−ω))

L1(Ω)
.

Noticing that σ(1− ω)−1 = σ1,m,λ,θ and ̟ρ,m,λ,θ/ρ((1− ω)) = ̟1,m,λ,θ, we deduce

‖v(., t)‖L∞(Ω) ≦ Ct−σ1,m,λ,θ‖v0‖̟1,m,λ,θ

L1(Ω)
, (3.7)

with a new constant C, now depending on ρ.

Remark 3.2 This lemma can be compared with the result of [33, Theorem 2.1] obtained by the
Stampacchia’s method. In order to obtain decay estimates for the solutions u of a parabolic equa-
tion such as (1.1) or (1.3), the Moser’s method consists to take as test functions powers |u|α−1 u
of u; the Stampacchia’s method uses test functions of the form (u− k)+signu. If one applies to suf-
ficiently smooth solutions, both techniques leed to decay estimates of the same type. In the case of
weaker solutions, the Stampacchia method supposes that the functions (u−k)+ are admissible in the
equation, which leads to assume that u(., t) ∈W 1,2(Ω), see [33]. In the sequel we combine Moser’s
method with regularization or truncature of u, in order to admit powers as test functions. So we
do not need to make this assumption, thus the Moser’s method appears to be more performant.

Such type of L∞ estimates as (2.3) may imply a universal one, that means independent of the
initial data, in case Ω is bounded. This was observed for example in [38]:

Lemma 3.3 Let Ω be bounded. (i) Let v ∈ C([0, T ) ;L1
loc(Ω)) be nonnegative, and v0 = v(x, 0) ∈

L1(Ω), such that for some C > 0, for any 0 ≦ s < t < T,

‖v(., t)‖L∞(Ω) ≦ C(t− s)−σ‖v(., s)‖̟L1(Ω),

where σ > 0,̟ ∈ (0, 1). Then there exists M =M(C, σ,̟, |Ω|) such that for any t ∈ (0, T ) ,

‖v(., t)‖L∞(Ω) ≦Mt−
σ

1−̟ . (3.8)

(ii) As a consequence, if v satisfies (2.3), with m− 1 + λ > 0, then

‖v(., t)‖L∞(Ω) ≦Mt−
1

m−1+λ . (3.9)

Proof. (i) For any 0 < s < t < T,

‖v(., t)‖L∞(Ω) ≦ C(t− s)−σ‖v(., s)‖̟Lr(Ω) ≦ C(t− s)−σ |Ω|̟ ‖v(., s)‖̟L∞(Ω)

Since ̟ < 1, (3.8) follows from Lemma 3.1: for any t ∈ (0, T ),

‖v(., t)‖L∞(Ω) ≦ 2σ(1−̟)−2
(C |Ω|̟ t−σ)(1−̟)−1

.

(ii) If v satisfies (2.3), with m− 1 + λ > 0, we take σ = σr,m,λ,θ, and ̟ = ̟r,m,λ,θ defined at (2.4),
then ̟ = (1 + (m− 1 + λ)θ′/r)−1 < 1 and σ((1 −̟)−1 = (m− 1 + λ)−1, which proves (3.9).

In the sequel Lemma 2.1 is applied in situations where (2.2) comes from an estimate of v in
a Sobolev Space W 1,m(QΩ,s,t), when 1 < m < N, with θ = N/(N −m), or m = N and θ > 1 is
arbitrary.

In the case m > N, where Lemma 2.1 does not bring information, we use in the sequel a limit
form of Gagliardo-Nirenberg inequality, see the proof of Theorems 4.16, 5.12 and 6.7:
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Lemma 3.4 Let m > N, and r ≧ 1. Let Ω be any domain in R
N . Then there exists C =

C(N,m, r) > 0 such that for any w ∈ Lr(Ω) ∩W 1,m
0 (Ω),

‖w‖L∞(Ω) ≦ C‖∇w‖kLm(Ω)‖w‖1−k
Lr(Ω),

1

k
= 1 + r(

1

N
− 1

m
).

Proof. By extension by 0 outside of Ω, we can assume Ω = R
N . Since m > N, for any

ϕ ∈ D
(

R
N
)

, and any x ∈ R
N ,

|ϕ(x)| ≦ C(N,m)(

∣

∣

∣

∣

∣

∫

B(x,1)
ϕdx

∣

∣

∣

∣

∣

+ ‖∇ϕ‖Lm(B(x,1))) ≦ C(N,m, r)
(

‖ϕ‖Lr(RN ) + ‖∇ϕ‖Lm(RN )

)

;

by density, there holds

‖w‖L∞(RN ) ≦ C
(

‖w‖Lr(RN ) + ‖∇w‖Lm(RN )

)

for any w ∈ Lr(RN ) ∩W 1,m(RN ). Setting wt(x) = w(tx) for any t > 0, we find

‖w‖L∞(RN ) = ‖wt‖L∞(RN ) ≦ C
(

t−
N
r ‖w‖Lr(RN ) + t

m−N
m ‖∇w‖Lm(RN )

)

;

the result follows by taking t = (‖w‖Lr(RN )/‖∇w‖Lm(RN ))
1/(1−N/m+N/r).

4 The Hamilton-Jacobi equation in R
N

4.1 Different notions of solution

In this section we study the Cauchy problem (2.5).
Here we consider the solutions in a weak sense, which does not use any formulation in terms of

semigroups:

Definition 4.1 We say that a nonnegative function u is a weak solution (resp. subsolution) of
equation of (1.1) in QRN ,T , if u ∈ L1

loc(QRN ,T ), and |∇u| ∈ Lq
loc(QRN ,T ), and

∫ T

0

∫

Ω
(−uϕt − u∆ϕ+ |∇u|qϕ)dxdt = 0, (resp. ≦), ∀ϕ ∈ D(QRN ,T ), ϕ ≧ 0. (4.1)

Remark 4.2 From [16], any nonnegative weak solution satisfies

u ∈ L∞
loc(QRN ,T ), ∇u ∈ L2

loc(QRN ,T ), u ∈ C((0, T );Lρ
loc(R

N )) ∀ρ ≧ 1. (4.2)

Hence (4.1) is equivalent to:
∫ T

0

∫

Ω
(−uϕt +∇u.∇ϕ+ |∇u|qϕ)dxdt = 0, ∀ϕ ∈ D(QRN ,T ), (4.3)

and there holds, for any s, τ ∈ (0, T ),
∫

RN

u(., τ)ϕ(., θ)dx −
∫

RN

u(., s)ϕ(., s)dx +

∫ τ

s

∫

RN

(−uϕt +∇u.∇ϕ+ |∇u|qϕ)dxdt = 0; (4.4)

and for any ψ ∈ C2
c

(

R
N
)

,
∫

RN

u(., τ)ψdx −
∫

RN

u(., s)ψdx +

∫ τ

s

∫

RN

(∇u.∇ψ + |∇u|qψdxdt = 0. (4.5)
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Definition 4.3 Let u0 ∈ Lr
loc

(

R
N
)

, r ≧ 1.

We say that u is a weak Lr
loc solution if u is a weak solution of (1.1) and the extension of u

by u0 at time 0 satisfies u ∈ C
(

[0, T ) ;Lr
loc(R

N
)

).

We say that u is a weak r solution of problem (2.5) if it is a weak solution of equation (1.1)
such that

lim
t→0

∫

RN

ur(., t)ψdx =

∫

RN

ur0ψdx, ∀ψ ∈ Cc(R
N ). (4.6)

Definition 4.4 Let u0 be any nonnegative Radon measure in R
N , we say that u is a weak Mloc

solution of problem (2.5) if it is a weak solution of (1.1) such that

lim
t→0

∫

RN

u(., t)ψdx =

∫

RN

ψdu0, ∀ψ ∈ Cc(R
N ). (4.7)

Remark 4.5 Obviously, any weak Lr
loc solution is a weak r solution. When r = 1, the notions of

weak 1-solution and weak Mloc solution coincide. When r > 1, it can be easily checked that u is a
weak Lr

loc solution if and only if it is a weak r solution and

lim
t→0

∫

RN

u(., t)ψdx =

∫

RN

u0ψdx, ∀ψ ∈ Cc(R
N ). (4.8)

Other types of solutions using the semigroup of the heat equation have been introduced in
([15]):

Definition 4.6 Let u0 ∈ Lr
(

R
N
)

. A function u is called mild Lr solution of problem (2.5) if
u ∈ C([0, T ) ;Lr

(

R
N
)

), and |∇u|q ∈ L1
loc([0, T ) ;L

r
(

R
N
)

) and

u(., t) = et∆u0 −
∫ t

0
e(t−s)∆|∇u(., s)|qds in Lr(RN );

here et∆ is the semi-group of the heat equation acting on Lr
(

R
N
)

.

Definition 4.7 Let u0 ∈ M+
b (R

N ). A function u is called mild M solution of (2.5) if u ∈
Cb((0, T );L

1
(

R
N
)

) and |∇u|q ∈ L1
loc([0, T ) ;L

1
(

R
N
)

), and for any 0 < t < T,

u(., t) = et∆u0(.)−
∫ t

0
e(t−s)∆|∇u(., s)|qds in L1(RN ), (4.9)

where et∆ is defined on M+
b (R

N ) as the adjoint of the operator et∆ on C0(R
N ), the space of

continuous functions on R
N which tend to 0 as |x| → ∞.

Remark 4.8 Every mild Lr solution is a weak Lr
loc solution. Any mild M solution is a weak Mloc

solution. Indeed for any 0 < ǫ < t < T, we find

u(., t) = e(t−ǫ)∆u(., ǫ)−
∫ t

ǫ
e(t−s)∆|∇u(., s)|qds in L1(RN );

and u(., ǫ) ∈ L1(RN ), thus u is a weak solution on (ǫ, T ) , then on (0, T ). As t → 0, u(., t)−et∆u0(.)
converges to 0 in L1(RN ), then weakly *, and et∆u0(.) → u0 weakly *, hence (4.7) holds.
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Another definition of solution with initial data measure was given in ([12]):

Definition 4.9 Let u0 ∈ M+
b (R

N ). A function u is called weak semi-group solution if u ∈
C((0, T );L1

(

R
N
)

) and |∇u|q ∈ L1
loc([0, T ) ;L

1
(

R
N
)

) and for any 0 < ǫ < t < T,

u(., t) = e(t−ǫ)∆u(., ǫ)−
∫ t

ǫ
e(t−s)∆|∇u(., s)|qds in L1(RN ), (4.10)

lim
t→0

∫

RN

u(., t)ϕdx =

∫

RN

ϕdu0, ∀ϕ ∈ Cb(R
N ), (4.11a)

In fact the two definitions coincide, see the proof in the Appendix:

Lemma 4.10 Let u0 ∈ M+
b (R

N ). Then

u is a mild M solution of (2.5) ⇐⇒ u is a weak semi-group solution of (2.5).

Remark 4.11 All these definitions of semi-group solutions assume a global in space condition:
|∇u|q ∈ L1

loc([0, T ) ;L
1
(

R
N
)

) or |∇u|q ∈ L1
loc([0, T ) ;L

r
(

R
N
)

). Observe also that (4.11a) is assumed
for any ϕ ∈ Cb(R

N ). On the contrary, our definitions of weak solutions are local in space and

time, they do not require such global properties.

Finally we mention another weaker form of semi-group solutions, given in ([15]), which will be
used in the sequel:

Definition 4.12 Let u0 ∈ M+
b (R

N ). Then u is a pointwise mild solution of (2.5) if u ∈ L1
loc(QRN ,T ),

and |∇u|q ∈ L1
loc(QRN ,T ), and

u(x, t) = (et∆u0)(x) −
∫ t

0

∫

RN

g(x− y, t− s)|∇u(y, s)|qdyds for a.e. (x, t) ∈ QRN ,T ,

where g is the heat kernel.

Remark 4.13 For r ≧ 1, it is clear that every mild Lr solution is a pointwise mild solution. If
u0 ∈ L1

(

R
N
)

every pointwise mild solution is a mild L1 solution; if u0 ∈ M+
b (R

N ), every pointwise
mild solution, is a mild M solution. see [15, Proposition 1.1 and Remark 1.2].

4.2 Decay of the norms

Next we show a decay result for the solutions of Hamilton Jacobi equations, which is valid for any
q > 1, and for all the weak solutions, with no condition of boundedness at infinity.

When q ≦ 2, any weak solution u of equation (1.1) is smooth: u ∈ C2,1
(

QRN ,T

)

, from [16,
Theorem 2.9]. Since it may be false for q > 2, we regularize u by convolution, setting

uε = u ∗ ̺ε,

where (̺ε)ε>0 is a sequence of mollifiers. We recall that for given 0 < s < τ < T , and ε small
enough, uε is a subsolution of equation (1.1), see [16]:

(uε)t − ν∆uε + |∇uε|q ≦ 0, in QRN ,s,τ . (4.12)
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Theorem 4.14 Assume q > 1. Let r ≧ 1. Let u0 ∈ Lr(RN ) be nonnegative. Let u be any non-
negative weak r solution of problem (2.5).

(i) Then u(., t) ∈ Lr
(

R
N
)

for any t ∈ (0, T ) , and
∫

RN

ur(., t)dx ≦

∫

RN

ur0dx. (4.13)

(ii) Moreover ur−1|∇u|q ∈ L1
loc([0, T ) ;L

1
(

R
N
)

); and ur−2|∇u|2 ∈ L1
loc([0, T ) ;L

1
(

R
N
)

) if r > 1
and ν > 0. For any t ∈ (0, T ) , we have the equalities

∫

RN

ur(., t)dx+r

∫ t

0

∫

RN

ur−1|∇u|qdxdt+r(r−1)ν

∫ t

0

∫

RN

ur−2|∇u|2dxdt =
∫

RN

ur0dx, if r > 1,

(4.14)
∫

RN

u(., t)dx+

∫ t

0

∫

RN

|∇u|qdxdt =
∫

RN

u0dx, if r = 1, (4.15)

lim
t→0

∫

RN

ur(., t)dx =

∫

RN

ur0dx. (4.16)

(iii) uq−1+r ∈ L1
loc(([0, T ) ;W

1,1
(

R
N
)

); and if ν > 0, then ur/2 ∈ L2
loc([0, T ) ;W

1,2
(

R
N
)

).
(iv) If u is a weak Lr

loc solution, then u ∈ C([0, T ) ;Lr
(

R
N
)

).

