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In this article we study a class of heat equations involving a nonlinear gradient absorption term.
We are mainly concerned by the nonnegative solutions of the viscous parabolic Hamilton-Jacobi

L™ estimates and uniqueness results for nonlinear parabolic
equations with gradient absorption terms

Marie Francoise BIDAUT-VERON* Nguyen Anh DAOf

Abstract

We study the nonnegative solutions of the viscous Hamilton-Jacobi problem

ug — vAu+ [Vul|? =0,
u(0) = wo,

in Qo1 = Q x (0,T), where ¢ > 1,v 2 0,T € (0,00], and Q = RY or Q is a smooth bounded
domain, and ug € L"(Q),r = 1, or ug € My(€2). We show L decay estimates, valid for any
weak solution, without any conditions as |x| — oo, and without uniqueness assumptions. As a
consequence we obtain new uniqueness results, when ug € My(R2) and ¢ < (N +2)/(N + 1),
or ug € L™() and ¢ < (N + 2r)/(N + r). We also extend some decay properties to quasilinear
equations of the model type

ur — Apu+ > u|Vul? =0

where p > 1,\ 2 0, and u is a signed solution.

Keywords Viscous Hamilton-Jacobi equation; quasilinear parabolic equations with gradient
terms; regularity; decay estimates; regularizing effects; uniqueness results.

A.M.S. Subject Classification 35K15, 35K55, 35B33, 35B65, 35D30

Introduction

equation

in Qor=0x(0,T), T < oo, where ¢ > 1,v = 0, and Q = RY or Q is a smooth bounded domain

ur — vAu+ [Vul? =0

of RV,
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We study the Cauchy problem in RY and the Cauchy-Dirichlet problem when € is bounded,
with initial data u(.,0) = up = 0, where ug € L"(Q2),r = 1, or g is a bounded Radon measure on
Q.

We also consider the (signed) solutions of quasilinear equations of the type
u — vApu + lu M u|Vul? =0 (1.2)
where p > 1 and A, is the p-Laplacian, and more generally
up — div(A(z, t,u, Vu)) + g(z,u, Vu) =0 (1.3)
with natural growth conditions on the function A, and nonnegativity conditions
Al tum)m Zvinl?,  glaunu 2y Vult yZ0,r 20,420,  (14)

without monotonicity assumption.

In the sequel we give some decay estimates, under very few assumptions on the solutions. Then
from Moser’s technique, we deduce regularizing effects : L™ estimates, in terms of ug, and universal
estimates when () is bounded. We show that two types of regularizing effect can occur: the first
one is due to the gradient term |Vu|? (when v > 0), the second one is due to the operator itself
(when v > 0).

A part of these estimates are well known for equation (1.1) when the solutions can be approx-
imated by smooth solutions, or satisfy growth conditions as |z| — co when Q = R, for example
semi-group solutions. Our approach is different, and our results are valid for all the solutions of
the equation in a weak sense: in the sense of distributions for equation (1.1), in the renormalized
sense for equation (1.3). And we make no assumption of uniqueness. In the case of equation (1.1)
in RV, we require no condition as |z| = oo, all our assumptions are local.

As a consequence we deduce new uniqueness results for equation (1.1) in RY or in a bounded
domain €.

2 Main results

We denote by M, (€2) the set of bounded Radon measures in €2, and M,/ (2) the cone of nonnegative
ones.

We set Qq s = x (s,7), for any 0 £ s < 7 = 00, thus Qo1 = Qa.0.7-

As usual, for any # = 1 we note by 8’ = 6/(6 — 1) the conjugate of 6.

In Section 3, we give some key tools for obtaining regularizing properties. The main one is
an iteration property based of Moser’s method, inspired by [38]:

Lemma 2.1 Let m > 1,0 >1 and A € R and Cy > 0. Let v € C([0,T);L},.(Q)) be nonnegative,
and vo = v(z,0) € L"(Q) for some r = 1 such that

r>0'(1—m—M\). (2.1)



If r > 1 we assume that for any 0 < s <t <T and any o = r — 1, there holds

1
a+1

C ¢ 1 1
v (Lt dac—i——o/ /vﬁme L T)dz)odr < —/ v, s)dz, 2.2
[ottnae+ S [ ([ ominaniar s — [ o (2.2

where B = () =14 (a+ A\) /m, and the right-hand side can be infinite.
If r =1 we make one of the two following assumptions:
(H1) (2.2) holds for any o 2 0,

(Ha) [qu(.t)de < [qvodx for any t € (0,T), and vog € LP(Q) for some p > 1 such that
pf' (1 —m —X) <1 and (2.2) holds for any o = p — 1.

Then there exists C > 0, depending on N,m,r,\,Cy, and possibly p, such that for any t € (0,T),

[0(s )l poe ) S CETrmx g ||, (2.3)
where . ”
Or,m,\,0 = —TWr,m,\,0- (24)

%—i—)\—i—m—l: r

This Lemma allows to obtain L estimates for the solutions of equation (1.1), when ¢ < N,
or 2 < N , and for equation (1.2) when p £ N . In the other cases the L™ estimates follow from
the Gagliardo-Nirenberg inequality, see Lemma 3.4. Moreover we deduce universal L> estimates
when €2 is bounded, see Lemma 3.3.

In Section 4 we study the Cauchy Hamilton-Jacobi problem in R :

{ ug — vAu+ |Vul? =0, in Qgw 7, (2.5)

u(z,0) =ug =0 in RV,

This equation is the objet of a huge literature, see [2], [12], [7], [15], [36], and the references therein,
and also [7], [14], [28].

The first studies concern smooth initial data up € CZ (RY) . From [2], (2.5) has a unique global
solution u € C>1 (RN x [0, 00)), and u satisfies decay properties:

[ Ol oo @y = o]l oo mavy »
VU, )l oo vy S [[Vtol| oo vy -

Estimates of the gradient have been obtained for this solution, by using the Bersnstein technique,
which consists in computing the equation satisfied by |Vu|? : first from [31],

IVuls )l @y < 71 lluoll poo )

then from [12], when v > 0,

1
ol

1
_1 o
HV(uq )('7t)HL°°(RN) = C(Q7V)t 2 HUOHZOO(RN)77 (2'6)



1

— 1) _1 t~lu(.,t
H ut a, thatis |Vu(,t)|? < £ (1)
L= (RN) q qg—1

1
7

“)(1)

If one only assumes ug € C,, (R™), then (2.5) still has a unique solution u such that u € C’Q’l(QRNm)
and v € C(RY x [0,00) N L®(RY x (0,00)) see [29], and estimates (2.6) and (2.7) are still valid,
from [7].

In case of rough initial data ug € M (RY) or u € L"(RY), r 2 1, assuming v > 0, the solutions
have been searched in an integral form

e

[IA

. a.ein RV, (2.7)

t
u(.,t) = ePug(.) — 1// et =2 V(. 5)|%ds, (2.8)
0

involving the semi-group of heat equation e*®. Existence results hold in corresponding classes of
solutions, involving integral conditions on the gradient in space and time, of global type:

o Ifug € M (RY) and 1 < ¢ < (N+2)/(N +1), the existence of a solution u € C*H(Qgn ) is
proved in [12] by approximation, and independently in [15], from the Banach fixed point theorem.

o If ug € L"(RY), r > 1, existence holds for any ¢ < 2 from [15]. When ¢ > 2, it is required
that wug is a limit of a monotone sequence of continuous functions, and existence is not known in
the general case.

In those classes, decay properties and a regularizing effect follow directly from the semigroup
e!® | since u(.,t) < e!®ug. Our first main results shows that decay properties and L™ estimates are

valid for any weak solution, for any v = 0, without any condition as |z| — oco:

Theorem 2.2 Let u € Llloc(QRN,T)’ with |Vu| € L?OC(QRN,T)’ be any nonnegative solution of
equation (1.1) in D' (Qr~ ).
(i) Let ug € L"(RN),r > 1. Assume that u € C([0,T);L; (RN)) and u(.,0) = ug. Then

loc

u € C([0,7); L"(RN)); and for any t € (0,T), u(.,t) € L*RYN) and

[uCs )l vy = lluollor @y (2.9)
Ot |luol| 7N C =C(N,q,7), if g # N,
||u(? t) HLOO (RN) é 7(1+€)U (1+5)wr,q,N — ) —
Cet mNN HUOHLT(RN) , Ve>0, C.= C(N,q,?“, 8)7 if =N,
(2.10)
where 1 N
UT‘?Q7N = wT7Q7N' (2.11)

Mig—-1 rq
And if v > 0, then

N
Ct_7 7“ ’ C = C Na ’ ) . N 25
o)l oy < 4 € 1o Nollarcey (N, 7.v) PN # (2.12)
Cet™ 7 |luollprmyy, Ve >0, C.=C(N,rve), if N=2.

(ii) Let ug € M (RN). Assume that u(.,t) converges weakly * to ug as t — 0. Then u €
C((0,T); L*N(RN)), and for any t € (0,T), the conclusions above with r = 1 are still valid with

|uoll 1y replaced by dug.
RN



Note that estimates (2.9) are not valid for any weak subsolution of the heat equation. Here we
prove that the result of (2.9) is essentially due to the gradient term |Vu|?, which has a main regu-
larizing effect on the equation. And then a second regularizing effect holds, due to the Laplacian,
when v > 0.

For any ¢ < 2, we deduce estimates of the gradient, obtained from (2.6). As a consequence we
deduce new uniqueness results, where the assumptions are only of local type:

Theorem 2.3 (i) Let 1 < ¢ < (N +2)/(N + 1), and ug € M (RYN). Then there exists a unique
nonnegative function u € Ly, (Qgw 1), such that |Vu| € L} (Qgy 1), solution of equation (1.1) in
D'(Qgw 1) such that

lim u(.,t)zbdx:/ Ydug, Vi € Co(RY).
t—0 RN RN
(i) Let ug € L"(RY), r 2 1 and 1 < ¢ < (N + 2r)/(N + r). Then there exists a unique
nonnegative solution u as above, such that u € C ([0,T); L}, .(RY)) and u(.,0) = uo.

loc

This improves the former uniqueness results of [12] and [15, Theorem 4.1], given in classes of
semigroup solutions, satisfying conditions up to ¢ = 0 for the gradient: [Vu|? € L}, .([0,T);L* (RY))
in case (i), and [Vu|? € L}, .([0,T);L" (RY)) in case (ii).

We also find again in a shorter way the existence result of [15, Theorem 4.1], see Proposition
4.26. Finally we improve the estimate (2.9) when ¢ < (N + 2r)/(N +r), see Theorem 4.28.

In Section 5 we study the Cauchy-Dirichlet problem in a bounded domain §2:

u —vAu+|Vul? =0, in Qor,
u=0, ondQx(0,T), (2.13)
u(z,0) =up 2 0,

Here also the problem is the object of many works, such as [22], [8], [37], [9], [33].

If up € Cj (), from [22], (2.13) admits a unique nonnegative solution v € C*! (Q x (0,00)) N
C (2% [0,00)), such that |[Vu| € C (2 x [0,00)) . Universal a priori estimates hold: there exist
C =C(N,q Q) >0 and a function D € C((0,00) such that

u(, ) € C(L 4+t T1)d(2,89),  [Vu(.,t)| < D), (2.14)

see [16, Remark 2.8]. The estimate on wu is based on the construction of supersolutions, and the
estimate of the gradient is deduced from the first one by the Bernstein technique.

In case of rough initial data, a notion of mild solutions has been introduced by [8] (see definition
5.8). Such solutions satisfy |Vu|? € Li. ([0,T); L' (Q)).

loc

o If ug € M; () and 1 < ¢ < (N +2)/(N +1), there is a unique nonnegative mild solution, see
[8], [1]. Ifup € L'(Q), and 1 < ¢ < 2, there exists at least a solution, such that u € C ([0,T) ; L' (Q2)).



e If 1 < g < (N + 2r)/(N + r) uniqueness holds in the class of mild solutions such that
ue C([0,7); L") N L, ([0,T); W ().

Next we give decay properties and regularizing effects valid for any weak solution of the problem,
in particular the universal estimate

1
||u("t)HL°°(Q) é Ct a1 in (O,T),
where C'= C(N, q), see Theorem 5.12. As above we deduce uniqueness results:

Theorem 2.4 Assume that Q) is bounded.

(i) Let 1 < ¢ < (N+2)/(N+1), and ug € M; (). Then there ezists a unique nonnegative function
ue C((0,T); LY () N LL ((0,T); Wy (), solution of equation (1.1) in D'(Qq.r), such that

loc

lim u(.,t)wdm = / Pduy, Yy € Cb(Q)
Q

t—0 Q

(ii) Let ug € L"(2), 7 = 1,ug 2 0, and 1 < g < (N + 2r)/(N + r). Then there exists a unique
nonnegative solution u as above, such that w € C ([0,T);L"(2)) and u(.,0) = uy.

This improves the results of [8], which required assumptions up to t = 0 for the gradient:
|Vul|? € L}, ([0,T); L' (Q)) in case (i), [Vu| € LL ([0,T);L" (Q)) in case (ii).
Finally we show the existence of weak solutions for any ug € L"(€2), r = 1, such that u €

C([0,T);L"(92)), see Proposition 5.17.

In Section 6 we extend some results of Section 5 to the case of the quasilinear equations (1.3),
with initial data ug € L" (2) or ug € My (), and u may be a signed solution. In the case of
equation

up — Apu =0,
several local or global L* estimates and Harnack properties have been obtained in the last decades,
see for example [38], [24], [25], [30], and [23], [20] and references therein. Regularizing properties
for equation (1.2) are given in [33] in a Hilbertian context in case g = 0 or p = 2.

Here we combine our iteration method of Section 3 with a notion of renormalized solution,
developped by many authors [18], [32],[35], well adapted to rough initial data. We do not require
that u(.,t) € L?(Q2), but we only assume that the truncates Ty(u) of u by +k (k > 0) lie in
LP((0,T); W1P(Q)). We prove decay and L™ estimates of the following type: if v > 0, for any
r 21, p>1and (for simplicity) ¢ # N, then
_ 1 N

L+X+q¢-1 rq
If v > 0, then for any = 1, and p # N such that p > 2N/(N + 2),

5 ~ 1 N
u -,t L>(Q § ct° Uo “. R 0= ————— = —70
[[u D)L= @) [uollZr (g R R

)

Hu(a 7j)HLC’o(Q) é Ct_UHUOHfr(Q),

And we deduce universal estimates as before:
1 1
lu(, )l pee () = Ct a14xif 4 > 0; u(., )l gy = Ct 72 if v >0and p > 2.

Such methods can also be extended to porous media equations, and doubly nonlinear equations
involving operators of the form u — —Ap(]u]m_l ).



3 Regularization lemmas
We begin by a simple bootstrap property, used for example in [38]. We recall the proof for simplicity:

Lemma 3.1 Letw € (0,1) and 0 > 0, and K, M > 0. Let y be any positive function on (0,T) such
that y(t) < Mt=7, and for any 0 < s <t < T,

y(t) = K(t —s)"7y"(s),
Then y satisfies an estimate independent of M : for any t € (0,T),
y(t) S 270 (k) (3.1)
Proof. We get by induction, for any n = 1
y (2 S R e T e Ty )y (12m) < 2nee e M

Then
n+1

y(t) < KXo =" =0 i0 " 90 Yiok+ 1)) p g

n+1

implying (3.1) as n — oo, since lim,,_, o, M* = 1. [ |

Next we show the Moser’s type property:

Proof of Lemma 2.1. (i) Let a be any real such that o = — 1, and v(., s) € L®"1(Q). From
(2.2), [q v+ (t)dz is decreasing for t > s. And Jo vPm0( ., €)dx is finite for almost any & € (s,t),
hence for a sequence (,,) decreasing to s,

[ty + 0D /£< [ ganiies [ o gdn < [0 sda,

From (2.1), there holds fm# > r. Applying again (2.2) with fm6f — 1 instead of «, and &, instead
of s, we deduce that [, vP"9 (t)dz is decreasing for ¢t > s, thus

o Co(a+1) m b o
/Qv +1(.,t)dx+57m(t—§n)(/ﬂvﬁ 0(.,¢&,)dx) :/Qv (., s)d.

As n — oo, v(.,&,) — v(.,s) in L (Q), and after extraction, a.e. in Q. Then from the Fatou
lemma,
1 1
/UO‘H(.,t)dx + M(t — s)(/ PO s)dx)” < / v, 8)d.
Q g Q Q
Hence ;
mo /Bm 1 o
O e = (Gt ) (3.2

e Case r > 1.We start from s = 0, we have vy € L"(Q2). We take ag =r—1, thus [, v* " (t)dz
is finite, and set Sy = 1+ (ap + A) /m. We define sequences (t,,), (o), (rn), (Bn), by to =0, ro = r
and for any n > 1,
1 oy, + A

129 (1_2_n) Tn = oy + 1, Bn=1+ m Tn+1:5nm9:(rn+)‘+m_1)9’




hence (r,),(B,) are increasing, since 1y > r from (2.1). In (3.2), we replace s,t,a,mé, by
tn, tn417n, Tnt1, and get

[

1o, 1 ) o
lottnetlzrmenio) S (gt ) ™ ot (33
From (2.2), it follows that
s
lv@)[[Lrnt1 (@) = vtz (@) = IndnLn HUOHLTT"(BI ) (3.4)
where

Since rp, = 0"(r + (A +m —1)¢'(1 —67™)), we find

n+1 n+1
grtly

lim = Wr.mA0) lim 0" 2 = 0y 6, lim Y k6 =067 (3.5)
n—o00 Tn+1 n—o00 rn+1 =1 n—o00

As a consequence

lim J, =2 0% 0rma0  lim L, = (Co(m@)™) Trmae (3.6)
n—oo n—oo
Otherwise
nt1 n+1
Inl, = "2k n ), — otk nry, = m@ 0 Flnr, — 0~ klnrk
" Tn+1 Z Tntl | Z Tn+1 Z Z

and the sum S = > 7% 0 FInry, is finite, since 7, < 6%(r + |A +m — 1|#’). Then I, has a finite
limit £ = ¢(N,m,7,\,0) = exp(r '@, ma0((mb —1)S —mhInr)). Thus we can go to the limit in
(3.4), and the conclusion follows.

e Case r = 1. If (H;) holds we can take ag = r — 1 = 0 and the proof is done. Next assume
(Hz). Then we obtain, for any 0 < s <t < T, and a constant C' as before,

[v(.; Ol () = C(E = 5)" 7m0 lu(., s )||fp”(g A

< Ot — s)"emAo o )prm A,0( 1)/pHU( )prm A0/P

Lo (9) L1(Q)
< CH,UOHpr(g A, B/P(t _ S)—Up,m,A,e ||U( )Hfggv(nﬂk 0(P=1)/p
Let y(t) = [|v(.,t)||po (). We can apply Lemma 3.1 to y, with
Wp,m,\,0 ,m, m,
0 = 0pm,\05 w = p;flb 5 K = CHUOHWP * G/P, M = CHUOHer(Q * 9/p‘



Indeed w < 1 since pf’(1 —m — A) < 1. Then there holds

o(l—w)™ —o\(1-w)™ w —o(1-w) w, (1-w
[0 ) ooy < 2707077 (Rtmo) (7)™ = 9r) ™ Q=) o 1o)™Yy T P17

Noticing that o(1 —w)™! = T1mae and @, x0/p((1 — w)) = @i m 0, We deduce
[, )| oo () < O || 7155 (3.7)
with a new constant C', now depending on p. ]

Remark 3.2 This lemma can be compared with the result of [33, Theorem 2.1] obtained by the
Stampacchia’s method. In order to obtain decay estimates for the solutions u of a parabolic equa-
tion such as (1.1) or (1.3), the Moser’s method consists to take as test functions powers |u|* ' u
of u; the Stampacchia’s method uses test functions of the form (u — k)Tsignu. If one applies to suf-
ficiently smooth solutions, both techniques leed to decay estimates of the same type. In the case of
weaker solutions, the Stampacchia method supposes that the functions (u—k)* are admissible in the
equation, which leads to assume that u(.,t) € WH2(Q), see [33]. In the sequel we combine Moser’s
method with reqularization or truncature of w, in order to admit powers as test functions. So we
do not need to make this assumption, thus the Moser’s method appears to be more performant.

Such type of L™ estimates as (2.3) may imply a universal one, that means independent of the
initial data, in case € is bounded. This was observed for example in [38]:

Lemma 3.3 Let Q be bounded. (i) Let v € C([0,T); L}

loc

LY(), such that for some C >0, for any 0 < s <t < T,

Jo(s D@y < O = 5) ol ) Fsge
where o > 0, € (0,1). Then there exists M = M(C,0,w,|Q|) such that for any t € (0,T),

(Q)) be nonnegative, and vy = v(z,0) €

[[v(;, )o@y = Mt =, (3.8)
(ii) As a consequence, if v satisfies (2.3), with m — 1+ X > 0, then

1

Hv("t)HL‘X’(Q) § Mt m=1+X, (39)
Proof. (i) For any 0 < s <t < T,
[o( Dllzoe@) = O = 8) "o, )l Er () = CE = 5)"7 QU7 (vl 8) |~ (g
Since w < 1, (3.8) follows from Lemma 3.1: for any t € (0,7),
(s )z (@) £ 27077 (C |7 ¢7) =)

(ii) If v satisfies (2.3), with m — 1+ X > 0, we take 0 = 0,1, 9, and @ = @, 1, » ¢ defined at (2.4),
then w = (1+(m—-1+MN)80/r)"! <1land o((1 — @)~ = (m — 1+ A)~!, which proves (3.9). =

In the sequel Lemma 2.1 is applied in situations where (2.2) comes from an estimate of v in
a Sobolev Space Wh™(Qq s+), when 1 < m < N, with § = N/(N —m), or m = N and 0 > 1 is
arbitrary.

In the case m > N, where Lemma 2.1 does not bring information, we use in the sequel a limit
form of Gagliardo-Nirenberg inequality, see the proof of Theorems 4.16, 5.12 and 6.7:



Lemma 3.4 Let m > N, and r = 1. Let Q be any domain in RN. Then there exists C =
C(N,m,r) > 0 such that for any w € L"(Q) N Wol’m(Q%
_ 1 1 1
[l £ CIV@llm@llwli, 7 =1+r(5— ).