Proof. (i) First step: case q′ > N/r. That means r ≧ N or q is small enough: 1 <
q < N/(N − r). Let 0 < s < τ < T . Take ε > 0 small enough such that (4.12) holds. Let
δ > 0, and uε,δ = uε + δ, so that ur−2

ε,δ is well defined for r < 2. For any R > 0, we consider
ξ(x) = ξR(x) = ψ(x/R), where ψ(x) ∈ [0, 1] , ψ(x) = 1 for |x| ≦ 1, ψ(x) = 0 for |x| ≧ 2. Multiplying
(4.12) by ur−1

ε,δ ξ
λ where λ > 0, we get for any t ∈ [s, τ ] ,

d

dt

(

1

r

∫

RN

urε,δ(., t)ξ
λdx

)

+ (r − 1)ν

∫

RN

ur−2
ε,δ |∇uε,δ|2 (., t)ξλdx+

∫

RN

|∇uε,δ|qur−1
ε,δ ξ

λ−1ξλdx

≦ −λ
∫

RN

ur−1
ε,δ ξ

λ−1ξλ−1∇uε,δ.∇ξdx,

and from the Hölder inequality, with C = C(q, λ)

λ

∫

RN

ur−1
ε,δ |∇uε,δ| (., t)ξλ−1 |∇ξ| dx ≦

1

2

∫

RN

|∇uε,δ(., t)|qur−1
ε,δ ξ

λdx+ C

∫

RN

ur−1
ε,δ (., t)ξλ−q′ |∇ξ|q′ dx,

∫

RN

ur−1
ε,δ (., t)ξλ−q′ |∇ξ|q′ dx ≦

(
∫

RN

urε,δ(., t)ξ
λdx

)
1
r′
(
∫

RN

ξλ−rq′ |∇ξ|rq′ dx
)

1
r

.

Choosing λ = rq′ we deduce

d

dt

(

(
∫

RN

urε,δ(., t)ξ
λdx

)
1
r

)

≦ CR
N
r
−q′ ,

where C = C(N, q, r, ψ). By integration,

(
∫

RN

urε,δ(., t)ξ
λdx

)
1
r

≦

(
∫

RN

urε,δ(., s)ξ
λdx

)
1
r

+ CτR
N
r
−q′ .
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with a new constant C as above. Let R0 > 0 be fixed and take R > R0, thus

(

∫

BR0

urε,δ(., t)dx

)
1
r

≦

(
∫

B2R

urε,δ(., s)ξ
λdx

)1/r

+ CτR
N
r
−q′ .

As δ → 0, and then as ε→ 0, we deduce that

(

∫

BR0

u(., t)rdx

)
1
r

≦

(
∫

RN

u(., s)rξλdx

)
1
r

+ CτR
N
r
−q′ (4.17)

for any 0 < s < t < T ; from (4.6) we obtain, as s→ 0,

(

∫

BR0

u(., t)rdx

)
1
r

≦

(
∫

RN

ur0ξ
λdx

)
1
r

+ CτR
N
r
−q′ ≦

(
∫

RN

ur0dx

)
1
r

+ CτR
N
r
−q′ .

Finally (4.13) follows as R→ ∞ and then as R0 → ∞.

Second step: case q′ ≦ N/r. Then r < N and q ≧ N/(N − r) > 1. Let us fix some
k ∈ (1, N/(N − r)) . For any η ∈ (0, 1), we have η|∇u|k ≦ η + |∇u|q, hence the function

wη = η1/(k−1)(u− ηt)

satisfies
(wη)t − ν∆wη + |∇wη|k ≦ 0

in the weak sense. Thanks to Kato’s inequality, see [21], [5], we deduce that

(w+
η )t − ν∆w+

η + |∇w+
η |k ≦ 0, (4.18)

in D′(QRN ,T ). And w
+
η has the same regularity as u. Moreover it satisfies an analogous property

to (4.6):

lim
t→0

∫

RN

(w+
η )

r(., t)ψdx =

∫

RN

(η1/(k−1)u0)
rψdx, ∀ψ ∈ Cc(R

N ). (4.19)

Indeed
∣

∣

∣

∣

∫

RN

((u− ηt)+)r − ur(., t))ψdx

∣

∣

∣

∣

≦

∫

{u≧ηt}
|(u(., t) − ηt)r − ur(., t)|ψdx+

∫

{u≦ηt}
ur(., t))ψdx

≦ rηt

∫

RN

ur−1(., t)ψdx + C(ψ)tr

≦ rηt(

∫

RN

ur(., t)ψdx)1/r
′

(

∫

RN

ψdx)1/r + C(ψ)tr

then

lim
t→0

∫

RN

((u− ηt)+)r − ur(., t))ψdx = 0,

and (4.19) follows from (4.6) applied to η1/(k−1)u. Since k′ > N/r, we can apply the first step to
w+
η ; we deduce that w+

η (t) ∈ Lr
(

R
N
)

and
∫

RN

(w+
η )

r(., t)dx ≦ η
r

k−1

∫

RN

ur0dx.
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Then ‖(u− ηt)+‖Lr(RN ) ≦ ‖u0‖Lr(RN ) . Since u ≦ ηt+ (u− ηt)+, we find, for any R > 0,

‖u(., t)‖Lr(BR) ≦ ‖u0‖Lr(RN ) + ηt |BR|
1
r

As η → 0 we get ‖u(., t)‖Lr(BR) ≦ ‖u0‖Lr(RN ) , then as R → ∞ we deduce that u(., t) ∈ Lr
(

R
N
)

,
and (4.13) holds.

(ii) Consider again 0 < s < τ < T and uε,δ as above. Setting Fε = |∇u|q ∗ ̺ε, there holds

(uε,δ)t − ν∆uε,δ + Fε = 0.

Then for any t ∈ [s, τ ] ,

d

dt

(
∫

RN

urε,δ(., t)ξ
λdx

)

+ r(r − 1)ν

∫

RN

ur−2
ε,δ |∇uε,δ|2 (., t)ξλdx+ r

∫

RN

Fεu
r−1
ε,δ (., t)ξλdx

= −rν
∫

RN

ur−1
ε,δ ∇uε,δ(., t).∇(ξλ)dx = ν

∫

RN

urε,δ(., t)∆(ξλ)dx

thus
∫

RN

urε,δ(., t)ξ
λdx+ r

∫ t

s

∫

RN

ur−1
ε,δ Fεξ

λdxdt

+r(r − 1)ν

∫ t

s

∫

RN

ur−2
ε,δ |∇uε,δ|2 ξλdx =

∫

RN

urε,δ(., s)ξ
λdx+ ν

∫ t

s

∫

RN

urε,δ∆(ξλ)dx

First we go to the limit as ε → 0, because u ∈ L∞
loc(QRN ,T ), and |∇u|2 ∈ L1

loc(QRN ,T ), and Fε

converges to |∇u|q in L1
loc(QRN ,T ). Setting vδ = u + δ, we obtain for almost any s, t, and by

continuity for any 0 < s < t ≦ τ ,

∫

RN

vrδ (., t)ξ
λdx+ r

∫ t

s

∫

RN

vr−1
δ |∇u|q ψdxdt

+r(r − 1)ν

∫ t

s

∫

RN

vr−2
δ |∇u|2 ξλdx =

∫

RN

vrδ (., s)ξ
λdx+ ν

∫ t

s

∫

RN

vrδ∆(ξλ)dx

Next we go to the limit as δ → 0 : from the Fatou Lemma,
∫ t
s

∫

RN u
r−1 |∇u|q ψdxdt and (r −

1)ν
∫ t
s

∫

RN u
r−2 |∇u|2 ξλdx are finite, and then from the dominated convergence theorem,

∫

RN

ur(., t)ξλdx+ r

∫ t

s

∫

RN

ur−1 |∇u|q ξλdxdt

+r(r − 1)ν

∫ t

s

∫

RN

ur−2 |∇u|2 ξλdx =

∫

RN

ur(., σ)ξλdx+ ν

∫ t

s

∫

RN

ur∆(ξλ)dx.

As s→ 0, from (4.6), we deduce that

∫

RN

ur(., t)ξλdx+ r

∫ t

0

∫

RN

ur−1 |∇u|q ξλdxdt

+r(r − 1)

∫ t

0

∫

RN

ur−2 |∇u|2 ξλdx =

∫

RN

ur0(., σ)ξ
λdx+ ν

∫ t

σ

∫

RN

ur∆(ξλ)dx

15



Now u(., t) ∈ Lr
(

R
N
)

for any t ∈ [s, τ ], and

∫ t

σ

∫

RN

ur∆(ξλ)dx ≦
C

R2
τ

∫

RN

ur(σ)dx,

thus we can make R → ∞. Then
∫ τ
0

∫

RN u
r−1|∇u|qdxdt and (r − 1)ν

∫ τ
0

∫

RN u
r−2|∇u|2dxdt are

finite and, from the dominated convergence theorem,

∫

RN

ur(., t)dx + r

∫ t

0

∫

RN

ur−1|∇u|qdxdt+ r(r − 1)ν

∫ t

0

∫

RN

ur−2 |∇u|2 dx =

∫

RN

ur0dx (4.22)

Hence (4.14) and (4.15) follow, implying (4.16).

(iii) Setting v = ub with b = (q − 1 + r)/q ≦ r, there holds |∇v|q ∈ L1
loc([0, T ) ;L

1(RN )), and
v ∈ L∞((0, T );Lr/b

(

R
N
)

). From the Gagliardo-Nirenberg inequality,

‖v(., t)‖Lq(RN ) ≦ C(N, q, r) ‖v(., t)‖1−k

L
r
b (RN )

‖∇v(., t)‖kLq(RN ) ,
1

k
= 1 +

rq′

N
. (4.23)

By integration, for any 0 < τ < T, we get, from Hölder inequality, with C = C((τ,N, q, r),
∫ τ

0

∫

RN

vq(., t)dxdt =

∫ τ

0

∫

RN

uq−1+r(., t)dxdt ≦ C ‖v‖(1−k)q

L∞((0,τ);L
r
m (RN )

(

∫ τ

0

∫

RN

|∇v|q dxdt)k.

Then u ∈ Lq−1+r(QRN ,τ ), and v
q = uq−1+r ∈ L1((0, τ);W 1,1

(

R
N
)

), v ∈ Lq((0, τ);W 1,q
(

R
N
)

). If

ν > 0, we also have ur−2 |∇u|2 =
∣

∣∇(ur/2)
∣

∣

2 ∈ L1(QRN ,τ ), and ur/2 ∈ L2(QRN ,τ ), then ur/2 ∈
L2((0, τ);W 1,2

(

R
N
)

).

(iv) Here u ∈ C([0, T ) ;Lr
loc

(

R
N
)

). We only need to prove that limt→0 ‖u(., t) − u0‖Lr(RN ) = 0.

From a diagonal procedure, there exists tn → 0 such that (u(., tn)) converges to u0 a.e. in R
N .

First assume r > 1; since the convergence holds weakly in Lr
(

R
N
)

, and limn→∞ ‖u(., tn)‖Lr(RN ) =

‖u0‖Lr(RN ) from (4.16). Then it holds from any sequence, and u ∈ C([0, T ) ;Lr
(

R
N
)

). Next assume
r = 1. We have for any p > 0,

∫

RN

|u(tn)− u0| dx ≦

∫

Bp

|u(tn)− u0| dx+

∫

RN\Bp

|u(tn)− u0| dx

≦

∫

Bp

|u(tn)− u0| dx+

∫

RN\Bp

u(tn)dx+

∫

RN\Bp

u0dx

=

∫

Bp

|u(tn)− u0| dx+

∫

RN

u(tn)dx−
∫

Bp

u0dx

−
∫

Bp

(u(tn)− u0)dx+

∫

RN\Bp

u0dx

≦ 2

∫

Bp

|u(tn)− u0| dx+

∫

RN

u(tn)dx−
∫

RN

u0dx+ 2

∫

RN\Bp

u0dx.

The result follows from (4.16), because u0 ∈ L1
(

R
N
)

.

The decay result is also available for initial data measures, where we do not assume that
q < (N + 2)/(N + 1) :
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Theorem 4.15 Assume q > 1. Let u0 ∈ M+
b (R

N ) and u be any non-negative weak Mloc solution
of equation (2.5) in QRN ,T . Then u(., t) ∈ L1

(

R
N
)

for any t > 0, and

∫

RN

u(., t)dx ≦

∫

RN

du0. (4.24)

Moreover u ∈ C((0, T );L1
(

R
N
)

), |∇u|q ∈ L1
loc([0, T ) ;L

1
(

R
N
)

) and

∫

RN

u(., t)dx +

∫ t

0

∫

RN

|∇u|qdxdt =
∫

RN

du0, (4.25)

and

lim
t→0

∫

RN

u(., t)ϕdx =

∫

RN

ϕdu0, ∀ϕ ∈ Cb(R
N ). (4.26)

Proof. If q′ < N, we obtain in the same way (4.17) with r = 1, and we go to the limit as s→ 0
from (4.7), then

∫

BR0

u(., t)dx ≦

∫

RN

ξλdu0 +CτRN−q′ ≦

∫

RN

du0 + CτRN−q′.

Going to the limit as R → ∞, and then as R0 → ∞, we deduce (4.24). If q′ ≧ N, we proceed
as in the second step of Theorem 4.14, and get again (4.24). Then (4.25) follows. And u ∈
C((0, T );L1

(

R
N
)

), from the dominated convergence theorem, because u ∈ C((0, T );L1
loc

(

R
N
)

),
and u ∈ L∞((0, T );L1

(

R
N
)

).