Proof. By extension by 0 outside of 2, we can assume Q = RY. Since m > N, for any
QDGD(RN),aDd any € RN,

/ pdx
B(z,1)

by density, there holds

lo(x)| = C(N,m)( + IVl Lm(B(21))) = C(N,m,7) (HSDHU(RN) + ||V80||Lm(RN)> ;

ol @y < € (Il ey + 190 o vy
for any w € L"(RY) N Wh™(RN). Setting wy(z) = w(tz) for any t > 0, we find
_N m—N
el oo ey = el ooy < € (£ vl vy + 757 [Vl ) 5

the result follows by taking ¢t = (HwHLT(RN)/HVwHLm(RN))1/(1*N/m+N/T)_ -

4 The Hamilton-Jacobi equation in RY

4.1 Different notions of solution

In this section we study the Cauchy problem (2.5).
Here we consider the solutions in a weak sense, which does not use any formulation in terms of
semigroups:

Definition 4.1 We say that a nonnegative function u is a weak solution (resp. subsolution) of
equation of (1.1) in Qry 1, if u € L}OC(QRN,T), and |Vul| € quoc(QRNﬂ"), and

T
/ /(—uapt —ulp + |Vullp)dzdt =0, (resp. =), Vo € D(Qgry 1), ¢ 2 0. (4.1)
0 JQ
Remark 4.2 From [16], any nonnegative weak solution satisfies

u € Lloc?c(Q]RN,T)a Vu € leoc(QRN,T)7 ue C(0,T); Ly, (RN)) Vp2 1. (4.2)

loc

Hence (4.1) is equivalent to:
T
/ /(—ugpt + Vu.Ve + |Vullp)dzdt = 0, Vo € D(Qry 1), (4.3)
0o Jo

and there holds, for any s, € (0,T),

/ u(., 7)e(.,0)dx — / u(., 8)p(., s)dx + / / (—upr + Vu.Vo + |Vullp)dedt = 0;  (4.4)

RN RN s JRN

and for any v € C? (RN) ,

— ’ q —
/]RN u(., 7)pdz /]RN u(., s)dx —|—/$ /RN(VU.V¢—|— |Vu|typdxdt = 0. (4.5)
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Definition 4.3 Let ug € L], (RN) ,7 > 1.

We say that u is o weak Lj,. solution if u is a weak solution of (1.1) and the extension of u

by ug at time 0 satisfies u € C ([0,T); L} (RV)).

loc

We say that u is a weak r solution of problem (2.5) if it is a weak solution of equation (1.1)
such that

lim u" (., t)pde = /

r N
i ox ugpde, Vi € C.(R™Y). (4.6)

Definition 4.4 Let ug be any nonnegative Radon measure in RN, we say that u is a weak My,
solution of problem (2.5) if it is a weak solution of (1.1) such that

lim [ w(.,t)pde = Yduy, Vip € Co(RYN). (4.7)
t—0 JrN RN

Remark 4.5 Obviously, any weak Ly, solution is a weak v solution. When r = 1, the notions of

weak 1-solution and weak M, solution coincide. When r > 1, it can be easily checked that v is a
weak Lj,. solution if and only if it is a weak r solution and

lim u(., t)pdr = /

uppdr, Vb € Co(RY). (4.8)
t—0 JrN RN

Other types of solutions using the semigroup of the heat equation have been introduced in

([15]):

Definition 4.6 Let ug € L” (RN) . A function u is called mild L" solution of problem (2.5) if
ue C([0,T);L" (RY)), and |Vu|? € L}, ([0,T);L" (RY)) and

loc

t
u(.,t) = ePuy — / et =I)B V(. s)|%ds in L' (RY);
0

tA

here = is the semi-group of the heat equation acting on L" (]RN) .

Definition 4.7 Let ug € M;(RN). A function u is called mild M solution of (2.5) if u €
Cy((0,T); L* (RY)) and |Vu|? € L},.([0,T); L' (RY)), and for any 0 <t < T,

u(.,t) = ePug(.) — /t et Ty, s)|%ds in LY(RY), (4.9)
0

where e® is defined on M;(RN) as the adjoint of the operator '™ on Co(RYN), the space of
continuous functions on RN which tend to 0 as |z| — oo.

Remark 4.8 Fvery mild L™ solution is a weak L] _ solution. Any mild M solution is a weak Mo

loc
solution. Indeed for any 0 < e <t < T, we find
¢
u(.,t) = ety ) — / ety 5)|%ds in LY(RN);

and u(.,€) € L*(RN), thus u is a weak solution on (¢,T), then on (0,T). Ast — 0, u(.,t) —e®ug(.)
converges to 0 in LY(RYN), then weakly *, and e!®ug(.) — ug weakly *, hence (4.7) holds.
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Another definition of solution with initial data measure was given in ([12]):

Definition 4.9 Let ug € MZF(RN). A function u is called weak semi-group solution if u €
C((0,T); L' (RY)) and |Vu|? € L}, ([0,T); L* (RY)) and for any 0 < e <t < T,

loc
t
u(.,t) = e* 9By e) — / =27y, s)|%ds in LY(RY), (4.10)
lim u(., t)pdr = / edug, Yo € Cy(RY), (4.11a)
t—0 JpN RN

In fact the two definitions coincide, see the proof in the Appendix:
Lemma 4.10 Let ug € M; (RY). Then
u is a mild M solution of (2.5) <= u is a weak semi-group solution of (2.5).

Remark 4.11 All these definitions of semi-group solutions assume a global in space condition:
|Vul? € L}, .([0,T); L' (RY)) or [Vu|? € L},.([0,T); L™ (RY)). Observe also that (4.11a) is assumed

loc loc
for any ¢ € Co(RN). On the contrary, our definitions of weak solutions are local in space and

time, they do not require such global properties.

Finally we mention another weaker form of semi-group solutions, given in ([15]), which will be
used in the sequel:

Definition 4.12 Letug € M, (RY). Then u is a pointwise mild solution of (2.5) if u € L}, (Qg~ 1),
and |Vul|? € Lj, (Qgw~ 1), and

t
u(z,t) = (e"ug)(x) — / / g(x —y,t — s)|Vu(y, s)|?dyds for a.e. (v,t) € Qpn 7,
0o JRN
where g is the heat kernel.

Remark 4.13 For r = 1, it is clear that every mild L" solution is a pointwise mild solution. If
up € L' (]RN) every pointwise mild solution is a mild L' solution; if ug € M;(RN), every pointwise
mild solution, is a mild M solution. see [15, Proposition 1.1 and Remark 1.2].

4.2 Decay of the norms

Next we show a decay result for the solutions of Hamilton Jacobi equations, which is valid for any
q > 1, and for all the weak solutions, with no condition of boundedness at infinity.

When ¢ < 2, any weak solution u of equation (1.1) is smooth: v € C?! (QRNJ'*), from [16,
Theorem 2.9]. Since it may be false for ¢ > 2, we regularize u by convolution, setting

’U,EZ’U,*QE,

where (g:)e>0 is a sequence of mollifiers. We recall that for given 0 < s < 7 < T, and ¢ small
enough, u. is a subsolution of equation (1.1), see [16]:

(ue)e — vAu: + [Vuelt S0, in Qg g (4.12)
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Theorem 4.14 Assume q > 1. Let r > 1. Let ug € L"(RY) be nonnegative. Let u be any non-
negative weak r solution of problem (2.5).

(i) Then u(.,t) € L™ (RY) for any t € (0,T), and

/R (e < / iz, (4.13)

RN

(it) Moreover u"~'|Vu|? € L} .([0,T);L" (RY)); and u"~2|Vu|? € L} ([0,T);L* (RY)) if r > 1
and v > 0. For any t € (0,T), we have the equalities

t t
/ ur(.,t)dx—i—r/ / ur1|Vu|qudt+r(r—1)l// / u"? | VulAdxdt :/ upde, if r> 1,
RN 0 JRN 0 JRN RN

(4.14)
t
/ u(.,t)daz+/ / |Vu|qudt:/ uodz, if r =1, (4.15)
RN 0 JRN RN
lim ur(.,t)dm:/ updx. (4.16)
t—=0 JpN RN

(iii) w1t e LE (([0,7); WEE (RN)); and if v > 0, then u™/? € L ([0,T); W2 (RV)).

loc loc

(iv) If u is a weak LY . solution, then u € C([0,T); L™ (RY)).

Proof. (i) First step: case ¢ > N/r. That means r = N or ¢ is small enough: 1 <
g < N/(N—r). Let 0 < s < 7 <T. Take ¢ > 0 small enough such that (4.12) holds. Let
0 > 0, and u, 5 = u. + 9, so that u2;52 is well defined for r < 2. For any R > 0, we consider
&(z) = &r(z) = Y(z/R), where ¢¥(z) € [0,1] ,¢(x) =1 for |z| £ 1,9 (z) = 0 for |z| = 2. Multiplying
(4.12) by ug;l@ where A\ > 0, we get for any ¢ € [s, 7],

d (1 ) o
dt <;/ u;(g(.,t)@dx) - 1)V/ ul? Ve o ()€ o +/ Ve 9l 171 d
RN v "

< - / ul S ATV 5. Vieda,
RN

and from the Holder inequality, with C' = C(g, A)

- — 1 r— r— —q !
A /R ulst [Vueg| (L)€ [VElde < o /R Vs ()Tl e de + C /]R ulg (0 Ve da,

L 1
/ “§ﬁ1<-7t>£*q'w£!q/dw§(/ uga(.,t)@dm)r (/ @—"Q’rvsrq/dx) .
RN RN RN

Choosing A = rq¢’ we deduce

1
% <</sz ugﬁ(-vt)fkdx) ) < CRv Y,

where C'= C(N, q,r,1). By integration,

1 1
< |t t)@dx) < ( [t smx) "L orRY
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with a new constant C as above. Let Ry > 0 be fixed and take R > Ry, thus

1
r 1/r
</ u;é(v t)dl’) g (/ ug,é('a S)SAdx> + CTRgiq/
Br, Bar

As 0 — 0, and then as ¢ — 0, we deduce that

1
T

</BR u(.,t)rda:> < </sz u(.,s)’f)‘d:ﬂ>i +CrRY (4.17)

for any 0 < s <t < T from (4.6) we obtain, as s — 0,

1 1 1
</ u(.,t)rdx> < </ ugf)‘daz> "4 CrRY < (/ uSd:c) "4 CrRY
Bry RN RN

Finally (4.13) follows as R — oo and then as Ry — oo.
Second step: case ¢ < N/r. Then r < N and ¢ = N/(N —r) > 1. Let us fix some
ke (1, N/(N —r)). For any n = (0,1), we have n|Vul* < n+ |Vul?, hence the function
wy = 0D (u = nt)
satisfies
(wp)t — vAw, + |Vw,|* £0
in the weak sense. Thanks to Kato’s inequality, see [21], [5], we deduce that

(w;h)e = vAw} + [V [F £ 0, (4.18)

in D (Qr~ 7). And w;‘ has the same regularity as u. Moreover it satisfies an analogous property
o (4.6):
lm [ (w) (., t)pde = /RN( VE=Dyo)yrpde, Vi € C(RN). (4.19)

t—=0 JrN

Indeed

[ =)y = (o)
RN

< St)—nt)" —u (. d (. d
< [ NG e [ s

[IA

rnt /RN u" " tpdr + C(P)t"

[IA

rnt(/RN u” (., )dx) T ( . Ydx)V" + Ot

then
lim ((u - 7775)+)T - ur(.’ t))wdx = 0’

t—0 RN

and (4.19) follows from (4.6) applied to n*/*~Yu. Since ¥’ > N/r, we can apply the first step to
w,}; we deduce that w, (t) € L™ (RY) and

77 )
/ (wn) (., t)dz < nk= 1/ updz.
RN RN
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Then ||(u — 77t)+HLr(RN) S luollpr gy - Since w S nt + (u — nt)T, we find, for any R > 0,

1
[wC Ol By < llwollpr @y + 0t [Brlr

Asn — 0 we get |lu(.,t)| gy = lluoll gy, then as R — oo we deduce that u(.,t) € L (RY),
and (4.13) holds.