Let us show (4.26): let ϕ ∈ Cb(R
N ) be nonnegative, we can assume that ϕ takes its values in

[0, 1] . Let tn → 0. We know that limn→∞
∫

RN u(., tn)dx =

∫

RN

du0. Let ψp ∈ D(RN) with values in

[0, 1] , ψp(x) = 1 if |x| ≦ p, 0 if |x| ≧ 2p. Then limp→∞

∫

RN

(1 − ψp)du0 = 0, from the dominated

convergence Theorem. Thus for any η > 0, one can choose pη such that

∫

RN

(1− ψpη)du0 ≦ η; and

lim

∣

∣

∣

∣

∫

RN

u(., tn)ϕdx−
∫

RN

ϕdu0

∣

∣

∣

∣

≦ lim
n→∞

∣

∣

∣

∣

∫

RN

u(., tn)ϕψpηdx−
∫

RN

ϕψpηdu0

∣

∣

∣

∣

+

∫

RN

ϕ(1 − ψpη)du0 + lim
n→∞

∫

RN

u(., tn)ϕ(1 − ψpη)dx ≦ η,

hence the conclusion follows.

4.3 Regularizing effects

Here we deduce of the decay estimates a regularizing effect without any condition at ∞, ending the
proof of Theorem 2.2.

Theorem 4.16 Let q > 1. Let r ≧ 1 and u0 ∈ Lr(RN ). Let u be any non-negative weak Lr
loc

solution of problem (2.5) in QRN ,T (4.6).
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Then u(., t) ∈ L∞(RN ) for any t ∈ (0, T ) and u satisfies the estimates (2.10), where σr,q,N ,̟r,q,N

are given by (2.11).

Moreover if ν > 0, then u satifies the estimates (2.12). If u0 ∈ M+
b (R

N ), the same results hold,

where ‖u0‖L1(RN ) is replaced by

∫

RN

du0.

Proof. Since u is a weak Lr
loc solution, then u ∈ C([0, T ) ;Lr

(

R
N
)

), from Theorem 4.14. Thus
for any 0 ≦ s < T, u is a weak r solution in QRN ,s,T ; and

∫

RN u
r(s)dx < ∞ with r ≧ 1. For any

0 < s ≦ t < T, and any α ≧ r − 1 such that
∫

RN u
α+1(s)dx < ∞, we can apply Theorem 4.14 to u

starting at point s, because of (4.2). Denoting β = 1 + α/q, we have

1

α+ 1

∫

RN

uα+1(., t)dx+
1

βq

∫ t

s

∫

RN

|∇(uβ)|qdxdt ≦ 1

α+ 1

∫

RN

uα+1(., s)dx, (4.27)

and uβ(., t) ∈ Lq(RN ) for almost any t ∈ (0, T ).

(i) Proof of (2.10).

First assume q < N. From the Sobolev injection of W 1,q
(

R
N
)

into LNq/(N−q)
(

R
N
)

, there holds

1

α+ 1

∫

RN

uα+1(., t)dx +
C(N, q)

βq

∫ t

s
(

∫

RN

uβ
Nq
N−q (., t)dx)

N−q
N )dt ≦

1

α+ 1

∫

RN

uα+1(., s)dx;

thus Lemma 2.1 applies with m = q and θ = N/(N − q). We obtain

‖u(., t)‖L∞(RN ) ≦ C(t− s)−σr,q,N ‖u(., s)‖̟r,q,N

Lr(RN )
, C = C(N, q, r),

and deduce (2.10) as s goes to 0.
If q = N, we deduce (2.10) from Lemma 2.1 with θ > 1 arbitrary, sinceW 1,N

(

R
N
)

⊂ LNθ
(

R
N
)

.
Next assume q > N . We straight away obtain, for any t ∈ (0, T ) ,

∫ t

0

∫

RN

|∇(uβ)|qdxdt ≦ 1

r

∫

RN

ur0dx, (4.28)

with β = 1 + (r − 1)/q. From the Sobolev injection W 1,q
(

R
N
)

⊂ L∞ (
R
N
)

, u(., s) ∈ L∞ (
R
N
)

for almost any s ∈ (0, T ), hence u(., s) ∈ Lρ
(

R
N
)

) for any ρ ≧ r, and u ∈ C([s, t) , Lρ
(

R
N
)

) from
(4.2). In turn u(., t) ∈ L∞ (

R
N
)

for any t ∈ (0, T ) and t 7→ ‖u(., t)‖L∞(RN ) is nonincreasing, thus

rt ‖u(., t)‖q+r−1
L∞(RN )

≦ C(N, q)

∫

RN

ur0dx.

This does not give the optimal estimate (2.11). However from Lemma 3.4, v = uβ satisfies the
Gagliardo-Nirenberg inequality, for almost any t ∈ (0, T ),

‖v(., t)‖L∞(RN ) ≦ C ‖v(., t)‖1−k

L
r
β (RN )

‖∇v(., t)‖kLq(RN ) ,

where 1/k = 1 + (1/N − 1/q)r/β and C = C(N, q, r). Then

‖u(., t)‖
βq
k

L∞(RN )
≦ C ‖u(., t)‖

βq(1−k)
k

Lr(RN )

∫

RN

|∇(uβ)|qdxdt ≦ C ‖u0‖
βq(1−k)

k

Lr(RN )

∫

RN

|∇(uβ)|qdxdt.
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By integration, using (4.28), we find

rt ‖u(., t)‖
βq
k

L∞(RN )
≦ C ‖u0‖

βq(1−k)
k

+r

Lr(RN )
,

which gives precisely (2.10), since k/βq = σr,q,N and (1− k) + kr/βq = ̟r,q,N .

(ii) Proof of (2.12).
First assume N > 2. For any α ≧ r − 1 such that

∫

RN u
α+1(s)dx <∞,

1

α+ 1

∫

RN

uα+1(t)dx+
α

β̃2
ν

∫ t

s

∫

RN

∣

∣

∣
∇(uβ̃)

∣

∣

∣

2
dxdt ≦

1

α+ 1

∫

RN

uα+1(s)dx

where β̃ = (α + 1)/2; and uβ̃ ∈ L2
loc((0, τ);W

1,2
(

R
N
)

). From the Sobolev injection of W 1,2
(

R
N
)

into L2N/(N−2)
(

R
N
)

, we get

1

α+ 1

∫

RN

uα+1(t)dx+
αC(N)

β̃2
ν

∫ t

s
(

∫

RN

uβ̃
2N
N−2 )

N−2
N dx ≦

1

α+ 1

∫

RN

uα+1(s)dx.

In case r > 1, Lemma 2.1 applies with C0 = (r − 1)C(N)ν, q = 2, θ = N/(N − 2) and λ = −1,
β̃ = 1 + (α− 1)/2, since r > N(1− 2 + 1)/2; and (2.12) follows.
In case r = 1, then u ∈ C([0, T ) ;L1(RN ))∩L∞

loc((0, T );L
∞(RN )) because of estimate (2.10). Hence

C([0, T ) ;Lρ(RN )) for any ρ > 1, for example with ρ = 2, and ‖u(., t)‖L1(RN ) is nonincreasing, from
Theorem 4.14. Therefore Lemma 2.1 applies on (ǫ, t) for 0 < ǫ < t < T :

‖u(., t)‖L∞(RN ) ≦ C(t− ǫ)−
N
2 ‖u(., ǫ)‖L1(RN ) ≦ C(t− ǫ)−

N
2 ‖u0‖L1(RN ),

with C = C(N, q, r, ν), hence (2.12) follows as ǫ→ 0.

If N = 2, we proceed as above to conclude. Next assume N = 1. In case r > 1, there holds, for
any t ∈ (0, T ),

4(r − 1)ν

∫ t

0

∫

RN

|∇(u
r
2 )|2dxdt ≦

∫

RN

ur0dx;

and, from Lemma 3.4, applied to v = ur/2, with m = 2 = 1/k,

‖u(., t)‖2rL∞(R) ≦ C ‖u(., t)‖rLr(R)

∫

R

|∇(u
r
2 )|2dxdt ≦ C ‖u0‖rLr(RN )

∫

R

|∇(u
r
2 )|2dxdt;

by integration, we get, with a new constant C = C(r, ν),

t ‖u(., t)‖2rL∞(R) ≦ C ‖u0‖2rLr(R) ,

which proves (2.12). In case r = 1, taking ρ = 2 as above, we obtain, for any 0 < ǫ < t < T,

‖u(., t)‖L∞(R) ≦ C(ν)(t− ǫ)−
1
4 ‖u(., ǫ)‖L2(R) ≦ C(ν)(t− ǫ)−

1
4‖u(., ǫ)‖

1
2

L∞(R)‖u(., ǫ)‖
1
2

L1(R)
.

From Lemma 3.1, we deduce

‖u(., t)‖L∞(R) ≦ C(ν)(t− ǫ)−
1
2 ‖u0‖L1(R),

and we conclude as ǫ→ 0.

If u0 ∈ M+
b (R

N ), we apply the estimates on (ǫ, T ) and go to the limit as ǫ→ 0.
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Remark 4.17 As a consequence, for any k ≧ 1, and for example q 6= N,N 6= 2,

‖u(., t)‖Lkr(RN ) ≦ Ct−
σr,q,N

k′ ‖u0‖
̟r,q,N

k′
+ 1

k

Lr(RN )
, (4.29)

‖u(., t)‖Lkr(RN ) ≦ Ct−
N

2rk′ ‖u0‖Lr(RN ), if ν > 0. (4.30)

Indeed it follows from (4.13) and (2.10), (2.12) by interpolation:

‖u(., t)‖Lkr(RN ) ≦ ‖u(., t)‖1/k′
L∞(RN )

‖u(., t)‖1/k
Lr(RN )

.

Remark 4.18 If q ≦ 2, then u ∈ C2,1
(

QRN ,T

)

, thus we do not need to introduce the regu-

larization by uε; we only need to introduce u+ δ, when r > 1 and make δ → 0.

Remark 4.19 Up to now, the decay estimate (4.13) and the L∞ estimate of u were proved for
u0 ∈ Cb

(

R
N
)

∩Lr
(

R
N
)

, and for the unique bounded solution u of problem (2.5), and based on
the estimate (2.7) given in [15, Theorem 5.6]; indeed from the classical inequality

‖u(., t)‖L∞(RN ) ≦ C(N, r)‖∇u(., t)‖
N

N+r

L∞(RN )
‖u(., t)‖

r
N+r

Lr(RN )
,

and (2.7), there holds, with C = C(N, q, r),

‖u(., t)‖L∞(RN ) ≦ Ct
− N

q(N+r) ‖u(., t)‖
N

q(N+r)

L∞(RN )
‖u(., t)‖

r
N+r

Lr(RN )
,

‖u(., t)‖L∞(RN ) ≦ Ct−σr,q,N‖u0‖̟r,q,N

Lr(RN )
. (4.31)

4.4 Further estimates and convergence results for q ≦ 2.

Here we consider the case 1 < q ≦ 2. From the L∞ estimates above, and the interior regularity of
u, we deduce new local estimates and convergence results:

Corollary 4.20 Assume 1 < q ≦ 2.

(i) Any nonnegative weak Lr
loc solution (resp. Mloc solution) u of problem (2.5) with initial

data u0 ∈ Lr(RN ), r ≧ 1 (resp. u0 ∈ M+
b (R

N )) satisfies u ∈ C2,1(QRN ,T ) ∩ L∞
loc((0, T ) ;Cb(R

N )).

(ii) Let (u0,n) be any bounded sequence in Lr(RN ), r ≧ 1 (resp. in M+
b (R

N )). For any n ∈ N,
let un be any nonnegative weak Lr

loc solution (resp. Mloc solution) of problem (2.5) with initial

data u0,n. Then one can extract a subsequence converging in C2,1
loc (QRN ,T ) to a weak solution u of

(1.1) in QRN ,T .

Proof. From [16, Theorem 2.9] there there exists γ ∈ (0, 1) such that for any nonnegative weak
solution of equation (1.1) u in QRN ,T and any ball BR ⊂ R

N , and 0 < s < τ < T,

‖u‖
C2+γ,1+

γ
2 (QBR,s,τ )

≦ CΦ(‖u‖L∞(QB2R, s2 ,τ )
).
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where C = C(N, q,R, s, τ) and Φ is a continuous increasing function. From estimates (2.10), we
deduce that u ∈ L∞

loc((0, T ) ;Cb(R
N )) and

‖u‖
C2+γ,1+

γ
2 (QBR,s,τ )

≦ CΦ(‖u0‖Lr(RN )), (resp. ‖u‖
C2+γ,1+

γ
2 (QBR,s,τ )

≦ CΦ(

∫

RN

du0) (4.32)

and the conclusions follow.

We also deduce global gradient estimates in R
N :

Corollary 4.21 Assume ν > 0, 1 < q ≦ 2. (i) Let u0 ∈ Lr(RN ), r ≧ 1. Then any weak Lr
loc

solution u of problem (2.5) satisfies for q 6= N

‖∇u(., t)‖L∞(RN ) ≦ Ct−ϑr,q,N‖u0‖
κ
r,q,N

Lr(RN )
, (4.33)

ϑr,q,N =
N + r

rq +N(q − 1)
, κr,q,N =

r

rq +N(q − 1)
;

and |∇u|q ∈ L∞
loc((0, T );L

r(RN )), and

∫

RN

|∇u(., t)|qr dx ≦ Ct−r( q
2
+σr,q,N (q−1))‖u0‖(1+̟r,q,N (q−1))r

Lr(RN )
(4.34)

where σr,q,N , ̟r,q,N are defined at (2.11), and C = C(N, q, r, ν). For N 6= 2, then

‖∇u(., t)‖L∞(RN ) ≦ Ct
− 1

q
(N
2r

+1)‖u0‖
1
q

Lr(RN )
; (4.35)

∫

RN

|∇u(., t)|qr dx ≦ Ct−r( q
2
+N

2r
(q−1))‖u0‖qrLr(RN )

. (4.36)

If N = 2, estimates hold up to an ε > 0. Moreover if q < 2, u is a pointwise mild solution.

(ii) Let u0 ∈ M+
b (R

N ). Then any weak Mloc solution of (2.5) satisfies the same estimates as

in case r = 1, with ‖u0‖Lr(RN ) replaced by

∫

RN

du0.