(ii) Consider again 0 < s < 7 < T and u. s as above. Setting F. = |Vu|? * ., there holds
(ues)t — vAus 5+ F. = 0.

Then for any t € [s, 7],

d - oy
- </]RN ugé(.,t)g)‘dm) +r(r—1)v /]RN U;gz ‘VUE,JP (. )&z + 7 /]RN F’fus,él("t)g)\dm
v [ Vs 0.9 v [ DA

RN RY

t
/Nug(;(.,t)f)‘dx—}—r/ /Nug,(leeg)‘dxdt
R s JR
t
o= [ [ g Ve e = [ oy [ s

First we go to the limit as ¢ — 0, because u € Lj; (Qr~ 1), and |Vul* e L},.(Qp~ 1), and F;
converges to |Vul|? in L} (QRNJ'*). Setting vs = w + 0, we obtain for almost any s,t, and by

loc
continuity for any 0 < s <t =< 7,
¢
/ V5 (., 1) + r/ / vf |Vl T pdadt
RN

t
r(r— 1)u/ / vy |Vul? e da :/ V5 (., 8)ENdx + u/ / EA(EN)da
s JRN RN

Next we go to the limit as 6 — 0 : from the Fatou Lemma, fst Jenv v Vul? Ydadt and (r —

W f; Jg u' 2 |Vu|2 &Mz are finite, and then from the dominated convergence theorem,

/ (.t @dx+r// u |Vl N dxdt
r(r—1)v // w2 |Vul? 5)‘dx—/ (.,J)f)‘dﬂc+u/8 /RNUTA(@)dx

As s — 0, from (4.6), we deduce that
¢
/ ur(.,t)f)‘dac—l—r/ / u' | Vul? X dzdt
RN 0 JRN

¢ t
+r(r— 1)/ / U2 | Vu)? Pde = / up (., 0)e Nz + 1// / u" AN
0o JRN RN o JRN
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Now u(.,t) € L" (RY) for any t € [s,7], and

/: /RN u" A(EN)dx < %T /RN u"(o)dz,

thus we can make R — oo. Then [ [pn u" HVulldzdt and (r — 1)v [ [pn v 2|Vu|?dadt are
finite and, from the dominated convergence theorem,

t t
/ u"(.,t)dx + 7’/ / u" " Vulldzdt + r(r — 1)V/ / w2 |Vl de = / updr  (4.22)
RN o JRV 0o JRN RN

Hence (4.14) and (4.15) follow, implying (4.16).
(i) Setting v = u® with b = (¢ — 1 +r)/q < 7, there holds |Vv|? € L} ([0,T);L*(RY)), and
ve L2(0,T); L"/" (R™)). From the Gagliardo-Nirenberg inequality,

1—k k 1 rq
[0 Dl Laeny = C(Ns g 7) lo( D ) Vol Ol @y - o1ty (4.23)

By integration, for any 0 < 7 < T, we get, from Hélder inequality, with C' = C((7, N, q,r),

// t)dwdt = // W (L tdadt < O ||o)|V R // IVo|? dadt)®.
RN RN Lo ((0,7); Lm (RNV) RN

Then u € LY M7 (Qpw ), and v? = wd~ 17 € LY((0,7); WH (RY)), v € LI((0,7); Wh4 (RN)). 1f
v > 0, we also have "2 |Vul* = ‘V(ur/Q){Q € LY(Qg~ ,), and ul? € L*(Qg~ ), then ul? €
L2((0,7); Wh2 (RV)).

(iv) Here uw € C([0,T); L]

loc

(RY)). We only need to prove that lim;_q ||u(.,t) — uo|| gy = 0.
From a diagonal procedure, there exists ¢, — 0 such that (u(.,t,)) converges to ug a.e. in RY.
First assume r > 1; since the convergence holds weakly in L" (RN ) , and limg, o0 [Jul., tn) ] RN) =

HUOHLT(RN) from (4.16). Then it holds from any sequence, and u € C([0,T") ; L" (RN))- Next assume
r = 1. We have for any p > 0,

[ tuttn) = wlds < [
RN B,
§/ |u(tn)—u0|daz—|—/ u(tn)daz+/ uodx
Bp RN\BP RN\BP
_ / u(ty) — o dar + / u(ty)dz — / wodz
B, RN B,

—/ (u(ty) —uo)dx—l—/ updx

BP RN\BP

< 2/ lu(ty) — ug| dx —i—/ u(ty)dx — / updzx + 2/ uodz.
B RN RN RN\B,

P

ultn) = woldo+ [ fult) = woldo
RN\B,

The result follows from (4.16), because ug € L' (RY) . ]

The decay result is also available for initial data measures, where we do not assume that
<(N+2)/(N+1):

16



Theorem 4.15 Assume q > 1. Let ug € MEL(]RN) and u be any non-negative weak Mj,. solution
of equation (2.5) in Qgn 1. Then u(.,t) € L' (RY) for any t >0, and

/ u(.,t)de < / dug. (4.24)
RN RN
Moreover u € C((0,T); L* (RY)), |[Vu|? € L] ([0,T); L* (RY)) and
t
/ u(., t)dx +/ / |Vul?dzdt = / dug, (4.25)
RN 0 JRN RN
and
lim u(., t)pdr = / eduy, Vo € Cy(RY). (4.26)
t—0 RN RN

Proof. If ¢ < N, we obtain in the same way (4.17) with » = 1, and we go to the limit as s — 0
from (4.7), then

/ u(.,t)dmg/ §Aduo+CTRNq,§/ dug + CTRN 7.
Bg, RN RN

Going to the limit as R — oo, and then as Ry — oo, we deduce (4.24). If ¢ = N, we proceed
as in the second step of Theorem 4.14, and get again (4.24). Then (4.25) follows. And u €
C((0,T); L* (RY)), from the dominated convergence theorem, because u € C((0,7); L, (RY)),
and u € L>®((0,7); L* (RN)).

Let us show (4.26): let ¢ € Cy(RY) be nonnegative, we can assume that ¢ takes its values in
[0,1] . Let ¢, — 0. We know that lim, o [pn (., tn)dz = / dug. Let 1, € D(RY) with values in
RN
[0,1], ¢p(z) = 1if |z| < p, 0if |z| = 2p. Then limpﬁoo/ (1 —p)dug = 0, from the dominated
RN

convergence Theorem. Thus for any n > 0, one can choose p,, such that / (1 —1p, )dug = n; and

RN
E‘/ u(.,tn)gpdaz—/ wdug
RN RN

/ u(.,tn)gowpnd:v—/ Oy, dug
RN RN

< lim

— n—oo

T / (1 — by g + lim [ (s tn) (1 — 1y, ) <
RN

n—oo RN

hence the conclusion follows. []

4.3 Regularizing effects

Here we deduce of the decay estimates a regularizing effect without any condition at co, ending the
proof of Theorem 2.2.

Theorem 4.16 Let ¢ > 1. Let r = 1 and up € L"(RY). Let u be any non-negative weak L}, .
solution of problem (2.5) in Qgn 1 (4.6).
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Then u(.,t) € L®(RY) for anyt € (0,T) and u satisfies the estimates (2.10), where 0y 4 N, @r.q N
are given by (2.11).

Moreover if v > 0, then u satifies the estimates (2.12). Ifug € M; (RY), the same results hold,

where |[uol| 1wy is replaced by/ duy.
RN

Proof. Since u is a weak L] solution, then u € C([0,T);L" (R")), from Theorem 4.14. Thus
for any 0 < s < T, u is a weak r solution in Qv 7; and [py u”(s)dz < oo with r = 1. For any
0<s<t<T,and any o = r — 1 such that [py u*"!(s)dz < oo, we can apply Theorem 4.14 to u
starting at point s, because of (4.2). Denoting 8 = 1+ a/q, we have

1 1
/ () de + — / / A dzdt < / utL(, s)dx, (4.27)
o+ 1 RN o+ 1 RN

and u®(.,t) € LI(RY) for almost any ¢ € (0,T).
(i) Proof of (2.10).
First assume ¢ < N. From the Sobolev injection of W4 (RN) into LN/ (N=9) (RN), there holds

1 a+1 C(Na Q) /t / 51\],\[—} N—g < 1 / a+1 .
/RNu (., t)dx + 51 i ( RNu (., t)dz) N )dt £ ot RNu (., s)dx;

a+1
thus Lemma 2.1 applies with m = g and § = N/(N — ¢). We obtain

(s B)ll oo vy S C(E = 8) "N ul, s) TGNy, C=C(N,q,7),

and deduce (2.10) as s goes to 0.
If ¢ = N, we deduce (2.10) from Lemma 2.1 with § > 1 arbitrary, since W1V (RN) c LN (RN).
Next assume g > N. We straight away obtain, for any ¢ € (0,7),

1
// N9dzdt < = / upde, (4.28)
RN T JRN

with 8 = 1+ (r — 1)/q. From the Sobolev injection W (RY) c L (RV), u(.,s) € L= (R")
for almost any s € (0,T), hence u(.,s) € L* (R")) for any p = r, and u € C([s,t),L* (RY)) from
(4.2). In turn u(.,t) € L (R") for any t € (0,T) and t — [[u(., )]l oo vy is nONincreasing, thus

7t [|u., )”ng(RlN <C(N,q)/RN ugd.

This does not give the optimal estimate (2.11). However from Lemma 3.4, v = u” satisfies the
Gagliardo-Nirenberg inequality, for almost any ¢ € (0,7,

1-k k
Hv('at)HLOO(RN) < Cv(, )HLB(RN) va('at)HLQ(]RN) )

where 1/k =1+ (1/N —1/q)r/p and C = C(N, q,r). Then
Ba Ba(l1—k) Ba(1—k) 3
) ey S C ooy [ V)t < C ol [ 190
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By integration, using (4.28), we find

Bq(l k)
< Clluoll g

—+r

Pg
s Dl e vy < e

which gives precisely (2.10), since k/8q = 0,4 n and (1 — k) + kr/fq = wrq.N-

(ii) Proof of (2.12).
First assume N > 2. For any o = r — 1 such that [pn u*t!(s)dz < oo,

5 1
/ ut(t)dx + —l// / B dxdt < / u*t(s)dx
« + 1 RN RN « + 1 RN

where § = (a +1)/2; and WP e L2.((0,7); Wh2 (RY)). From the Sobolev injection of Wh? (R¥)
into L2N/(N-2) (RN), we get

t -
1 / (e + C(N)y/(/ W) 2 g < L / wH (5)de.
Oé+1 RN ,82 s RN C¥+1 RN

In case r > 1, Lemma 2.1 applies with Co = (r — 1)C(N)v, ¢ = 2,0 = N/(N —2) and A = —1,
B=1+(a—1)/2, since r > N(1 —2+1)/2; and (2.12) follows.
In case r = 1, then u € C([0,T) ; L*(RN)) N LE2((0, T); L= (RYN)) because of estimate (2.10). Hence

C([0,T); LP(RN)) for any p > 1, for example with p = 2, and |ju(., t)ll 1 (mvy is nonincreasing, from
Theorem 4.14. Therefore Lemma 2.1 applies on (¢,t) for 0 < e <t < T :

_N _N
[u(, )l poe @y = C(E =€) 2 |lul, @)l wyy = C(E =€) 2 |luoll 1 ry),
with C' = C(N,q,r,v), hence (2.12) follows as € — 0.