Proof. (i) Let u0 ∈ Lr(RN ), r ≧ 1. Then for any ǫ > 0, u(., ǫ) ∈ Cb(R
N ), from Corollary

4.20. From [29], u is the unique solution v such that v ∈ C2,1
(

R
N × (ǫ, T )

)

∩ Cb

(

R
N × [ǫ, T )

)

,
and v(., ǫ) = u(., ǫ); since v ∈ C2

b

(

R
N × (ǫ, T

)

), we deduce that u ∈ C2
b

(

R
N × (0, T

)

); and for any
ǫ ≦ t < T,

‖u(., t)‖L∞(RN ) ≦ ‖u(., ǫ)‖L∞(RN ), ‖∇u(., t)‖L∞(RN ) ≦ ‖∇u(., ǫ)‖L∞(RN ),

and from (2.7),
|∇u(., t)|q ≦ C(q)(t− ǫ)−1u(., t), a.e. in R

N . (4.37)

From the decay estimates, we also have ‖u(., ǫ)‖Lr(RN ) ≦ ‖u0‖Lr(RN ). And u(., ǫ) ∈ Lr̃(RN ) for any

r̃ ∈ [r,∞] , and u ∈ C([ǫ, T ) ;Lr̃(RN )). Going to the limit in (4.37) as ǫ→ 0, we deduce (4.33) from
(2.10), and (4.35) from (2.12), if q 6= N or N 6= 2. Moreover |∇u|q ∈ L∞

loc((0, T );L
r(RN )), since

‖∇u(., t)‖Lqr(RN ) ≦ C(q)t−
1
q ‖u0‖

1
q

Lr(RN )
.
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More precisely we get from estimate (2.6),

‖∇(u
1
q′ (., t)‖L∞(RN ) ≦ C(t− ǫ)−

1
2 ‖u(., ǫ)‖

1
q′

L∞(RN )

with C = C(q, ν); then from estimate (2.12), for any t ∈ (0, T ) , with other constants C = C(q, ν),

‖∇(u
1
q′ (., t)‖L∞(RN ) ≦ Ct−

1
2‖u(., t

2
)‖

1
q′

L∞(RN )

|∇u(., t)|q ≦ Ct−
q
2 ‖u(., t

2
)‖q−1

L∞(RN )
u(., t),

then from estimate (2.10) we get

∫

RN

|∇u(., t)|qr dx ≦ C‖u0‖̟r,q,N (q−1)r

Lr(RN )
t−r( q

2
+σr,q,N (q−1))

∫

RN

u(., t)rdx;

then (4.34) follows. And (4.36) follows from (2.12). If N = 2, in particular if q = N, the same
estimates hold up to an ε > 0, from (2.10) and (2.12).

Next we prove that u is a pointwise mild solution as q < 2. From [29, Theorem 6], u(., t) ∈
C2
b (R

N ) for any t ∈ (ǫ, T ) , in particular u(., 2ǫ) ∈ C2
b (R

N ), then for any t ≧ ǫ, and any x ∈ R
N ,

u(x, t) = e(t−2ǫ)∆u(x, 2ǫ) −
∫ t

2ǫ

∫

RN

g(x− y, t− s)|∇u(y, s)|qdyds, (4.38)

see for example [7, Proposition 4.2 ]. But u(x, 2ǫ) converges to u0 in L
r(RN ), and then e(t−2ǫ)∆u(., ǫ)

converges to et∆u0 in Lr(RN ). Then we can go to the limit as ǫ → 0 in (4.38), for a.e. x ∈ R
N :

the integral is convergent, then the conclusion follows.

(ii) For Theorem 4.15, we have u(., t) ∈ L1(RN ) for t ≧ ǫ > 0, which gives from (i)

‖u(., t)‖L∞(RN ) ≦ C(t− ε)−σ1,q,N ‖u(., ǫ)‖̟1,q,N

L1(RN )
≦ C(t− ε)−σ1,q,N (

∫

RN

du0)
̟1,q .

As ǫ → 0, we obtain (4.33), (4.35), (4.34) and (4.36) hold with r = 1 and ‖u0‖L1(RN ) replaced by
∫

RN

du0. And

‖∇u(., t)‖Lq (RN ) ≦ Ct−
1
q (

∫

RN

du0)
1
q ,

thus |∇u|q ∈ L∞
loc((0, T );L

1(RN )).

Remark 4.22 As a consequence, under the assumptions of Corollary 4.21, there holds u(., t) ∈
C1
b (R

N ), for any t ∈ (0, T ) , then u can be extended to a global solution of problem (2.5) on QRN ,∞,
see for example [36].
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4.5 Existence and uniqueness results for q ≤ 2

Let u0 ∈ Lr(RN ), r ≧ 1. We first consider the ”subcritical” case

1 < q <
N + 2r

N + r
, equivalently q < 2 and r >

N(q − 1)

2− q
. (4.39)

Theorem 4.23 Let u0 ∈ Lr(RN ), r ≧ 1. Suppose (4.39), and ν > 0. Then any weak Lr
loc solution

u of problem (2.5) satisfies
|∇u|q ∈ L1

loc([0, T ) ;L
r(RN )). (4.40)

And
u is a weak Lr

loc solution ⇐⇒ u is a mild Lr solution.

Proof. Let u be any weak Lr
loc solution. Then from (4.34),

∫ τ

0
‖∇u(., t)‖q

Lqr(RN )
dt =

∫ τ

0
(

∫

RN

|∇u(., t)|qr dx) 1
r dt ≦ C

∫ τ

0
t−( q

2
+σr,q,N (q−1))dt

with C = Cq‖u0‖(1+̟r,q,N (q−1))r

Lr(RN )
, and (4.39) is equivalent to q/2+σr,q,N(q−1) < 1. Since ν > 0, the

estimate (4.36) leads to the same conclusion, because (4.39) is also equivalent to q/2+(q−1)N/2r <
1. Then (4.40) holds. Moreover from Corollary 4.21, u is a mild pointwise solution:

u(., t) = et∆u0(.)− ν

∫ t

0

∫

RN

g(x− y, t− s)|∇u(y, s)|qdyds. (4.41)

Otherwise u ∈ C([0, T ) ;Lr
(

R
N
)

) from Theorem 4.14, and f = |∇u|q ∈ L1
loc([0, T ) ;L

r(RN )), thus
the relation (4.41) holds in Lr(RN ),

u(., t) = (et∆u0)− ν

∫ t

0
e(t−s)∆ |∇u(., s)|q (s)ds in Lr(RN ), (4.42)

that means u is a mild Lrsolution. The converse is clear.

Next we deduce the uniqueness results of Theorem 2.3.

Theorem 4.24 Let u0 ∈ Lr(RN ). Assume (4.39) or q = 2, and ν > 0. Then there exists a unique
weak Lr

loc solution u of problem (2.5). In the first case, u ∈ C((0, T );W 1,qr(RN )).

Proof. (i) Case 1 < q < (N + 2r)/(N + r). From [15, Theorem 2.1], there exists a mild Lr

solution u, and it is unique in the class of mild Lr solutions such that u ∈ L∞
loc((0, T );W

1,qr
(

R
N
)

),
see [15, Lemma 2.2 and Remark 2.5]. Then u is a Lr

loc solution. Let v be any weak Lr
loc solution, thus

u is a mild Lr solution, from Theorem 4.23. From Theorem 4.14, Corollary 4.20, and Theorem 4.23,
v ∈ L∞((0, T );Lr(RN ))∩ L∞

loc((0, T ) ;Cb(R
N )), and |∇v| ∈ L∞

loc((0, T );L
qr
(

R
N
)

) from Theorem
4.23 . Then v ∈ L∞

loc((0, T );W
1,qr

(

R
N
)

), then v = u, and we reach the conclusion. Moreover
u ∈ C((0, T );W 1,qr(RN )), from [15, Theorem 2.1].

(ii) Case q = 2. From [15, Theorem 4.2] there exists a unique solution u such that u ∈
C([0, T ) ;Lr

(

R
N
)

) ∩ u ∈ C2,1(
(

QRN ,∞
)

solution of (1.1) at each point. Then it is a weak Lr
loc

solution. Reciprocally any weak Lr
loc solution u satisfies the conditions above, from Theorem 4.14

and [16].
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Theorem 4.25 Assume 1 < q < (N + 2)/(N + 1), ν > 0. Let u0 ∈ M+
b (R

N ). Then there exists a
unique weak Mloc solution of problem (2.5).

Proof. The existence of a weak semi-group solution was obtained in [12] by approximation.
The existence of a mild M solution was proved in [15, Theorem 2.2], and the two notions are
equivalent from Lemma 4.10. In any case the solution is a weak Mloc solution. Next consider
any solution Mloc solution u. Then u(., t) ∈ L∞(RN ) for any t ∈ (ǫ, T ) by applying Theorem
4.16 on (ǫ/2, T ). Then again we deduce u(., ǫ) ∈ Cb(R

N ), and then (4.37) holds. From Theorem
4.14 we still obtain that u ∈ L∞

loc((0, T );W
1,q
(

R
N
)

). And from the uniquenes on (ǫ, T ), we have
u ∈ C((ǫ, T );W 1,q

(

R
N
)

) from Theorem 4.24. Then u ∈ C((0, T );W 1,q
(

R
N
)

). And u satisfies
(4.26), from Theorem 4.15. Then u is a weak semi-group solution, thus a mild M solution from
Lemma 4.10. Therefore u belongs to the class of uniqueness of [15, Theorem 2.2]. We can also
prove the uniqueness directly: if u1, u2 are two solutions, they are mild M solutions, thus

(u1 − u2)(., t) = ν

∫ t

0
e(t−s)∆(|∇u1(., s)|q − |∇u2(., s)|q)ds

and we know that |∇uj |q ∈ C((0, T );L1(RN )), hence

‖∇(u1 − u2)(., t)‖Lq(RN ) ≦ ν

∫ t

0

∥

∥

∥
∇(e(t−s)∆)

∥

∥

∥

L1(RN )
‖|∇u1(., s)|q − |∇u2(., s)|q‖Lqr(RN ) ds

≦ C

∫ t

0
(t− s)−

1
2 max
j=1,2

‖∇uj(., s)‖q−1
L∞(RN )

‖∇(u1 − u2)(., s)‖Lq(RN ) ds

≦ C

∫ t

0
(t− s)−

1
2 s−(q−1)ϑ1,q,N ‖∇(u1 − u2)(., s)‖Lqr(RN ) ds.

thus we can apply the singular Gronwall Lemma when (q − 1)ϑ1,q,N < 1/2, which means precisely
q < (N + 2)/(N + 1). Then ∇(u1 − u2)(., t) = 0 in Lq

(

R
N
)

, hence u1 = u2.

Finally we give a short proof of the existence result of [15, Theorem 4.1].

Proposition 4.26 Let ν > 0, 1 < q < 2. For any nonnegative u0 ∈ Lr(RN ), r ≥ 1, there exists a
mild pointwise solution u of problem (2.5), and u ∈ C([0, T ) ;Lr

(

R
N
)

).

Proof. Let u0,n = min(u0, n). Then u0,n ∈ Lρ(RN ) for any ρ ≥ r. We choose ρ > N(q−1)/(2−
q), that means q < (N+2ρ)/(N+ρ). From [15, Theorem 2.1], there exists a mild Lρ solution un with
initial data u0,n, and un ∈ C((0, T );C2

b (R
N )) ∩ C2,1(QRN ,T ). The sequence (un) is nondecreasing

from the comparison principle, and un(., t) ≤ et∆u0 ≤ Ct−N/2r ‖u0‖Lr(RN ) . From Corollary 4.20,

(un) converges in C
2,1
loc (QRN ,T ) to a weak solution u of (1.1) in QRN ,T , and u(., t) ≤ et∆u0. Moreover

(|∇un|q) is bounded in L1
loc

(

[0, T ) ;L1
loc(R

N )
)

: indeed for any ξ ∈ D(RN ), with values in [0, 1] , and
any 0 < s < t < T,

∫

RN

un(t, .)ξ
q′dx+ ν

∫ t

s

∫

RN

|∇un|qξq
′

dx ≦ −q′ν
∫ t

s

∫

RN

ξ
1

q−1∇un.∇ξdx+

∫

RN

un(s, .)ξ
q′dx

≦
ν

2

∫ t

s

∫

RN

|∇un|qξq
′

dx+Ct

∫

RN

|∇ξ|q′dx+

∫

RN

un(s, .)ξ
q′dx,
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and un ∈ C([0, T ) ;Lρ
(

R
N
)

); thus we can go to the limit as s→ 0 :

∫

RN

un(t, .)ξ
q′dx+

1

2

∫ t

s

∫

RN

|∇un|qξq
′

dx ≦ Ct

∫

RN

|∇ξ|q′dx+

∫

RN

u0ξ
q′dx.

Thus |∇u|q ∈ L1
loc

(

[0, T ) ;L1
loc(R

N )
)

, hence, from [16, Proposition 2.15], u admits a trace as t→ 0 :
there exists a Radon measure µ0 in R

N , such that u(., t) converges weakly* to µ0. Otherwise et∆u0
converges to u0 in Lr(RN ), thus µ0 ∈ L1

loc(R
N ) and 0 ≤ µ0 ≤ u0; and un ≤ u, thus u0,n ≤ µ0,

hence µ0 = u0. Moreover there exists a function g ∈ Lr(RN ) such that u(., t) ≦ g for small t.
Then the nonnegative function et∆u0−u(., t) converges weakly* to 0, and then in L1

loc(R
N ). Hence

u(., t) converges to u0 in L1
loc(R

N ), then in Lr(Ω) from the dominated convergence theorem. Thus
u ∈ C([0, T ) ;Lr

(

RN
)

). In particular u is a weak Lr
loc solution, then a pointwise mild solution,

from Corollary 4.21.

Remark 4.27 The uniqueness of the solution is still an open problem when u0 ∈ Lr(RN ) and
q ≧ (N + 2r)/(N + r).

4.6 More decay estimates for q < (N + 2r)/(N + r)

Here, we exploit theorem 4.14 to obtain a better decay estimate of the Lr norm when u0 ∈ Lr(RN )
in the subcritical case (4.39), which appears to be new for r > 1. In case r = 1 we find again the
result of [3], proved under the assumption that the energy relation (4.25) holds.

Theorem 4.28 Let r ≧ 1 and assume (4.39), ν > 0. Let u be any non-negative weak r solution
of problem (2.5) in QRN ,∞, with initial data u0 ∈ Lr(RN ). Then there exists C = C(N, q, r) such
that, for any t > 0,

∫

RN

ur(., t)dx ≤ C(

∫

{|x|>
√
t}
ur0(x)dx + t−

ar−N
2 ), a =

2− q

q − 1
. (4.43)

As a consequence, limt→∞ ‖u(t)‖Lr(RN ) = 0 and

r

∫ ∞

0

∫

RN

ur−1|∇u|qdxdt+ r(r − 1)ν

∫ ∞

0

∫

RN

ur−2|∇u|2dxdt =
∫

RN

ur0dx.

Proof. We still consider v = ub with b = (q−1+ r)/q < r, and set E(s) =
∫

RN u
r(., s)dx. Then

E ∈W 1,1((0, T )), from the energy relation (4.14), and for almost any s ∈ (0, T ),

E′(s) = −r(r − 1)ν

∫

RN

|∇u|2ur−2(., s)dx −
∫

RN

|∇u|qur−1(., s)dx ≤ 0.

Next, we set E = E1 +E2 with

E1(s) =

∫

{|x|<2R}
ur(x, s)dx, E2(s) =

∫

{|x|≥2R}
ur(x, s)dx.
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From the Gagliardo-Nirenberg inequality (4.23), we obtain successively, with C = C(N, q, r),

E1(s) =

∫

{|x|<2R}
v

r
b (x, s)dx ≤

(

∫

{|x|<2R}
vq(x, s)dx

)
r
bq

(2R)
1− r

bq

≦ C‖∇v(s)‖
kr
b

Lq(RN )
‖v(s)‖

(1−k)r
b

Lr/b(RN )
R

N(1− r
bq

)

≦
1

2
‖v(s)‖

r
b

Lr/b(RN )
+ C‖∇v(s)‖

kr
b

Lq(RN )
R

N
k
(1− r

bq
)
,

thus
E(s) ≦ C(‖∇v(s)‖

r
b

Lq(RN )
R

N
k
(1− r

bq
)
+ 2E2(s)). (4.44)

Let η ∈ D(RN ) with values in [0, 1] , such that ϕ = 1 in B1, with support in B2, and set η = 1−ϕ,
and ϕl(x) = ϕ(xl ), ηR(x) = η( xR ). Observe that our assumption on q implies q′ > N/r. As in the
first step of theorem 4.14, we obtain for any 0 < σ < s < t < T , and l > 2R,

(
∫

RN

ur(., s)ϕλ
l η

λ
Rdx

)
1
r

≤
(
∫

RN

ur(., σ)ϕλ
l η

λ
Rdx

)
1
r

+ C(s− σ)(R
N
r
−q′ + l

N
r
−q′), (4.45)

with λ = rq′, and C = C(N, q, r, η). As σ → 0 and l → ∞. we deduce

(
∫

RN

ur(x, s)ηRdx

)
1
r

≤
(
∫

RN

ur0(x)ηRdx

)
1
r

+ CsR
N
r
−q′ .

Taking R =
√
t, and setting

ρ = r +
N − rq′

2
=

(N + 2r)− q(N + r)

2(q − 1)
=
ar −N

2
,

we find, with a constant C as above,

E2(s) ≤ A(t) = C

(

∫

{|x|>
√
t}
ur0(x)dx+ t−ρ

)

,

Next, we consider F (s) = E(s) − 2A(t). If there exists t0 ∈ (0, t) such that F (t0) ≤ 0, then
F (s) ≤ 0, ∀s ∈ (t0, t); thus E(t) ≤ 2A(t), by continuity, hence (4.43) holds. Next assume that
F (s) > 0, for any s ∈ (0, t). Since

−F ′(s) ≥ ν

∫

RN

|∇u|qur−1(x, s)dx = ν

∫

RN

|∇v(x, s)|qdx, (4.46)

we find F (s) ≦ C(−F ′(s))r/bqt(1−r/bq)N/2k from (4.44). By integration we get

C(t− s)t
− N

2k
(1− r

bq
)
≦ F (t)−

q−1
r − F (s)

q−1
r .

As s −→ 0 we deduce that F (t) ≦ Ct−ρ, since ρ = r/(q − 1)−N/2k, and (4.43) still holds.
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Remark 4.29 The case r = 1 has been the object of many works, assuming that u0 ∈ L1(RN ) ∩
W 1,∞(RN ). There holds

lim
t→∞

‖u(t)‖L1(RN ) = 0 ⇐⇒ q ≤ (N + 2)/(N + 1),

see [2], [12], [4], [28]. When q < (N + 2)/(N + 1), the absorption plays a role in the asymptotics.
From [10], if lim|x|→∞ |x|a u0(x) = 0, where a = (2 − q)/(q − 1), then u(., t) converges as t → ∞
to the very singular solution constructed in [34], [13]; then

∫

RN u(., t)dx behaves like t−(a−N)/2 for
large t, and estimate (4.43) is sharp. When q > (N + 2)/(N + 1), and u0 ∈ L1(RN ), then u(., t)
behaves as the fundamental solution of heat equation, see [10].

Our result is new when u0 ∈ Lr(RN ), r > 1. When q > (N + 2)/(N + 1), and u0 is bounded
and behaves like |x|−b as |x| → ∞ with b ∈ (a,N), it has been shown that u(., t) behaves as the
selfsimilar solution of the heat equation with initial data |x|−b , see [17]. In that case u0 ∈ Lr(RN )
for any r > N/b and

∫

RN u
r(., t)dx behaves like t−(br−N)/2. Thus (4.43) is sharp as b→ a.

5 The Dirichlet problem in QΩ,T

Here we study equation (1.1) in case of a regular bounded domain Ω, with Dirichlet conditions on
∂Ω× (0, T ), with ν > 0; by homothety we can assume ν = 1:

(DΩ,T )

{

ut −∆u+ |∇u|q = 0, in QΩ,T ,
u = 0 on ∂Ω× (0, T ),

(5.1)

As in section 4, we study the problem with rough initial data, and introduce different notions
of solutions.

5.1 Solutions of the heat equation with L1 data

The regularization method used at Section 4 does not provide estimates up to the boundary. In
this section we use another argument: the notion of entropy solution, introduced in [35], for the
problem







ut −∆u = f, in QΩ,s,τ ,
u = 0 on ∂Ω × (s, τ),
u(., s) = us ≧ 0

(5.2)

when f and us are integrable, that we recall now. For any k > 0 and θ ∈ R, we define as usual the
truncation function Tk and a primitive Θk by

Tk(θ) = max(−k,min(k, θ)), Θk(s) =

∫ r

0
Tk(θ)dθ. (5.3)

Definition 5.1 Let s, τ ∈ R with s < τ, and f ∈ L1(QΩ,s,τ ) and us ∈ L1(Ω). A function u ∈
C([s, τ ] ;L1(Ω)) is an entropy solution of the problem (5.2) if Tk(u) ∈ L2((s, τ) ;W 1,2

0 (Ω)) for any
k > 0, and

∫

ΩΘk(u− ϕ)(., τ)dx −
∫

Ω Θk(us − ϕ(., s)dx +
∫ τ
s 〈ϕt, Tk(u− ϕ)〉dt

+
∫ τ
s

∫

Ω(∇u.∇Tk(u− ϕ)− fTk(u− ϕ)dxdt ≤ 0
(5.4)

for any ϕ ∈ L2((s, τ);W 1,2(Ω)) ∩ L∞ (QΩ,τ ) such that ϕt ∈ L2((s, τ);W−1,2(Ω)).
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Other notions of solutions have been used for this problem, see [8], recalled below. In fact
they are equivalent: here et∆ denotes the semi-group of the heat equation with Dirichlet conditions
acting on L1 (Ω) ,

Lemma 5.2 Let -∞ < s < τ < ∞, f ∈ L1(QΩ,s,τ ), us ∈ L1(Ω) and u ∈ C([s, τ ] ;L1(Ω)),
u(., s) = us. Then the three properties are equivalent:

(i) u ∈ L1((s, τ);W 1,1
0 (Ω)), such that

ut −∆u = f, in D′(QΩ,s,τ ); (5.5)

(ii) u is a mild solution of (5.2), that means, for any t ∈ [s, τ ] ,

u(., t) = e(t−s)∆us +

∫ t

s
e(t−σ)∆f(σ)dσ in L1 (Ω) ; (5.6)

(iii) u is an entropy solution of (5.2).

Such a solution exists, is unique, and will be called weak solution of (5.2).

Proof. It follows from the existence and uniqueness of the solutions of (i) from [5, Lemma 3.4],
as noticed in [8], and of the entropy solutions, see [18].

As a consequence, when u is bounded, we can admit test functions of the form uα :

Lemma 5.3 Let s, τ ∈ R with s < τ, and f ∈ L1(QΩ,s,τ ) and u be any nonnegative bounded weak
solution in QΩ,s,τ of (5.2).

Then, for any α > 0, there holds uα−1 |∇u|2 ∈ L1(QΩ,s,τ ) and

1

α+ 1

∫

Ω
uα+1(., τ))dx + α

∫ ∫

QΩ,s,τ

uα−1 |∇u|2 dxdt = 1

α+ 1

∫

Ω
uα+1(., s))dx +

∫ τ

s

∫

Ω
fuαdxdt.

(5.7)

Proof. We have u ∈ L2((s, τ);W 1,2
0 (Ω)) ∩ L∞ (QΩ,s,τ ) , and ut ∈ L2((s, τ);W−1,2(Ω)) +

L1 (QΩ,s,τ ) . Then any function ϕ ∈ L2((s, τ);W 1,2
0 (Ω)) ∩ L∞ (QΩ,s,τ ) is admissible in equation

(5.5). In particular for any α > 0, we can take ϕ =Mα,δ(u) = (u+δ)α−δα, with δ > 0. Integrating
on [s, τ ] we deduce that

∫ τ

s
< ut, ϕ > +α

∫ ∫

QΩ,s,τ

(u+ δ)α−1 |∇u|2 dxdt =
∫ τ

s

∫

Ω
fMα,δ(u)dxdt.

Let k > 0 such that supQΩ,s,τ
u ≦ k, thus u = Tk(u). The function θ 7→M(θ) = (Tk(θ)+ δ)α − δα is

continuous on R
+and piecewise C1 such that M(0) = 0 and M ′ has a compact support. Denoting

Mα,δ(r) = (u+ δ)α+1/(α+ 1)− δαu, we can integrate by parts from [27, Lemma 7.1], and deduce
that
∫

Ω
Mα,δ(u)(., τ))dx−

∫

Ω
Mα,δ(u)(., s))dx+α

∫ ∫

QΩ,s,τ

(u+δ)α−1 |∇u|2 dxdt =
∫ τ

s

∫

Ω
fMα,δ(u)dxdt;

We can go to the limit as δ → 0 from the Fatou Lemma, and then from the dominated convergence
theorem. Thus (5.7) holds for α > 0.

Remark 5.4 From [27], the notion of entropy solution of (5.2) is also equivalent to the notion of
renormalized solution, that we develop in Section 6. Lemma 5.3 is a special case of a much more
general property of the truncates when u is not necessarily bounded, see Lemma 6.3.
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5.2 Different notions of solutions of problem (DΩ,T )

Definition 5.5 We say that u is a weak solution of the problem (DΩ,T ) if u ∈ C((0, T );L1 (Ω))∩
L1
loc((0, T );W

1,1
0 (Ω)), such that |∇u|q ∈ L1

loc((0, T );L
1 (Ω)) and u satisfies

ut −∆u+ |∇u|q = 0, in D′(QΩ,T ). (5.8)

Next we study the Cauchy-Dirichlet problem







ut −∆u+ |∇u|q = 0, in QΩ,T ,
u = 0 on ∂Ω× (0, T ),
u(x, 0) = u0 ≧ 0

(5.9)

with u0 ∈ Lr (Ω) , r ≧ 1, or only u0 ∈ M+
b (Ω). Here in any case u0 ∈ M+

b (Ω).

Definition 5.6 If u0 ∈ Lr(Ω), r ≧ 1, we say that u is a weak Lr solution of problem (5.9) if it is
a weak solution of (DΩ,T ), such that the extension of u by u0 at t = 0 satisfies u ∈ C ([0, T ) ;Lr(Ω)).

Definition 5.7 For any u0 ∈ M+
b (Ω), we say that u is a weak M solution of problem (5.9) if it

is a weak solution of (DΩ,T ), such that

lim
t→0

∫

Ω
u(., t)ψdx =

∫

Ω
ψdu0, ∀ψ ∈ Cb(Ω). (5.10)

Semi-group type solutions have been introduced in [8], see also [1]. For u0 ∈ M+
b (Ω), we set

et∆u0 =
∫

Ω gΩ(., y, t)du0(y), where gΩ is the heat kernel with Dirichlet conditions on ∂Ω.

Definition 5.8 For any u0 ∈ M+
b (Ω), a function u is a mild solution of problem (5.9) if

u ∈ C((0, T );L1 (Ω)), and |∇u|q ∈ L1
loc([0, T ) ;L

1 (Ω)) and

u(., t) = et∆u0(.) −
∫ t

0
e(t−s)∆|∇u(., s)|qds in L1 (Ω) , (5.11)

Remark 5.9 As it was shown in [8, p.1420], from Lemma 5.2,

u is a mild solution ⇐⇒ u is a weak M solution such that |∇u|q ∈ L1
loc([0, T ) ;L

1 (Ω));

and then u ∈ L1
loc([0, T ) ;W

1,1
0 (Ω)).

Remark 5.10 As in Remark 4.11, the definition of mild solution requires an integrability property
of the gradient up to t = 0, namely |∇u|q ∈ L1

loc([0, T ) ;L
1 (Ω)). The definition of weak solution

only assumes that |∇u|q ∈ L1
loc((0, T );L

1 (Ω)).
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5.3 Decay and regularizing effect

Here Ω is bounded, then the situation is simpler than in R
N : indeed we take benefit of the regu-

larizing effect of the semi-group et∆ associated with the first eigenvalue λ1 of the Laplacian, and
also of the inclusion Lr(Ω) ⊂ L1(Ω).