If N =2, we proceed as above to conclude. Next assume N = 1. In case r > 1, there holds, for

any t € (0,7,
4(r — v // gldacdt</ uodz;
RN RN

and, from Lemma 3.4, applied to v = u'/2, with m = 2 = 1/k,
o) S €l Ol / V() Pdadt < C luall ) [ V() Padt
by integration, we get, with a new constant C' = C(r,v),
2 2
tlul Dz m) = Clluollzr )
which proves (2.12). In case r = 1, taking p = 2 as above, we obtain, for any 0 < e <t < T,

_1 1 L 1
[u(s Dl @) = CW)(E =€) lul, 2wy = CW)(E =€) lul &)l foo gy Ul Ol 1 ()

From Lemma 3.1, we deduce

1
[u(est) oo @)y = C(W)(t —€) 2 uollL1(w),

and we conclude as € — 0.

If up € M (RY), we apply the estimates on (¢,7") and go to the limit as € — 0. |
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Remark 4.17 As a consequence, for any k = 1, and for example q # N, N # 2,

_" Nyl

Hu('7t)HLkT(RN) g Ct HUOHLT(RN) k’ (429)
__N_ .

Hu(.,t)HLkr(RN) S Ct™ ek ||u0HLr(RN), if v > 0. (4.30)

Indeed it follows from (4.13) and (2.10), (2.12) by interpolation:

/ 1/k
s ) ey < s OIVE Tl D

Remark 4.18 If ¢ < 2, then u € C*! (QRN,T), thus we do not need to introduce the regu-
larization by u.; we only need to introduce u + 9, when v > 1 and make § — 0.

Remark 4.19 Up to now, the decay estimate (4.13) and the L estimate of u were proved for
ug € Cy (RN) NnL" (RN) , and for the unique bounded solution u of problem (2.5), and based on
the estimate (2.7) given in [15, Theorem 5.6]; indeed from the classical inequality

[u(s )l oo gy = C(N,7)[[Vul., )HLN;TRN [[ul., )HLNfﬁw

and (2.7), there holds, with C = C(N,q,r),

N - .
[u(, D)l oo @y = O 3 [Jug., )HZEQY*R?V [ul., )HLNJRN
lu(s )l oo vy S CEm 0N ol N - (4.31)

4.4 Further estimates and convergence results for ¢ < 2.

Here we consider the case 1 < ¢ < 2. From the L* estimates above, and the interior regularity of
u, we deduce new local estimates and convergence results:

Corollary 4.20 Assume 1 < q < 2.

(i) Any nonnegative weak Lj, . solution (resp. Mioe solution) u of problem (2.5) with initial
data ug € L"(RN), r 2 1 (resp. ug € M (RY)) satisfies u € C**(Qgn 1) N LS. ((0,T) ; Cy(RY)).

(ii) Let (uon) be any bounded sequence in L™(RY), r =1 (resp. in M (RN)). For any n € N,
let u, be any nonnegative weak Lj . solution (resp. Mio. solution) of problem (2.5) with initial
data ug . Then one can extract a subsequence converging in Cfo’;(QRN,T) to a weak solution u of

(1.1) in Qan 7.

Proof. From [16, Theorem 2.9] there there exists v € (0, 1) such that for any nonnegative weak
solution of equation (1.1) u in Qg~ 7 and any ball Br C RN and 0<s<71<T,

a3 gy, .y S OVl iy, 5 )
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where C' = C(N,q, R, s,7) and ® is a continuous increasing function. From estimates (2.10), we
deduce that u € L ((0,T) ; Cp(RY)) and

<

lull o3 gy, oy S CVolirry)s  Cesp ey, SCO([ du) (432

and the conclusions follow. ]

We also deduce global gradient estimates in RY :

Corollary 4.21 Assume v > 0, 1 < g < 2. (i) Let ug € L"(RY), r = 1. Then any weak L]

loc
solution u of problem (2.5) satisfies for ¢ # N
V0t ey S CE 0 g% (4.33)
gy NET R
PN T g EN(g—1) T T gt Ng— 1)
and |Vu|? € L2 ((0,T); L™ (RY)), and
J O e R T e (431
RN
where 0,4 N, wWrqN are defined at (2.11), and C = C(N,q,r,v). For N # 2, then
—L(EAD 1
VUl )l ooy = CE 2 luol| 7 gy (4.35)
/ IVu(., )| de < Ct76 +2r(a-1)) HUO‘LT (V)" (4.36)
RN

If N =2, estimates hold up to an € > 0. Moreover if ¢ < 2, u is a pointwise mild solution.
(ii) Let ug € My (RN). Then any weak Mo solution of (2.5) satisfies the same estimates as

in case r =1, with |luo|| @~y replaced by dug.
RN

Proof. (i) Let ug € L"(R™), r = 1. Then for any € > 0, u(.,e) € Cp(RY), from Corollary
4.20. From [29], u is the unique solution v such that v € C*! (RN x (¢,T)) N C, (RN x [¢,T)),
and v(.,€) = u(.,€); since v € CF (RN x (¢,T)), we deduce that u € CZ (RY x (0,T)); and for any
eSt<T,

[us Ol oo vy < lus ooy, [IVuls D)l poo@yy = [Vuls )l oo ),

and from (2.7),
IVu(., )| < C(g)(t — e) tul(., t), a.e. in RY, (4.37)

From the decay estimates, we also have [[u(., €)||z- &~y < |luollp-®n~)- And u(.,€) € L7(RY) for any
7 € [r,00], and u € C([e, T); L"(RY)). Going to the limit in (4.37) as € — 0, we deduce (4.33) from
(2.10), and (4.35) from (2.12), if ¢ # N or N % 2. Moreover |Vul|? € L ((0,T); L™ (RY)), since

_1 1
190, )0y S C@E ol v
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More precisely we get from estimate (2.6),

1

_1 7
(Dl gy £ C = ) Hlul, )| v,

1
Py

IV (us

with C'= C(q,v); then from estimate (2.12), for any ¢t € (0,7), with other constants C' = C(q,v),

1

/

1 t
(DMl € OF 3 s )l vy

\\H

IV (us

V. t)[ < Ot fu., 2 L oy us ),

then from estimate (2.10) we get

/ [Vu( £)|7 da < Cllug|| T~ Eonana=t) / u(., 1) da;
RN RN

then (4.34) follows. And (4.36) follows from (2.12). If N = 2, in particular if ¢ = N, the same
estimates hold up to an £ > 0, from (2.10) and (2.12).

Next we prove that w is a pointwise mild solution as ¢ < 2. From [29, Theorem 6], u(.,t) €
CZ(RN) for any t € (¢, T), in particular u(.,2¢) € CZ(RY), then for any ¢ = ¢, and any z € RV,

t
(e t) = e 2Pu(w,20 — [ [ gl =yt = 5)|Vuly,o)dyds (4.39)
2¢ JRN

see for example [7, Proposition 4.2 |. But u(z, 2¢€) converges to ug in L"(RY), and then e*=29% (., €)
converges to e®ug in L"(RY). Then we can go to the limit as € — 0 in (4.38), for a.e. 2 € RV :
the integral is convergent, then the conclusion follows.

(ii) For Theorem 4.15, we have u(.,t) € LY(RY) for t > € > 0, which gives from (i)

[u(s )l ooy S Ot = &)™ e N ul, )1 N, < Ot —e) ““"N(/RNdUO)m’q-

As € — 0, we obtain (4.33), (4.35), (4.34) and (4.36) hold with » = 1 and |[ugl| 1~y replaced by

/ duo . And
RN

_1 1
IVu(, )l o vy < O ( / duo) 7,
RN

thus |[Vu|? € L2 ((0,T); LY (RY)). n

loc

Remark 4.22 As a consequence, under the assumptions of Corollary 4.21, there holds u(.,t) €
Cy(RY), for any t € (0,T), then u can be extended to a global solution of problem (2.5) on Qgw
see for example [36].
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4.5 Existence and uniqueness results for ¢ <2

Let ug € L"(RY), r > 1. We first consider the ”subcritical” case

N +2 N(g—1
e equivalently q<2andr> L

l1<g< ,
1=~ "Nir 2 ¢

(4.39)
Theorem 4.23 Let ug € L"(RY), r = 1. Suppose (4.59), and v > 0. Then any weak L, . solution
u of problem (2.5) satisfies
[Vul? € Lio (10, T) ; L (RY)). (4.40)
And
u is a weak Ly, solution <= u is a mild L" solution.

Proof. Let u be any weak L] solution. Then from (4.34),

loc

L9yt = [T 19utamantars [T
0 RN 0

with C' = C, Hu0||L1:E]§]Cq @=L , and (4.39) is equivalent to ¢/2+ 0,4 n(¢—1) < 1. Since v > 0, the
estimate (4.36) leads to the same conclusion, because (4.39) is also equivalent to ¢/2+4(¢—1)N/2r <

1. Then (4.40) holds. Moreover from Corollary 4.21, u is a mild pointwise solution:

u(.,t) = ePug() — 1//0 /RN g(x —y,t — s)|Vu(y, s)|*dyds. (4.41)

Otherwise u € C([0,T); L™ (RY)) from Theorem 4.14, and f = |Vu|? € L} ([0,T); L"(RY)), thus
the relation (4.41) holds in L"(RY),

u(.,t) = (ePug) — v / et 1 Vu(, 5)|?(s)ds  in L'(RY), (4.42)
0

that means v is a mild L"solution. The converse is clear. []

Next we deduce the uniqueness results of Theorem 2.3.

Theorem 4.24 Let ug € L"(RY). Assume (4.39) or ¢ =2, and v > 0. Then there exists a unique
weak Lj . solution u of problem (2.5). In the first case, u € C((0,T); Wha"(RN)).

Proof. (i) Case 1 < ¢ < (N +2r)/(N + r). From [15, Theorem 2.1], there exists a mild L"
solution u, and it is unique in the class of mild L" solutions such that u € L2 ((0, T); Wh4™ (RY)),
see [15, Lemma 2.2 and Remark 2.5]. Then uis a L], solution. Let v be any weak Lj _solution, thus
u is a mild L" solution, from Theorem 4.23. From Theorem 4.14, Corollary 4.20, and Theorem 4.23,
v € L*((0,T); L”(RN))H L2 ((0,T); Co(RY)), and [Vo| € LiS((0,T); L9 (RY)) from Theorem
4.23 . Then v € L2 ((0,T); Wha (RY)), then v = u, and we reach the conclusion. Moreover
u € C((0,T); Whar(RN)), from [15, Theorem 2.1].

(ii) Case ¢ = 2. From [15, Theorem 4.2] there exists a unique solution w such that u €
C([0,T); L™ (RM)) Nnu € C*((Qrw o) solution of (1.1) at each point. Then it is a weak Lj, .
solution. Reciprocally any weak Lj . solution u satisfies the conditions above, from Theorem 4.14
and [16]. ]
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Theorem 4.25 Assume 1 < q < (N +2)/(N +1), v > 0. Let ug € M (RY). Then there exists a
unique weak Mye solution of problem (2.5).