Lemma 5.11 Let q > 1, and u0 ∈ Lr(Ω), r ≧ 1. 1) Let u be any non-negative weak Lr solution of
problem (5.9).

(i) Then u(., t) ∈ L∞(Ω) for any t ∈ (0, T ) , and

‖u(., t)‖Lr(Ω) ≦ Ce−λ1t‖u0‖Lr(Ω), ‖u(., t)‖L∞(Ω) ≦ Ct−
N
2r e−λ1t‖u0‖Lr(Ω). (5.12)

(ii) Moreover |∇u|q ∈ L1
loc([0, T ) ;L

1 (Ω)), and
∫

Ω
u(., t)dx +

∫ t

0

∫

Ω
|∇u|qdxdt ≦

∫

Ω
u0dx. (5.13)

If r > 1, then ur−1|∇u|q ∈ L1
loc([0, T ) ;L

1 (Ω)) and ur−2|∇u|2 ∈ L1
loc([0, T ) ;L

1 (Ω)), and

1

r

∫

Ω
ur(., t)dx+

∫ t

0

∫

Ω
ur−1|∇u|qdxdt+ (r − 1)

∫ t

0

∫

Ω
ur−2|∇u|2dxdt = 1

r

∫

Ω
ur0dx, (5.14)

As a consequence, uq−1+r ∈ L1
loc(([0, T ) ;W

1,1
0 (Ω)).

2) Let u0 ∈ M+
b (Ω) and u be any non-negative weak M solution of problem (5.9). Then (5.12)

and (5.13) still hold as in case u0 ∈ L1(Ω), where the norm ‖u0‖L1(Ω) is replaced by

∫

Ω
du0. In

particular u is a mild solution.

Proof. 1) (i) Let 0 < ǫ < τ < T. Since u is a weak solution of (DΩ,T ), we can apply Lemma 5.2
with f = −|∇u|q in QΩ,ǫ,τ . Thus u is a mild solution of the problem in QΩ,ǫ,τ : for any t ∈ [ǫ, τ ] ,

u(., t) = e(t−ǫ)∆u(., ǫ) −
∫ t

ǫ
e(t−σ)∆|∇u|qdσ in L1 (Ω) .

therefore u(., t) ≦ e(t−ǫ)∆u(., ǫ). From our assumptions u ∈ C ([0, T ) ;Lr(Ω)), we deduce that
u(., t) ≦ et∆u0 as ǫ→ 0. Then (5.12) follows from the properties of the semi-group et∆.

(ii) The function u is bounded in QΩ,s,τ , thus from Lemma 5.3, for any ρ > 1,

1

ρ

∫

Ω
uρ(., t)dx +

∫ t

ǫ

∫

Ω
uρ−1|∇u|qdxdt+ (ρ− 1)

∫ t

ǫ

∫

Ω
uρ−2|∇u|2dxdt = 1

ρ

∫

Ω
uρ(., ǫ)dx. (5.15)

As ρ→ 1, we deduce that |∇u|q ∈ L1 (QΩ,ǫ,τ ) from the Fatou Lemma, and
∫

Ω
u(., t)dx+

∫ t

ǫ

∫

Ω
|∇u|qdxdt ≦

∫

Ω
u(., ǫ)dx.

As ǫ→ 0 we deduce that |∇u|q ∈ L1 (QΩ,τ ) and (5.13) holds. If r > 1, we can take ρ = r in (5.15)

and obtain (5.14) as ǫ→ 0. Then uq−1+r ∈ L1
loc(([0, T ) ;W

1,1
0 (Ω)) as in the case of RN .

2) The same estimates hold because limǫ→0 ‖u(., ǫ)‖L1(Ω) =

∫

Ω
du0.
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Theorem 5.12 Let q > 1 and u0 ∈ Lr(Ω), r ≧ 1. 1) Let u be any non-negative weak Lr solution
of problem (5.9). Then

‖u(., t)‖L∞(RN ) ≦

{

Ct−σr,q,N ‖u0‖̟r,q,N

Lr(Ω) , C = C(N, q, r), if q 6= N,

Cεt
−(1+ε)σr,N,N ‖u0‖(1+ε)̟r,q,N

Lr(Ω) , ∀ε > 0, Cε = C(N, q, r, ε), if q = N,

(5.16)
where σr,q,N ,̟r,q,N are given at (2.11).

2) Any non-negative weak solution u of (DΩ,T ) satisfies the universal estimate, where C = C(N, q, |Ω|),

‖u(., t)‖L∞(Ω) ≦ Ct−
1

q−1 . (5.17)

Proof. 1) First assume q < N. For any α > 0, setting ρ = 1 + α, and 0 < ǫ ≦ s < t < T,
setting β = 1 + α/q, we obtain, from (5.15),

1

α+ 1

∫

Ω
uα+1(., t)dx+

1

βq

∫ t

s

∫

Ω

∣

∣

∣
∇(uβ)

∣

∣

∣

q
dxdt ≦

1

α+ 1

∫

Ω
uα+1(., s)dx.

Then uβ(., t) ∈ W 1,q
0 (Ω) , since u(., t) ∈ L∞(QΩ,s,τ ) ∩ W 1,1

0 (Ω)). From the Sobolev injection of

W 1,q
0 (Ω) into LNq/(N−q) (Ω),

1

α+ 1

∫

Ω
uα+1(., t)dx +

C(N, q)

βq

∫ t

s
(

∫

Ω
u
β Nq

N−q (., σ)dx)
N−q
N dt ≦

1

α+ 1

∫

Ω
uα+1(., s)dx.

From Lemma 2.1 on [ǫ, T ) with m = q and θ = N/(N − q), we obtain estimates for ǫ < t < T :

‖u(., t)‖L∞(Ω) ≦ C(t− ǫ)−σr,q ,N‖u(., ǫ)‖̟r,q,N

Lr(Ω) , ‖u(., t)‖L∞(Ω) ≦ C(t− ǫ)−
1

q−1 .

and we deduce (5.16) and (5.17) as ǫ → 0. In the case q = N the same conclusion follows from
Lemma 2.1 with any θ > 1. If q > N we proceed as in Theorem 4.16 by applying Lemma 3.4.

2) Let u be any weak solution of (DΩ,T ). Since u ∈ C([ǫ, T ) ;L1(Ω)) for ǫ > 0, we find, for any
t ∈ [ǫ, T ) ,

‖u(., t)‖L∞(Ω) ≦ C(t− ǫ)
− 1

q−1

with C = C(N, q), and deduce (5.17) for any t ∈ (0, T ) as ǫ→ 0.

Remark 5.13 In particular we find again estimate (5.17) obtained in [33] in case q < 2, for
solutions u such that u ∈ C((0, T );L2 (Ω)) ∩ L2((0, T );W 1,2

0 (Ω)), and (u − k)+ is admissible as a
test function in the equation; those conditions imply integrability properties of u|∇u|q. Our result
is valid without any of these conditions.

5.4 Existence and uniqueness results for q ≦ 2

From estimate (5.17), we deduce new convergence results when q ≦ 2:

Corollary 5.14 Assume 1 < q ≦ 2. Then

(i) any weak solution u of problem (DΩ,T ) satisfies u ∈ C2,1 (QΩ,T ) ∩ C1,0
(

Ω× (0, T )
)

;

(ii) for any sequence of weak solutions (un) of (DΩ,T ), one can extract a subsequence converging in
C2,1(QΩ,T ) ∩ C1,0

(

Ω× (0, T )
)

to a weak solution u of (DΩ,T ).
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Proof. (i) From [16, Theorem 2.9], any weak solution u of (DΩ,T ) such that u ∈ L∞
loc((0, T ) ;L

∞(Ω))
satisfies u ∈ C2,1 (QΩ,T ) ∩ C1,0

(

Ω× (0, T )
)

. And we obtain precisely u ∈ L∞
loc((0, T ) ;L

∞(Ω)), at
Theorem 5.12,3.

(ii) Moreover (un) is uniformly bounded in L∞
loc (0, T );L

∞ (Ω)). From [16], there exists υ ∈ (0, 1)
such that, for any 0 < s < τ < T,

‖un‖C(Ω×[s,τ ]) + ‖∇un‖Cυ,υ/2(Ω×[s,τ ]) ≦ CΦ(‖un‖L∞(QΩ,s/2,τ )
) (5.18)

where C = C((N, q,Ω, s, τ, υ), and Φ is an increasing function. The conclusion follows.

Theorem 5.15 Suppose 1 < q < (N + 2)/(N + 1). For any u0 ∈ M+
b (Ω), problem (5.9) admits a

unique weak M solution.

Proof. From [8, Theorem 3.2], [1], for any (possibly signed) u0 ∈ Mb(Ω), problem (5.9) has a
unique mild M solution, and it is nonnegative when u0 ∈ M+

b (Ω). From Lemma 5.11, any weak
M solution is a mild M solution, thus uniqueness holds in this class.

Next assume that u0 ∈ Lr(Ω) and consider the subcritical case (4.39). In [8, Theorem 3.3], it is
proved that there exists a weak Lr solution such that u ∈ Lq

loc([0, T ) ;W
1,qr
0 (Ω)), and it is unique

in this space. The local existence and uniqueness in an interval (0, T1) is obtained by the Banach
fixed point theorem in a ball of radius K1 of the space

XK1(T1) =

{

u ∈ C((0, T1] ,W
1,qr
0 (Ω)) : sup

(0,t1]
tθ(‖u(., t)‖Lqr(Ω) + t

1
2 ‖∇u(., t)‖Lqr(Ω)) <∞

}

where θ = N/2rq′, under the condition

‖u0‖Lr(Ω) +Kq
1T

γ
1 ≦ CK1, where γ = 1− q(θ + 1/2) and C = C(N, q, r,Ω). (5.19)

We prove the uniqueness with no condition of integrability :

Theorem 5.16 Assume that u0 ∈ Lr(Ω) and 1 < q < (N + 2r)/(N + r). Then problem (5.9)
admits a unique weak Lr solution.

Proof. Let ǫ > 0. From Theorem 5.12, u is bounded on (ǫ, T ) for any ǫ ∈ (0, T ). Then
u ∈ C2,1(QΩ,T )∩C1,0(Ω× (0, T )) because q < 2, from [16, Theorem 2.10]. From (2.14), there exists
a function D ∈ C((0,∞) such that for any ǫ > 0 and for t ≧ ǫ

‖∇u(., t)‖L∞(Ω) ≦ D(t− ǫ).

Then |∇u| is bounded in Qǫ,T,Ω for any ǫ > 0. Thus u ∈ C((0, T ),W 1,qr
0 (Ω)). The problem with

initial data u(., ǫ) at time 0 has a unique solution vǫ such that vǫ ∈ C((0, T − ǫ),W 1,qr
0 (Ω)), then

vǫ(., t) = u(., t+ ǫ). Let K1 and T1 such that (5.19) holds. Since ‖u(., ǫ)‖Lr(Ω) ≦ ‖u0‖Lr(Ω), we also

have ‖vǫ(0)‖Lr(Ω) +Kq
1T

γ
1 ≦ CK1, thus for any t ∈ (0, T1)

tθ(‖vǫ(., t)‖Lqr(Ω) + t
1
2 ‖∇vǫ(., t)‖Lqr(Ω)) ≦ K1.
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Going to the limit as ǫ→ 0 from the Fatou Lemma, we obtain

tθ(‖u(., t)‖Lqr(Ω) + t
1
2 ‖∇u(., t)‖Lqr(Ω)) ≦ K1.

Uniqueness follows in (0, T1), and by induction on (0, T ).

Finally we give existence results for any u0 ∈ Lr(Ω), r ≥ 1, extending the results of [8, Theorem
3.4] for u0 ∈ L1(Ω), see also [32] for more general operators. We proceed as in Proposition 4.26.

Proposition 5.17 Let 1 < q ≤ 2. For any nonnegative u0 ∈ Lr(Ω), r ≥ 1, there exists a weak Lr

solution of problem (5.9). And it is unique if q = 2.

Proof. (i) Case q < 2. Let u0,n = min(u0, n). Then for ρ > N(q − 1)/(2 − q), from [8,
Theorem 3.3], there exists a mild solution un with initial data u0,n, and un ∈ C([0, T ) ;Lρ(Ω)) ∩
Lq((0, T );W 1,qρ

0 (Ω) ∩ C2,1 (QΩ,T ) . Then un(., t) ≤ et∆u0, and (un) is nondecreasing and |∇un|q is

bounded in L1
loc

(

[0, T ) ;L1(Ω)
)

from (5.13). From Corollary 4.20, (un) converges in C
2,1
loc (QΩ,T ) to a

weak solution u of (1.1) in QΩ,T . As a consequence, u(., t) ≤ et∆u0 and |∇u|q ∈ L1
loc

(

[0, T ) ;L1(Ω)
)

.
From [16, Proposition 2.11], u(., t) converges weakly* to some Radon measure µ0 on Ω. And et∆u0
converges to u0 in Lr(Ω), thus µ0 ∈ L1

loc(Ω) and 0 ≤ µ0 ≤ u0. Since un ≤ u, there holds u0,n ≤ µ0,
hence µ0 = u0 ∈ Lr(Ω). Also there exists a function g ∈ Lr(Ω) such that u(., t) ≦ g for small t.
Then et∆u0 − u(., t) converges weakly* to 0, and then in L1

loc(Ω). Hence u(., t) converges to u0 in
L1
loc(Ω), then in Lr(Ω) from the dominated convergence theorem. Thus u ∈ C([0, T ) ;Lr (Ω)).

(ii) Case q = 2. As in [15, Theorem 4.2], using the classical transformation v = 1 − e−u, it
can be shown that there exists a unique solution u such that u ∈ C([0, T ) ;Lr (Ω)) ∩C2,1 (QΩ,T ) ∩
C1
(

Ω× (0, T )
)

. Then it is a weak Lr solution. Reciprocally any weak Lr solution u satisfies the
conditions above, from Corollary 5.14 and [16, Theorem 2.17].

6 Regularizing effects for quasilinear Dirichlet problems

Here we extend some results of section 5 to a general quasilinear problem, where u may be a signed
solution. In this section, we suppose Ω is a smooth bounded domain in R

N .

Let p > 1 and A be a Caratheodory function on QΩ,∞×R×R
N such that for any (u, η) ∈ R×R

N ,
and a.e. (x, t) ∈ QΩ,∞,

|A(x, t, u, η)| ≦ C(|η|p−1 + b(x, t)), C > 0, b ∈ Lp′(QΩ,∞), (6.1)

and A is nonnegative operator:

A(x, t, u, η).η ≧ ν |η|p ν ≧ 0, (6.2)

with no monotonicity assumption.

Let q > 1 and g be a Caratheodory function on QΩ,∞ × R
+ × R

N , such that

g(x, t, u, η)u ≧ γ |u|λ+1 |η|q , λ ≧ 0, γ ≧ 0. (6.3)

We say that A is coercive if (6.2) holds with ν > 0, and g is coercive if (6.3) holds with γ > 0.
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We consider the solutions of the Dirichlet problem

(PΩ,T )







ut − div(A(x, t, u,∇u)) + g(x, t, u,∇u) = 0, in QΩ,T ,
u = 0, on ∂Ω × (0, T ),
u(x, 0) = u0,

(6.4)

where u0 ∈ Lr (Ω) , r ≧ 1 or only u0 ∈ Mb(Ω).

6.1 Solutions of quasilinear heat equation with L1 data

First consider the problem in QΩ,s,τ







ut − div(A(x, t, u,∇u)) = f, in QΩ,s,τ ,
u = 0, on ∂Ω × (s, τ),
u(x, s) = us

(6.5)

Let us recall the notion of renormalized solution introduced in [18] for this problem with L1 data,
where the truncations Tk are defined by (5.3):

Definition 6.1 Let s, τ ∈ R with s < τ, and f ∈ L1(QΩ,s,τ ) and us ∈ L1(Ω). A function u ∈
L∞((s, τ);L1(Ω)) is a renormalized solution in QΩ,s,τ of (6.5) if Tk(u) ∈ Lp((s, τ);W 1,p

0 (Ω)) for
any k ≧ 0, and for any S ∈W 2,∞(R) such that S′ has a compact support,

(S(u))t − div(A(x, t, u,∇u)S′(u)) + S′′(u)(A(x, t, u,∇u).∇u − S′(u)f = 0 in D′(QΩ,s,τ ), (6.6)

and u(s) = us, and

lim
n→∞

∫ ∫

QΩ,s,τ∩{n≦u≦n+1}
|∇u|pdxdt = 0, (6.7)

Remark 6.2 The initial condition takes sense from [18], because S(u) lies in the set

E =
{

ϕ ∈ Lp((0, T );W 1,p
0 (Ω)) : ϕt ∈ Lp′((0, T );W−1,p′(Ω)) + L1 (QΩ,T )

}

(6.8)

and E ⊂ C([0, T ] ;L1(Ω)). Any function ϕ ∈ Lp((0, T );W 1,p
0 (Ω)) ∩ L∞ (QΩ,T ) can be chosen as

a test function in equation (6.6). Moreover, from [27, Lemma 7.1], v = S(u) satisfies for any
ψ ∈ C∞([s, τ ]× Ω̄) the integration formula

∫ τ

s
< vt,M(v)ψ >=

∫

Ω
M(v(., τ))ψ(., τ)dx −

∫

Ω
M(v(., s))ψ(., s)dx −

∫ τ

s

∫

Ω
ψtM(v)dxdt, (6.9)

for any functionM continuous and piecewise C1 such thatM(0) = 0 andM ′ has a compact support,
where M(r) =

∫ r
0 M(θ)dθ.

A main point in the sequel is the choice of test functions: here we approximate |u|α−1 u for
α > 0 by truncation. In the following lemma, we solve some technical difficulties arising because
the truncates are not smooth enough to apply the integration formula, and moreover we do not
assume α ≧ 1.
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Lemma 6.3 Let s, τ ∈ R with s < τ, and f ∈ L1(QΩ,s,τ ). Let u ∈ C([s, τ ] ;L1(Ω)) be any
nonnegative renormalized solution in QΩ,s,τ of (6.5), with us = u(., s). For any α > 0 and k > 0,
we set

Tk,α(r) =
∫ r

0
|Tk(θ)|α−1 Tk(θ)dθ.

Then |Tk(u)|α−1 A(x, t, u,∇u).∇(Tk(u)) ∈ L1(QΩ,s,τ ) and
∫

Ω
Tk,α(u)(., τ))dx + α

∫ ∫

QΩ,s,τ

|Tk(u)|α−1 A(x, t, u,∇u).∇(Tk(u))dxdt

=

∫

Ω
Tk,α(u)(., s))dx +

∫ τ

s

∫

Ω
f |Tk(u)|α−1 Tk(u)dxdt. (6.10)

Proof. Let α > 0, k > 0 be fixed, and for any n ≧ 2, and θ ∈ R,

Sn(θ) =

∫ θ

0
(1− |T1(s− Tn(s)|)ds, n ≧ 2.

This function, introduced in [18], is still a truncation, smoother than Tn+1, such that 0 ≦ Sn(θ)θ ≦
Tn+1(θ)θ, supp S′

n ⊂ [−(n+ 1), n + 1], S′′
n = χ(−n,−n−1)∪(n,n+1), and Sn(Tk(θ)) = Tk(θ) for any

n > k. Let δ ∈ (0,min(1, k)), and n > k. We set

Tδ,k,α(θ) = ((Tk(|θ|) + δ))α − δα)signθ, Tδ,k,α(r) =
∫ r

0
Tδ,k,α(θ)dθ.

We can take in (6.6) S = Sn and ϕ = Tδ,k,α(u) = Tδ,k,α(Sn(u)) as a test function. We obtain

∫ t

s
< (Sn(u))t, ϕ > +

∫ t

s

∫

Ω
S′
n(u)A(x, t, u,∇u).∇ϕdxdt

=

∫ t

s

∫

Ω
S′
n(u)fϕdxdt−

∫ t

s

∫

Ω
S′′
n(u)(A(x, t, u,∇u).∇u)ϕdxdt.

then from (6.9), we deduce

α

∫ ∫

QΩ,s,τ

(Tk(|u|) + δ)α−1A(x, t, u,∇u).∇(Tk(u))dxdt

=

∫

Ω
Tδ,k,α(Sn(u)(., s))dx −

∫

Ω
Tδ,k,α(Sn(u)(., τ))dx

+

∫ τ

s

∫

Ω
S′
n(u)fϕdxdt −

∫ t

s

∫

Ω
S′′
n(u)(A(x, t, u,∇u).∇u)ϕdxdt

First we make δ → 0. Notice that |Tδ,k,α(θ)| ≦ (k+1)α |θ| for any θ ∈ R, and Sn(u) ∈ C([0, T ] ;L1(Ω)),
and S′

n is bounded. Thus we can go to the limit in the right hand side. In the left hand side, from
the positivity of A, and the Fatou Lemma we deduce that

Tk(|u|)α−1A(x, u,∇u).∇Tk(u) ∈ L1(QΩ,s,τ ).

Moreover we can apply dominated convergence theorem. Indeed A(x, u,∇u).∇Tk(u) ∈ L1(QΩ,s,τ )

from (6.1), since Tk(u) ∈ Lp((s, τ);W 1,p
0 (Ω)), and

(Tk(|u|) + δ)α−1A(x, t, u,∇u).∇(Tk(u)) ≦ max(Tα−1
k (|u|), (k + 1)α−1)A(x, u,∇u).∇(Tk(u)).
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Hence the same relation holds with δ = 0, with T0,k,α(r) = Tα−1
k (|u|)Tk(u) :

∫

Ω
Tk,α(Sn(u)(., τ))dx −

∫

Ω
Tk,α(Sn(u)(., s))dx + α

∫ t

s

∫

Ω
Tα−1
k (|u|)A(x, u,∇u).∇(Tk(u))dxdt

=

∫ τ

s

∫

Ω
S′
n(u)fT0,k,α(u)dxdt−

∫ t

s

∫

Ω
S′′
n(u)(A(x, t, u,∇u).∇u)T0,k,,α(u)dxdt.

Then we make n→ ∞. Since u ∈ C([0, T ] ;L1(Ω)), for any t ∈ [s, τ ] , we find

lim
n→∞

∫

Ω
Tk,α(Sn(u)(., t))dx =

∫

Ω
Tk,α(u(., t))dx;

moreover

lim
n→∞

∫ t

s

∫

Ω
S′′
n(u)(A(x, t, u,∇u).∇u) T0,k,α(u)dxdt = 0,

from (6.7), (6.1). Finally

lim
n→∞

∫ τ

s

∫

Ω
S′
n(u)fT0,k,,α(u)dxdt =

∫ τ

s

∫

Ω
fT0,k,,α(u)dxdt,

since S′
n(u) → 1 a.e. and is uniformly bounded. Then (6.10) follows.

6.2 Notion of solutions of problem (PΩ,T )

Definition 6.4 We say that u is a renormalized solution of problem (PΩ,T ) if:

(i) u ∈ C((0, T );L1(Ω)), Tk(u) ∈ Lp
loc((0, T );W

1,p
0 (Ω)) for any k ≧ 0, and g(x, u,∇u) ∈ L1

loc((0, T );L
1(Ω));

(ii) for any 0 < s < τ < T, u is a renormalized solution of problem

{

ut − div(A(x, t, u,∇u)) + g(x, t, u,∇u) = 0, in QΩ,s,τ ,
u = 0, on ∂Ω× (0, T ),

with initial data u(., s);

(iii) for u0 ∈ Lr(Ω), the extension of u by u0 at time 0 belongs to C([0, T ) ;Lr(Ω)); for u0 ∈ Mb(Ω),
there holds

lim
t→0

∫

Ω
u(., t)ψdx =

∫

Ω
ψdu0, ∀ψ ∈ Cb(Ω). (6.11)

Remark 6.5 Recall that ∇u is defined by ∇u = ∇(Tk(u)) on the set |u| ≤ k. The assumption on
g means that, for any 0 < s < τ < T,

∫

QΩ,s,τ

|g(., u,∇u)| dxdt =
∞
∑

k=1

∫

QΩ,s,τ∩{k−1≦|u|≦k}
|g(., u,∇(Tk(u))| dxdt <∞.

We first prove decay properties of the solutions.
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Theorem 6.6 Let p, q > 1, and A and g satisfying (6.1) (6.2) and (6.3).

1) Let u0 ∈ Lr(Ω), r ≧ 1 and u be any renormalized solution of (PΩ,T ). Then for any t ∈ [0, T ) ,

∫

Ω
|u|r (., t)dx ≦

∫

Ω
|u0|r dx. (6.12)

Moreover if r > 1, or if g is coercive, then γ |u|λ+r−1 |∇u|q + ν |u|r−2 |∇u|p ∈ L1
loc([0, T ) ;L

1 (Ω)),
and
∫

Ω
|u|r (., t)dx+ rγ

∫ t

0

∫

Ω
|u|λ+r−1 |∇u|qdxdt+ r(r − 1)ν

∫ t

0

∫

Ω
|u|r−2 |∇u|pdxdt ≦

∫

Ω
|u0|r dx.

(6.13)
2) Let u0 ∈ M+

b (Ω) and u be any nonnegative renormalized solution of (PΩ,T ) of problem (5.9).
Then the same conclusions hold as in case u0 ∈ L1(Ω), where the norm ‖u0‖L1(Ω) is replaced by
∫

Ω
du0.

Proof. 1) Let 0 < s < t < T. Then for any α > 0, any k > 0, from Lemma 6.3,

∫

Ω
Tk,α(u)(., τ))dx + α

∫ t

s

∫

Ω
|Tk(u)|α−1 A(x, t, u,∇u).∇(Tk(u))dxdt

=

∫

Ω
Tk,α(u)(., s))dx −

∫ τ

s

∫

Ω
|Tk(u)|α−1 Tk(u)g(., u,∇u)dxdt.

And |Tk(u)|α−1 Tk(u)g(., u,∇u) ≥ γ |Tk(u)|α+λ |∇Tk(u)|q from (6.3). Therefore
∫

Ω Tk,α(u)(., t)) is
decreasing for any k, α > 0, and

∫

Ω
Tk,α(u)(., τ))dx + γ

∫ t

s

∫

Ω
|Tk(u)|α+λ |∇Tk(u)|q dxdt+ αν

∫ t

s

∫

Ω
|Tk(u)|α−1 |∇Tk(u)|p dxdt

≦

∫

Ω
Tk,α(u)(., s))dx. (6.14)

• If r > 1, we can take α = r − 1 > 0 in (6.14) and get

∫

Ω
Tk,r−1(u)(., t))dx + γ

∫ t

s

∫

Ω
|Tk(u)|r−1+λ |∇Tk(u)|q dxdt+ αν

∫ t

s

∫

Ω
|Tk(u)|r−2 |∇Tk(u)|p dxdt

≦

∫

Ω
Tk,r−1(u)(., s))dx ≦

1

r

∫

Ω
|u|r (., s)dx. (6.15)

Since u ∈ C([0, T ) ;Lr(Ω)) we can go to the limit as k → ∞, and s → 0; we obtain that
γ |u|r−1+λ |∇u|q and αν |u|r−2 |∇u|p belong to L1

loc

(

[0, T ) ;L1(Ω)
)

; and for any t ∈ (0, T ) ,

∫

Ω
|u|r (., t)dx+ rγ

∫ t

0

∫

Ω
|u|r−1+λ |∇u|q dxdt+ r(r − 1)ν

∫ t

0

∫

Ω
|u|r−2 |∇u|p dxdt ≦

∫

Ω
|u0|r dx.

• If r = 1, we take any α > 0 in (6.14); notice that

|Tk(θ)|α+1

α+ 1
≦ Tk,α(θ) ≦ kα |θ| , (6.16)
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for any θ > 0. Then
∫

Ω
|Tk(u)|α+1 (., t))dx + (α+ 1)γ

∫ t

s

∫

Ω
|Tk(u)|α+λ |∇Tk(u)|q dxdt ≦ (α+ 1)kα

∫

Ω
|u| (., s)dx.