Proof. The existence of a weak semi-group solution was obtained in [12] by approximation.
The existence of a mild M solution was proved in [15, Theorem 2.2], and the two notions are
equivalent from Lemma 4.10. In any case the solution is a weak M, solution. Next consider
any solution M, solution u. Then u(.,t) € L>®(RY) for any t € (¢,T) by applying Theorem
4.16 on (¢/2,T). Then again we deduce u(.,¢) € Cy(RY), and then (4.37) holds. From Theorem
4.14 we still obtain that u € L{2,((0,7); W7 (RY)). And from the uniquenes on (¢,T), we have
u € C((e,T); WH? (RY)) from Theorem 4.24. Then u € C((0,T); W' (RV)). And u satisfies
(4.26), from Theorem 4.15. Then u is a weak semi-group solution, thus a mild M solution from
Lemma 4.10. Therefore u belongs to the class of uniqueness of [15, Theorem 2.2]. We can also

prove the uniqueness directly: if ui,us are two solutions, they are mild M solutions, thus
t
(up —u2)(,,t) = y/ e (|Vuy (., 8)|7 — [Vug(., s)|9)ds
0
and we know that |Vu;|? € C((0,T); L*(RY)), hence

t
IV = wa) Ol gy S0 [ [T 09 = D) Ny s

L1(RN)
t
_1 ~1
<€ [ (0= mag 1984y 1901 = 02)(09)] vy s
0 7=1,2
t 1
< C/ (t—s)72s7ODP00N |1V (uy = ua) (., 8) | par vy ds.
0
thus we can apply the singular Gronwall Lemma when (¢ — 1)9; 4 v < 1/2, which means precisely

q < (N +2)/(N+1). Then V(uy — uz)(.,t) = 0 in LI (R") , hence u; = uy. ]

Finally we give a short proof of the existence result of [15, Theorem 4.1].

Proposition 4.26 Let v > 0, 1 < g < 2. For any nonnegative ug € LT(RN),T > 1, there exists a
mild pointwise solution u of problem (2.5), and w € C([0,T);L" (RY)).

Proof. Let ug,, = min(ug,n). Then ug,, € LP(RY) for any p > r. We choose p > N(g—1)/(2—
q), that means g < (N+2p)/(N+p). From [15, Theorem 2.1], there exists a mild L solution w,, with
initial data ugn, and u, € C((0,T); CZ(RY)) N C*1(Qg~ 1). The sequence (uy) is nondecreasing
from the comparison principle, and wu,(.,t) < e®uy < Ct=N/2r [[uoll gy - From Corollary 4.20,

Uy ) converges in o>t Qg~ 1) to a weak solution u of (1.1) in Qg~ 7, and u(.,t) < e"®uy. Moreover
loc V\9RN. T RN T
Vuy,|?) is bounded in LY ([0,7); L: (RM)) : indeed for any ¢ € D(RY), with values in [0, 1], and
loc loc
any 0 < s <t <T,

t t
/ un(t,.)gq/daz—{—l// / |Vun|q£q/dx < —q'u/ / ftziqun.Vfd:U—l—/ Un (S, .)£q/d:c
RN s JRN s JRN RN
t
< 5/ / |vun|ng’dx+0t/ |vg|q/dx+/ Un(s, e dz,
2 s RN RN RN
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and u, € C([0,T); L* (RY)); thus we can go to the limit as s — 0 :

/ 1 ¢ / / /
/ up(t, )% de + - / / |Vu, |7 dx < Ct/ |VET dx + / up&? dx.
RN 2 s RN RN RN

Thus |Vul? € L, ([0,T); L},.(RY)), hence, from [16, Proposition 2.15], u admits a trace as t — 0 :
there exists a Radon measure po in RV, such that u(.,t) converges weakly* to ug. Otherwise eBuy
converges to ug in L"(RY), thus o € L}OC(RN) and 0 < po < up; and uy, < u, thus ug, < po,
hence p1g = ug. Moreover there exists a function g € L"(RY) such that u(.,t) < g for small .
Then the nonnegative function e"*ug — u(.,t) converges weakly* to 0, and then in L}, (R"). Hence
u(.,t) converges to ug in L} (RY), then in L"(Q) from the dominated convergence theorem. Thus

u e C([0,T);L" (RN )) In particular u is a weak Lj . solution, then a pointwise mild solution,

from Corollary 4.21. [

Remark 4.27 The uniqueness of the solution is still an open problem when ug € L”(RN) and
q=(N+2r)/(N+r).

4.6 More decay estimates for ¢ < (N + 2r)/(N + )

Here, we exploit theorem 4.14 to obtain a better decay estimate of the L™ norm when ug € L"(IR{N )
in the subcritical case (4.39), which appears to be new for r > 1. In case » = 1 we find again the
result of [3], proved under the assumption that the energy relation (4.25) holds.

Theorem 4.28 Let r 2 1 and assume (4.39), v > 0. Let u be any non-negative weak 1 solution
of problem (2.5) in Qg o, with initial data ug € L"(RN). Then there exists C = C(N,q,r) such
that, for any t > 0,

ar— 2 — q

/ u"(.,t)dx < C( up(x)de + 1~ 2N), a=—-7". (4.43)
RN {lz|>vE} q—1

As a consequence, limy—oo [[u(t)|| rmryy = 0 and

r/ / uT_HVu\qudt—i—r(r—l)u/ / ur_Q\Vudedt:/ updz.
0o JrN 0 JrN RN

Proof. We still consider v = u® with b= (¢—1+7)/q < r, and set E(s) = [pn u"(., s)dz. Then
E € WH((0,T)), from the energy relation (4.14), and for almost any s € (0,7,

E'(s) = —r(r — 1)y/

|Vu2u""2(., s)dz — / |Vu|%u""1(., s)dz < 0.
RN

RN

Next, we set ' = F1 + Es with

Eq(s) :/ u"(x, s)dx, Es(s) :/ u"(x, s)dx.
{lz[<2R} {lz|>2R}
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From the Gagliardo-Nirenberg inequality (4.23), we obtain successively, with C' = C'(N, q,r),

r

bq
Eq(s) :/ v (z,5)dx < (/ vq(:c,s)dx> (2R)' " wa
{lz|<2R} {|z|<2R}

< i LS N 2)
= va(s)HLq(RN)Hv(s)HLr/b(RN)R e

=z

1 r kr L
< SIS gy + CIIVO(S) fo ey B (-5

thus

E(s) £ O(|Vu(s) RFU75) 4 2B, (s)). (4.44)

r
H[b,q(]RN)

Let n € D(RY) with values in [0, 1], such that ¢ = 1 in By, with support in By, and set n = 1 — ¢,
and ¢;(z) = ©(7), nr(x) = n(F). Observe that our assumption on ¢ implies ¢' > N/r. As in the
first step of theorem 4.14, we obtain for any 0 < 0 < s <t < T, and | > 2R,

1 1
(/ u'(., s)gpf‘nﬁdx) ' < </ u" (., a)gpf‘?ﬁ%c&) ' +C(s— O')(R%_q/ + l%—q/)’ (4.45)
RN RN

with A = r¢/, and C = C(N,q,r,n). As 0 — 0 and | — co. we deduce

1 1
( / ur(x,s)vmdmy < ( / ug(x)anx>r +OsR>9.
RN RN

Taking R = /¢, and setting

N—-r¢d (N+2r)—q(N+r) ar—N
2 2(q — 1) 2

p=r+

we find, with a constant C as above,

Eu(s) < A(t) = C < /{ oy @ tﬂ) 7

Next, we consider F(s) = E(s) — 2A(t). If there exists to € (0,¢) such that F(ty) < 0, then
F(s) <0, Vs € (to,t); thus E(t) < 2A(t), by continuity, hence (4.43) holds. Next assume that
F(s) >0, for any s € (0,t). Since

—F'(s) > u/ |Vl (z, 8)dx = u/ |Vo(z,s)|%dx, (4.46)
RN RN

we find F(s) £ C(—F'(s))"/bat(1=r/b)N/2k from (4.44). By integration we get

Ot —s)t #0750 < P~ — F(s).
As s — 0 we deduce that F(t) £ Ct~ ", since p =1r/(q — 1) — N/2k, and (4.43) still holds. |
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Remark 4.29 The case 7 = 1 has been the object of many works, assuming that ug € L'(RN) N
WL(RN). There holds

i [Ju(t) | vy = 0 = 0 < (N +2)/(N +1),

see [2], [12], [4], [28]. When q < (N + 2)/(N + 1), the absorption plays a role in the asymptotics.
From [10], if limyy| oo |2|" uo(x) = 0, where a = (2 —q)/(q — 1), then u(.,t) converges as t — oo
to the very singular solution constructed in [34], [13]; then [pn u(.,t)dx behaves like t=(@=N)/2 for
large t, and estimate (4.43) is sharp. When ¢ > (N +2)/(N + 1), and ug € L*(RY), then u(.,t)
behaves as the fundamental solution of heat equation, see [10].

Our result is new when ug € L"(RY), r > 1. When ¢ > (N +2)/(N + 1), and ug is bounded
and behaves like |x|™° as |z| — oo with b € (a,N), it has been shown that u(.,t) behaves as the
selfsimilar solution of the heat equation with initial data |x|™", see [17]. In that case ug € L"(RN)
for any r > N/b and [px u” (., t)dx behaves like t=Cr=N)/2 " Thus (4.43) is sharp as b — a.

5 The Dirichlet problem in Qqr

Here we study equation (1.1) in case of a regular bounded domain 2, with Dirichlet conditions on
00 x (0,T), with v > 0; by homothety we can assume v = 1:

_ q_ ;
(Da.r) { up — Au + |Vul 0, in Qar, (5.1)

u=0 ondQx(0,T),

As in section 4, we study the problem with rough initial data, and introduce different notions
of solutions.

5.1 Solutions of the heat equation with L! data

The regularization method used at Section 4 does not provide estimates up to the boundary. In
this section we use another argument: the notion of entropy solution, introduced in [35], for the
problem

u — Au = fa in QQ,S,T’

u=0 ondQx (s,71), (5.2)

u(.,s) =us =0

when f and u, are integrable, that we recall now. For any k£ > 0 and 6 € R, we define as usual the
truncation function 7 and a primitive Oy by

To(0) = max(—k, min(k,0)),  Ou(s) = /0 " T(0)d6. (5.3)

Definition 5.1 Let s,7 € R with s < 7, and f € L' (Qqsr) and us € LY(Q). A function u €
C([s,]; LY(Q)) is an entropy solution of the problem (5.2) if Ty(u) € L*((s,7); W&Q(Q)) for any
k>0, and
fQ ek(u - (p)(.,T)d&U - fQ @k(us - 90('7 S)dw + f;—(@t?Tk(u - 90)>dt (5 4)
+ fsT fQ(Vu.VTk(u —¢) — fTi(u— @)dzdt <0 ’

for any p € L?((s,7); WH2(Q)) N L™ (Qq.r) such that p; € L?((s,7); W12(Q)).
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Other notions of solutions have been used for this problem, see [8], recalled below. In fact
they are equivalent: here ' denotes the semi-group of the heat equation with Dirichlet conditions
acting on L' (),

Lemma 5.2 Let -co < s < 7 < o0, f € LYQas+), us € LYQ) and u € C([s,7]; L}(Q)),
u(., ) = us. Then the three properties are equivalent:

(i) u € L*((s,7); VVOI’1 (Q)), such that
—Au=f, inD'(Qqas-); (5.5)
(i) w is a mild solution of (5.2), that means, for any t € [s, 7],

t
u(.,t) = ey, + / =2 f (o) do in L' (Q); (5.6)

(111) w is an entropy solution of (5.2).