Going to the limit as α→ 0, we deduce
∫

Ω
|Tk(u)| (., t))dx + γ

∫ t

s

∫

Ω
|Tk(u)|λ |∇Tk(u)|q dxdt ≦

∫

Ω
|u| (., s)dx; (6.17)

and then as s→ 0 we find
∫

Ω
|Tk(u)| (., t))dx + γ

∫ t

s

∫

Ω
|Tk(u)|λ |∇Tk(u)|q dxdt ≦

∫

Ω
|u0| dx, (6.18)

and finally as k → ∞, we obtain that
∫

Ω |u| (., t)dx ≦
∫

Ω |u0| dx. Moreover if γ > 0, we find
∫

Ω
|u| (., t)dx + γ

∫ t

0

∫

Ω
|u|λ |∇u|qdxdt ≦

∫

Ω
|u0| dx,

thus (6.13) still holds with r = 1.

2) We still find (6.17). And lims→0

∫

Ω u(., s)dx =

∫

Ω
du0 from (6.11), hence the conclusion.

Next we deduce L∞ estimates, in particular a universal one.

Theorem 6.7 Let p, q > 1, and A and g satisfying (6.1) (6.2) and (6.3). Let u0 ∈ Lr(Ω), r ≧ 1,
and u be any renormalized solution of (PΩ,T ).

(i) If g is coercive, then

‖u(., t)‖L∞(Ω) ≦

{

Ct−σr,q,λ‖u0‖̟r,q,N,λ

Lr(Ω) , C = C(N, q, r, λ, γ), if q 6= N,

Cεt
−(1+ε)σr,n,λ‖u0‖̟r,q,N,λ

Lr(Ω) , Cε = C(N, q, r, λ, γ, ε), if q = N,
(6.19)

where

σr,q,N,λ =
1

rq
N + λ+ q − 1

=
N

rq
̟r,q,N,λ.

Moreover
‖u(., t)‖L∞(Ω) ≦ Ct−

1
q−1+λ , C = C(N, q, λ, |Ω|). (6.20)

(ii) If A is coercive and r > (2− p)N/p, in particular if p > 2N/(N + 1), then

‖u(., t)‖L∞(Ω) ≦

{

Ct−σr,p,N,−1‖u0‖̟r,p,N?−1

Lr(Ω) , C = C(N, p, r, ν,Ω), if p 6= N,

Cεt
−(1+ε)σr,N,N,−1‖u0‖̟r,p,N,−1

Lr(Ω) , Cε = C(N, p, r, ν,Ω, ε), if p = N,
(6.21)

where

σr,p,N,−1 =
1

rp
N + p− 2

=
N

rp
̟r,p,N,−1.

Moreover if p > 2, then

‖u(., t)‖L∞(Ω) ≦ Ct−
1

p−2 , C = C(N, p, |Ω|). (6.22)

(iii) The same conclusions hold if u is nonnegative and u0 ∈ M+
b (Ω), as in case u0 ∈ L1(Ω), where

the norm ‖u0‖L1(Ω) is replaced by

∫

Ω
du0. In particular (6.22) holds for p > 2.
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Proof. (i) Let 0 < s < t < T . Since g is coercive, from Theorem 6.6, for any α ≧ 0 such that
|u|α+1 (., s) ∈ L1(Ω), there holds

∫

Ω
|u|α+1 (., t)dx+ (α+ 1)γ

∫ t

s

∫

Ω
|u|λ+α |∇u|qdxdt ≦

∫

Ω
|u|α+1 (., s)dx,

from (6.13); in particular

∫

Ω
|Tk(u)|α+1 (., t)dx + (α+ 1)γ

∫ t

s

∫

Ω
(Tk(u))

λ+α |∇Tk(u)|q dxdt ≦
∫

Ω
|u|α+1 (., s)dx.

And |u|λ+α |∇u|q = |∇(|u|β−1 u)|q with β = 1 + (α + λ)/q ≧ 1. Then |∇((|u|β−1 u)(., t))|, and also
|∇((|Tk(u)|β−1 Tk(u))(., t))| belong to Lq(Ω) for almost any t ∈ (0, T ) . Since |Tk(u)|β−1 Tk(u)(., t) ∈
L∞(Ω), it follows that |Tk(u)|β−1 Tk(u)(., t) ∈ W 1,q (Ω). Moreover Tk(u)(., t) ∈ W 1,p

0 (Ω)), hence

|Tk(u)|β−1 Tk(u)(., t) ∈W 1,q
0 (Ω) . If q < N, we deduce

∫

Ω
|Tk(u)|α+1 (., t)dx + γ

(α+ 1)C(N, q)

βq

∫ t

s
(

∫

Ω
|Tk(u)|β

Nq
N−q (., σ)dx)

N−q
N dσ ≦

∫

Ω
|u|α+1 (., s)dx.

Going to the limit as k → ∞, we find

∫

Ω
|u|α+1 (., t)dx + γ

(α+ 1)C(N, q)

βq

∫ t

s
(

∫

Ω
|u|β

Nq
N−q (., σ)dx)

N−q
N dσ ≦

1

α+ 1

∫

Ω
|u|α+1 (., s)dx.

Then we can apply Lemma 2.1 on [ǫ, T ), with m = q and θ = N/(N − q); indeed (2.1) is satisfied,
since λ ≧ 0; we deduce the estimate for [ǫ, T ) ,

‖u(., t)‖L∞(Ω) ≦ C(t− ǫ)−σr,q,N,λ‖u(., ǫ)‖̟r,q,N,λ

Lr(Ω) ,

with C = C(N, q, r, λ, γ,Ω). Going to the limit as ǫ → 0, we get (6.20), and (6.19) for u0 ∈ Lr(Ω),
and the analogous when u0 ∈ M+

b (Ω). In case q ≧ N we proceed as in Theorem 5.12.

(ii) Assume that A is coercive. Then for any α > 0,

∫

Ω
Tk,α(u)(., t))dx + αν

∫ t

s

∫

Ω
|Tk(u)|α−1 |∇Tk(u)|p dxdt ≦

∫

Ω
Tk,α(u)(., s))dx,

from (6.14). First assume p < N. From the Sobolev injection of W 1,p
0 (Ω) into LNp/(N−p) (Ω), we

deduce

1

α+ 1

∫

Ω
|u|α+1 (., t)dx+ αν

C(N, p)

kp

∫ t

s
(

∫ k Np
N−p

Ω
|u| (., σ)dx)N−p

N dt ≦
1

α+ 1

∫

Ω
|u|α+1 (., s)dx,

with k = 1 + (α− 1)/p.

First suppose r > 1; then we start from α0 = r − 1 > 0, and we can apply Lemma 2.1
with C0 = (r − 1)νC(N, p), m = p, θ = N/(N − p) and λ = −1; indeed (2.1) is satisfied, since
r > N(2− p)/p.
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Next suppose r = 1. Then 1 > (2− p)N/p, thus p− 1 + p/N > 1. For any α > 0,

∫

Ω
|Tk(u)|α+1 (., t))dx + α(α + 1)ν

∫ t

s

∫

Ω
|Tk(u)|α−1 |∇Tk(u)|p dxdt ≦ (α+ 1)kα

∫

Ω
|u| (., s)dx.

Taking α = 1, we get from (6.12),

ν

∫ t

s

∫

Ω
|∇Tk(u)|p dxdt ≦ k

∫

Ω
|u| (., s)dx ≦ k

∫

Ω
|u0| dx.

And from (6.12), u ∈ L∞ ((s, T );L1 (Ω)
)

. From standard estimates, there holds u ∈ Lρ(QΩ,s,t) for
any ρ ∈ (1, p − 1 + p/N) , see [19]. Then |u|ρ (., t) ∈ L1 (Ω) for almost any t ∈ (0, T ) . Hence we can
apply Lemma 2.1 on [ǫ, T ) for ǫ > 0, with the same parameters, after fixing such a ρ = ρp,N such
that ρN(2− p)/p < 1. We obtain that

‖u(., t)‖L∞(Ω) ≦ C(t− ǫ)−σ1,p,−1‖u(., ǫ)‖̟1,p,−1

L1(Ω)
,

where C = C(N, pρp,N ) = C(N, p); finally we go to the limit as ǫ→ 0 because u ∈ C([0, T ] ;L1(Ω)).
Estimate (6.22) follows, since −1 + p− 1 > 0.

If p = N, we proceed as above, applying Lemma 2.1 with m = N, λ = −1 and θ > 1 arbitrary.
Next assume p > N. In case r > 1, there holds, for any t ∈ (0, T ),

r(r − 1)
ν

κp

∫ t

0

∫

RN

|∇(|u|κ)|pdxdt ≦
∫

RN

|u0|r dx,

where κ = 1 + (r − 2)/p > 0. From Lemma 3.4, applied to v = |u|κ , with m = p, 1/k = 1 + r(p−
N)/Npκ, we obtain

‖u(., t)‖
κp
k

L∞(R) ≦ C ‖u(., t)‖
κ((1−k)p

k

Lr(R)

∫

R

|∇(|u|κ)|pdxdt;

and by integration, with a new constant C = C(N, p, r, ν),

t ‖u(., t)‖
κp
k

L∞(R) ≦ C ‖u0‖
r+

κ((1−k)p
k

Lr(RN )
,

which is precisely (6.21). In case r = 1, we choose ρ = p ∈ (1, p− 1 + p/N) , and obtain from
above, for any 0 < ǫ < s < t < T,

‖u(., t)‖L∞(R) ≦ C(t− s)−σ1,p,p,−1‖u(., s)‖̟1,p,N,−1

Lρ(R) ≦ C(t− ǫ)−σ1,p,p,−1‖u(., s)‖
̟1,p,N,−1

p′

L∞(R) ‖u0‖
̟1,p,N,−1

p

L1(R)
,

where C = C(N, p, ν). From Lemma 3.1, we deduce precisely

‖u(., t)‖L∞(R) ≦ C(t− ǫ)−σ1,p,p−1‖u0‖̟1,p,N,−1

L1(R)
,

and we conclude as ǫ→ 0.
(iii) We obtain the estimates on (ǫ, T ) as above and go to the limit as ǫ→ 0.
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Remark 6.8 Our results apply in particular to the problem






ut − div(A(x, t, u,∇u)) = 0, in QΩ,T ,
u = 0, on ∂Ω× (0, T ),
u(x, 0) = u0

Thus we find again and improve the estimates of [33, Theorem 5.3], with less regularity on the solu-
tions: those estimates were proved for solutions u ∈ C([0, T ) ;Lr(Ω)) such that u ∈ Lp((0, T ) ;W 1,p

0 (Ω))∩
C([0, T ) ;L2(Ω)). The notion of renormalized solutions, equivalent to the notion of entropy solutions
of [35] (see [27]), is weaker. Moreover our results in case p > N are optimal.

Remark 6.9 The extension of results of section 4 to the case of equation of type (1.2) in the case
Ω = R

N will be treated a further article.

7 Appendix

Proof of Lemma 4.10. (i) Let u be a mild M solution. Then clearly (4.10) holds. Moreover for
any ψ ∈ C0

(

R
N
)

, from the assumption on the gradient,

< et∆u0, ψ >=< u0, e
t∆ψ >=

∫

Rn

et∆ψdu0 =

∫

RN

(u(., t) +

∫ t

0
e(t−s)∆|∇u(., s)|qds)ψdx

The relation extends to any ϕ ∈ Cb

(

R
N
)

: we can assume that ϕ ≧ 0; from the Beppo-Levi theorem,

∫

RN

et∆ϕdu0 =

∫

RN

u(., t)ϕdx +

∫

RN

(

∫ t

0
e(t−s)∆|∇u(., s)|qds)ϕdx

=

∫

RN

u(., t)ϕdx +

∫ t

0

∫

RN

|∇u|qϕdxds,

since the measure is bounded. From the integrability of the gradient and the dominated convergence
theorem in L1(RN , du0), we deduce

lim
t→0

∫ t

0

∫

RN

|∇u|qϕdxds = 0, lim
t→0

∫

RN

et∆ϕdµ0 =

∫

RN

ϕdµ0,

since
∥

∥et∆ϕ
∥

∥

L∞(RN )
≤ ‖ϕ‖L∞(RN ) and e

t∆ϕ converges to ϕ everywhere as t→ 0; thus (4.11a) holds.

(ii) Let u be a weak semi-group solution. Then obviously u ∈ Cb((0, T );L
1
(

R
N
)

). As ǫ → 0,
we have

lim
ǫ→0

∫ t

ǫ
e(t−s)∆|∇u(., s)|qds =

∫ t

0
e(t−s)∆|∇u(., s)|qds in L1(RN ).

Then

lim
ǫ→0

e(t−ǫ)∆u(., ǫ) = u(., t) +

∫ t

0
e(t−s)∆|∇u(., s)|qds in L1(RN ).

Moreover (4.11a) entails that that u(., ǫ) → u0 in S ′(RN ) and

lim
ǫ→0

e(t−ǫ)∆u(., ǫ) = et∆u0 in S ′(RN ); (7.1)
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indeed for any ϕ ∈ S(RN ),

∣

∣

∣
< e(t−ǫ)∆u(., ǫ)− et∆u0, ϕ >

∣

∣

∣
≤
∣

∣< et∆(u(., ǫ) − u0(.), ϕ >
∣

∣+

∣

∣

∣

∣

∫

RN

(u(x, ǫ)((e(t−ǫ)∆ − et∆)ϕ)(x)dx

∣

∣

∣

∣

≤
∣

∣< et∆(u(., ǫ) − u0(.), ϕ >
∣

∣

+ ‖u(., ǫ)‖L1(RN )

∥

∥

∥
(e(t−ǫ)∆ − et∆)ϕ

∥

∥

∥

L∞(RN )
)

and et∆is continuous on S(RN ). Hence, for any ϕ ∈ S(RN ), we get

< et∆u0, ϕ >=

∫

Rn

u(., t)ϕdx +

∫

Rn

(

∫ t

0
e(t−s)∆|∇u(., s)|qds)ϕdx

which extends to any ϕ ∈ C0(R
N ) by density. Thus (4.9) follows.
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