Such a solution exists, is unique, and will be called weak solution of (5.2).

Proof. It follows from the existence and uniqueness of the solutions of (i) from [5, Lemma 3.4],
as noticed in [8], and of the entropy solutions, see [18]. n

As a consequence, when u is bounded, we can admit test functions of the form u®
Lemma 5.3 Let s, 7 € R with s <7, and f € Ll(QQS,T) and u be any nonnegative bounded weak
solution in Qq.s+ of (5.2).

Then, for any a > 0, there holds u®~' |Vu|®> € L'(Qq...) and

1
/ ol dw—l—a// u ™ |Vul? dedt = —/ ot dac—l—/ /fuo‘dxdt
a+1 QQST

(5.7)

Proof. We have u € L*((s,7); Wy *(Q)) N L® (Qa.s), and u; € L2((s,7); W 12(Q)) +
L' (Qq.s.r) - Then any function ¢ € LQ((S,T);WOI’Q(Q)) N L>® (Qq,s,r) is admissible in equation
(5.5). In particular for any o > 0, we can take ¢ = M, 5(u) = (u+06)* — 0%, with 6 > 0. Integrating
on [s, 7] we deduce that

/ < ug, o > +a// (u+0)21 | Vu|® dedt = / / fMqy s5(u)dxdt.
s QQ,S,T S Q

Let k > 0 such that supg, . _u = k, thus u = T}, (u). The function 0 +— M (0) = (T},(0) + )~ — 0% is
continuous on RTand piecewise C'! such that M(0) = 0 and M’ has a compact support. Denoting
M s(r) = (u+0)*T/(a+ 1) — §%u, we can integrate by parts from [27, Lemma 7.1], and deduce
that

/Q Mas(w)(.,7))dz— /Q M s(w)(., s))dz+a / /Q Q’S’T(u+5)°"1|Vu|2dxdt: / ' /Q F Mo o (u)dadt;

We can go to the limit as § — 0 from the Fatou Lemma, and then from the dominated convergence
theorem. Thus (5.7) holds for a > 0. ]

Remark 5.4 From [27], the notion of entropy solution of (5.2) is also equivalent to the notion of
renormalized solution, that we develop in Section 6. Lemma 5.3 is a special case of a much more
general property of the truncates when u is not necessarily bounded, see Lemma 6.3.
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5.2 Different notions of solutions of problem (D, 1)

Definition 5.5 We say that u is a weak solution of the problem (Dq.r) if u € C((0,T); L' (©2))N
L} ((0,7); I/Vol’1 (Q)), such that |Vul? € L} _((0,T); L' (Q)) and u satisfies

u — Au+|Vul? =0, in D' (Qar). (5.8)
Next we study the Cauchy-Dirichlet problem
w —Au+ [Vul? =0, in Qaor,
u=0 on o x (0,7), (5.9)
u(z,0) =up =20

with ug € L™ (), 7 = 1, or only up € M, (Q2). Here in any case ug € M;" ().

Definition 5.6 Ifuy € L"(2),r = 1, we say that u is a weak L™ solution of problem (5.9) if it is
a weak solution of (Do 1), such that the extension of u by ug att = 0 satisfiesuw € C ([0,T); L"(Q2)).

Definition 5.7 For any ug € M; (), we say that u is a weak M solution of problem (5.9) if it
is a weak solution of (Dq,r), such that

lim [ u(., t)dx = / Wdug, Vi € Cy(92). (5.10)
Q Q

t—0

Semi-group type solutions have been introduced in [8], see also [1]. For ug € M, (Q), we set
e®ug = [, 9o, y, t)dug(y), where go is the heat kernel with Dirichlet conditions on 9X.

Definition 5.8 For any ug € M;(Q), a function u is a mild solution of problem (5.9) if
u€ C((0,7); L* (Q)), and |Vu|? € L} ([0,T); L' (Q)) and

loc
t
u(.,t) = ePug() — / et =2 Tu(., 5)|%ds in L' (Q), (5.11)
0

Remark 5.9 As it was shown in [8, p.1420], from Lemma 5.2,
u is a mild solution <= u is a weak M solution such that |Vu|? € L},.([0,T); L' (Q));

and then u € L}, ([0,T); I/Vol’1 (Q)).

Remark 5.10 As in Remark 4.11, the definition of mild solution requires an integrability property
of the gradient up to t = 0, namely |Vul|? € L} ([0,T); L' (Q)). The definition of weak solution

loc

only assumes that |Vul|? € L} ((0,T); L' (£2)).

loc
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5.3 Decay and regularizing effect

Here € is bounded, then the situation is simpler than in RY: indeed we take benefit of the regu-
larizing effect of the semi-group e*® associated with the first eigenvalue A; of the Laplacian, and
also of the inclusion L"(2) C L'(9).

Lemma 5.11 Let ¢ > 1, and ug € L"(2), r = 1. 1) Let u be any non-negative weak L™ solution of
problem (5.9).

(i) Then u(.,t) € L>®(Q) for any t € (0,T), and
N
()| pr ) < Ce M luollpr (o), u(, )| () < Ct2re M |ug| pr (- (5.12)

(ii) Moreover |Vul|? € L}, .([0,T); L* (), and

¢
/u(.,t)dw—i—/ /\Vu]qudtg/uodx. (5.13)
Q 0 JQ Q

Ifr > 1, then u"~YVu|? € L} ([0,T); L' (Q)) and u"~2|Vul?> € L} ([0,T); L' (Q)), and

loc loc

1 ¢ ¢ 1
—/ur(.,t)dx—i—/ /uT_HVu\qdmdt—i—(r—l)/ /ur_Z\Vudedt: —/ugdx, (5.14)
rJa 0 Ja 0 JQ rJa

As a consequence, v~ € L1 (([0,T); I/Vol’1 ()).

2) Let ug € My (2) and u be any non-negative weak M solution of problem (5.9). Then (5.12)

and (5.13) still hold as in case ug € L'(Q), where the norm |lug||11 (o) is replaced by /duo. In
Q

particular w is a mild solution.

Proof. 1) (i) Let 0 < € < 7 < T. Since u is a weak solution of (Dq 1), we can apply Lemma 5.2
with f = —|Vul|? in Qq,¢ . Thus u is a mild solution of the problem in Qq . : for any ¢ € [, 7],

t
u(.,t) = 9% e) — / =2 |\ Vu|ldo in L' ().

€

therefore u(.,t) < et=92y(. €). From our assumptions u € C ([0,T);L"(Q)), we deduce that
u(.,t) < e®ug as € — 0. Then (5.12) follows from the properties of the semi-group e,

(ii) The function u is bounded in Qgq s -, thus from Lemma 5.3, for any p > 1,

1 ¢ ¢ 1
—/up(.,t)dx—i—/ /up_llvquxdt—i—(p—l)/ /up_QIVu\dedt: —/up(.,e)dx. (5.15)
PJa e JQ e JQ PJa

As p — 1, we deduce that |Vu|? € L' (Qq.,) from the Fatou Lemma, and

t
/u(.,t)d:n—l—/ /|Vu|qudt§/u(.,e)dx.
Q e JQ Q

As € — 0 we deduce that [Vu|? € L' (Qq,-) and (5.13) holds. If r > 1, we can take p = r in (5.15)
and obtain (5.14) as € — 0. Then w4~ %7 ¢ L} (([0,T); I/Vol’1 (€2)) as in the case of RY.

loc

2) The same estimates hold because lime o [|u(., €)|[z1(q) = [ duo. ]
Q
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Theorem 5.12 Let ¢ > 1 and ug € L"(2), r =2 1. 1) Let u be any non-negative weak L" solution
of problem (5.9). Then

Ctrr fuol i) C'=C(N,q.7), ifq# N,
[y )| oo rrvy = (I+e)w
= Ct™ (1+6)O'TNN|| 0HLr o) qu’ Ve > 0, CEZC(N,q,r,g)’ ifq=N
(5.16)

where 0,4 N, WrqN are given at (2.11).
2) Any non-negative weak solution u of (Dq 1) satisfies the universal estimate, where C = C(N, ¢, [Q]),
_1
u(s )l L) = Ct 1. (5.17)

Proof. 1) First assume ¢ < N. For any a > 0, setting p =14+ a,and 0 < e < s <t < T,
setting 8 = 1 4 /¢, we obtain, from (5.15),

1 1
/uo”'1 t)dx + —/ / ‘V ? dwdt < /u““(.,s)dm.
o+ 1 Q o+ 1 Q

Then v”(.,t) € Wol’q (), since u(.,t) € L*(Qq,sr) N VVol’1 (©)). From the Sobolev injection of
W, () into LN/ (N=9) (Q),

Lot e+ COD [ 083% 0 i) Frar < [ et sy
Q s Q Q

a+1 34 a+1
From Lemma 2.1 on [¢,T) with m = ¢ and § = N/(N — q), we obtain estimates for e <t < T :
_ 1
s Bl (o) < Ot = &) Mu(, )l E lul Ollze@ < CE—e) ot
and we deduce (5.16) and (5.17) as ¢ — 0. In the case ¢ = N the same conclusion follows from

Lemma 2.1 with any 6 > 1. If ¢ > N we proceed as in Theorem 4.16 by applying Lemma 3.4.

2) Let u be any weak solution of (Dq 7). Since u € C([e, T); L*(Q)) for € > 0, we find, for any
€le,T),
1
[u(st) o) = C(t —€) a7
with C' = C(N, ¢q), and deduce (5.17) for any t € (0,7) as € — 0. |
Remark 5.13 In particular we find again estimate (5.17) obtained in [33] in case ¢ < 2, for
solutions u such that u € C((0,T); L* (2)) N L2((0,T); VVOI’2 (Q)), and (u — k)T is admissible as a

test function in the equation; those conditions imply integrability properties of u|Vull. Our result
1s valid without any of these conditions.

5.4 Existence and uniqueness results for ¢ < 2

From estimate (5.17), we deduce new convergence results when ¢ < 2:

Corollary 5.14 Assume 1 < q < 2. Then

(i) any weak solution u of problem (Dqr) satisfies u € C*' (Qar) NCHO (2 x (0,T));

(11) for any sequence of weak solutions (uy) of (Dar), one can extract a subsequence converging in

C?HQa,r)NCM0 (Q % (0,T)) to a weak solution u of (Do)
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Proof. (i) From [16, Theorem 2.9], any weak solution u of (Dgq r) such that u € L° ((0,T") ; L>(2))

loc

satisfies u € C%! (Qq,r) N CM? (Q x (0,7)) . And we obtain precisely u € L{2.((0,T); L=(Q)), at
Theorem 5.12,3.

(ii) Moreover (u,,) is uniformly bounded in LS, (0,7"); L> (£2)). From [16], there exists v € (0,1)
such that, for any 0 < s < 7 < T,

tnllo@ege.ny + 19l oo @ingery < COnll 1. o) (5.18)
where C' = C((N,q,Q,s,7,v), and ® is an increasing function. The conclusion follows. |

Theorem 5.15 Suppose 1 < q < (N +2)/(N + 1). For any up € M; (), problem (5.9) admits a
unique weak M solution.

Proof. From [8, Theorem 3.2], [1], for any (possibly signed) ug € M;(€2), problem (5.9) has a
unique mild M solution, and it is nonnegative when ugy € M;(Q) From Lemma 5.11, any weak
M solution is a mild M solution, thus uniqueness holds in this class. [

Next assume that up € L"(Q2) and consider the subcritical case (4.39). In [8, Theorem 3.3], it is
proved that there exists a weak L" solution such that v € L} ([0,T); WO1 " (Q)), and it is unique

loc
in this space. The local existence and uniqueness in an interval (0,77) is obtained by the Banach

fixed point theorem in a ball of radius K7 of the space

T 1
X, (Th) = {U € C((0,T1], Wy () : (Soutp] te(Hu(-7t)HLq7"(Q) + 2 [[Vu(, 1) o)) < OO}
U1

where § = N/2rq’, under the condition
[[woll oy + KiT} < CKjy, where y=1—-¢(0+1/2) and C =C(N,q,7,Q). (5.19)
We prove the uniqueness with no condition of integrability:

Theorem 5.16 Assume that ug € L"(Q) and 1 < ¢ < (N + 2r)/(N + r). Then problem (5.9)
admits a unique weak L" solution.

Proof. Let ¢ > 0. From Theorem 5.12, u is bounded on (¢,7") for any ¢ € (0,7"). Then
u € C?*HQar)NCHO(Qx (0,T)) because g < 2, from [16, Theorem 2.10]. From (2.14), there exists
a function D € C((0, 00) such that for any ¢ > 0 and for ¢ = €

[Vu(., )l e @) = D(t —€).

Then |Vu| is bounded in Q.7 for any € > 0. Thus u € C((O,T),Wol’qr (€2)). The problem with
initial data u(.,€) at time 0 has a unique solution v, such that v, € C((0,T — ¢), Wol’qr (Q)), then
e(.,t) = u(.,t +¢). Let Ky and T such that (5.19) holds. Since [u(., €)[| ) = [[uollr(q), We also
have [[ve(0)[| 1y + KiT) < CKjy, thus for any t € (0,7})

1
t(1oe, )l par (@) + £2 V0, )l par () < K.
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Going to the limit as € — 0 from the Fatou Lemma, we obtain
1
(e ) gy + 5 IV ) par ) € Kt

Uniqueness follows in (0,7}), and by induction on (0, 7). ]

Finally we give existence results for any ug € L"(Q2),r > 1, extending the results of [8, Theorem
3.4] for ug € L1(£), see also [32] for more general operators. We proceed as in Proposition 4.26.

Proposition 5.17 Let 1 < ¢ < 2. For any nonnegative ug € L"(Q),r > 1, there exists a weak L"
solution of problem (5.9). And it is unique if ¢ = 2.

Proof. (i) Case ¢ < 2. Let up, = min(ug,n). Then for p > N(¢ —1)/(2 — ¢), from [8,
Theorem 3.3], there exists a mild solution u, with initial data wug,, and u, € C([0,T"); L(2)) N
L((0,T); Wy () N C%1 (Qa.7) . Then uy(.,t) < e®ug, and (u,) is nondecreasing and |Vu,|? is
bounded in L, ([0,T) ; L'(2)) from (5.13). From Corollary 4.20, (u,) converges in CZZO’E(QQT) toa

weak solutionlzc of (1.1) in Qq,7. As a consequence, u(.,t) < e'®ug and |Vul? € L}, ([0,T);L*(Q)) .
From [16, Proposition 2.11], u(.,t) converges weakly* to some Radon measure jo on . And e*®ug
converges to ug in L"(Q), thus pg € L}OC(Q) and 0 < pg < up. Since u, < u, there holds ug, < po,
hence poy = up € L"(2). Also there exists a function g € L"(£2) such that u(.,t) < g for small ¢.
Then e'®ug — u(.,t) converges weakly* to 0, and then in L} (). Hence u(.,t) converges to ug in

L} (), then in L"(Q) from the dominated convergence theorem. Thus u € C([0,T); L" ().

loc

(ii) Case ¢ = 2. As in [15, Theorem 4.2], using the classical transformation v = 1 —e™, it
can be shown that there exists a unique solution u such that u € C([0,T); L" (2)) N C*! (Qa.r) N
ct (ﬁ X (O,T)). Then it is a weak L" solution. Reciprocally any weak L™ solution u satisfies the
conditions above, from Corollary 5.14 and [16, Theorem 2.17]. |

6 Regularizing effects for quasilinear Dirichlet problems

Here we extend some results of section 5 to a general quasilinear problem, where u may be a signed
solution. In this section, we suppose (2 is a smooth bounded domain in RY.

Let p > 1 and A be a Caratheodory function on Qg o xR xRY such that for any (u,n) € RxRY,
and a.e. (z,t) € Q. o0,

A, t,un)] S O™ +b(z,t),  C>0, be L (Qauw), (6.1)
and A is nonnegative operator:
Alz,t,um)n Z2vin” v 20, (6.2)

with no monotonicity assumption.
Let ¢ > 1 and g be a Caratheodory function on Qg ~ x Rt x RY, such that

Mg, A20, y20. (6.3)

gz, t,u,n)u 2 v |ul

We say that A is coercive if (6.2) holds with v > 0, and g is coercive if (6.3) holds with v > 0.
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We consider the solutions of the Dirichlet problem

up — div(A(z, t,u, Vu)) + g(z,t,u, Vu) =0, in Qar,
(Por)q u=0, ondQdx(0,7T), (6.4)
u(z,0) = up,

where ug € L™ (2), r 2 1 or only ug € M,(£2).

6.1 Solutions of quasilinear heat equation with L' data

First consider the problem in Qq s -

Ut — le(A(.%', t, u, VU)) - f; in QQ,S,’H
u=0, ondQx(s,T1), (6.5)
u(z, s) = us

Let us recall the notion of renormalized solution introduced in [18] for this problem with L' data,
where the truncations T}, are defined by (5.3):

Definition 6.1 Let s,7 € R with s < 7, and f € L' (Qqs-) and us € LY(Q). A function u €
L>®((s,7); L () is a renormalized solution in Qqsr of (6.5) if Ty(u) € Lp((s,T);WOl’p(Q)) for
any k = 0, and for any S € W3>®(R) such that S’ has a compact support,

(S(u))e — div(A(z, t,u, Vu)S'(u)) + " (u)(A(z, t,u, Vu).Vu — S'(u) f =0 inD'(Qasr), (6.6)
and u(s) = us, and

lim // |Vul|Pdadt = 0, (6.7)
nee QQ,s,rm{n§u§n+1}

Remark 6.2 The initial condition takes sense from [18], because S(u) lies in the set
E = {o e (0, ) WP (@) s g € L ((0,7); W1 (@) + L (Qor) } (6.8)
and E C C([0,T]; LY(Q)). Any function ¢ € Lp((O,T);WOl’p(Q)) N L* (Qqr) can be chosen as

a test function in equation (6.6). Moreover, from [27, Lemma 7.1], v = S(u) satisfies for any
b € C°([s, 7] x Q) the integration formula

/: < vy, M(0)0 >:/Q./\/l(v(.,7-))1p(.,7-)dm—/S)M(v(.,s))w(.,s)dx—/:/Qq/)t/\/l(v)dxdt, (6.9)

for any function M continuous and piecewise C* such that M(0) = 0 and M’ has a compact support,
where M(r) = [ M(6)d6.

A main point in the sequel is the choice of test functions: here we approximate |u|0‘71 u for
a > 0 by truncation. In the following lemma, we solve some technical difficulties arising because
the truncates are not smooth enough to apply the integration formula, and moreover we do not
assume o = 1.
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Lemma 6.3 Let s,7 € R with s < 7, and f € LY(Qqs.). Let u € C([s,7]; L (Q)) be any
nonnegative renormalized solution in Qqr of (6.5), with us = u(.,s). For any o > 0 and k > 0,
we set

Tralr /lTk )21 T (8)db.

Then |Ti(u)|* " A(x,t,u, Vu). V(T (u)) € LYQq.s,) and
/ﬂw dm+a//Q | Ty (u)|* ™ Az, t, u, V).V (Ty (w))dadt
= [ Fatirtonde+ [ [ F1T0 ! Tetuydar (6.10)

Proof. Let o > 0,k > 0 be fixed, and for any n 2 2, and 6 € R,

6
S, (60) = / (1= |Ty(s — To(s))ds,  n=2.
0
This function, introduced in [18], is still a truncation, smoother than 7T}, 1, such that 0 < S,,(0)0 <

Tn+1(9)67 Supp S;L - [_(n+ 1)7” + 1]7 51/1/ = X(=n,—n—1)U(n,n+1)> and Sn(Tk(a)) = Tk(a) for any
n > k. Let 6 € (0, min(1,k)), and n > k. We set

Tipa®) = (To(6]) + 6)* — 6)signd,  Tipa(r) = /O Ty a(6)d0.

We can take in (6.6) S =S, and ¢ = T o(u) = T51,a(Sn(u)) as a test function. We obtain

/ (Sn(u))e, p > —|—/ /S’ Az, t,u, Vu).Vodrdt

- / /Q S (u) fodwdt — / /Q S (u)(A(z, t, u, V). V) pdadt.

then from (6.9), we deduce

a//Q (Tr(Jul) + 6)* TA(x, t,u, Vu). V(T (u))dzdt

- /Q Toka(Sn(w)(., s))dz — /Q T5 k.0 (Sn () (., 7))d
+ / ' /Q S! (u) foodadt — / t /Q S () (A, £, u, V). Vu)pdadt

First we make § — 0. Notice that |Ts g o (0)| < (k+1)* |0] for any 6 € R, and S,,(u) € C([0,T]; L*(2)),
and S], is bounded. Thus we can go to the limit in the right hand side. In the left hand side, from
the positivity of A, and the Fatou Lemma we deduce that

Tk(\ul)o‘_lA(x, u, Vu).VTi(u) € Ll(QQ7S77-).

Moreover we can apply dominated convergence theorem. Indeed A(z,u, Vu).VTk(u) € LY (Qq.s+)
from (6.1), since Ty (u) € LP((s,T); Wol’p(Q)), and

(Tw(Jul) + 0)* P Az, t,u, Vu).V(Ti(u)) < max(Te ! (Jul), (k + 1)* Y A(2, u, Vu).V(T) (u)).
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Hence the same relation holds with § = 0, with Ty () = T2 ([u]) Tk (u) :

t
/ Tr,o(Sn(w) (., 7))dx — / Tra(Sn(u)(., s))dx + a/ / T (Ju)) Az, u, Vu). V (Ty (v))dzdt
Q Q s JQ
T t
= / / S!(u) fTo ko (u)dadt — / / SP(u)(A(z, t,u, Vu). Vu)Tp i, o (w)dzdt.
s JQ s JQ
Then we make n — oo. Since u € C([0,T]; LY(Q)), for any t € [s, 7], we find

im [ Tra(Sn()(,8))da = / T aul.,t))da:
Q Q

n— o0

moreover

t
lim / /S;{(u)(A(x,t,u, Vu).Vu) Ty i o(uw)dzdt = 0,
s JQ

n—o0

from (6.7), (6.1). Finally

lim/ /S;L(u)fTQk”a(u)dxdt:/ /fTO,k”a(u)dxdt,
=0 Js  JQ s JQ

since S] (u) — 1 a.e. and is uniformly bounded. Then (6.10) follows. ]

6.2 Notion of solutions of problem (FPy r)
Definition 6.4 We say that u is a renormalized solution of problem (Po 1) if:

(i)u € C(0,T); L(Q)), Tr(u) € LP._((0,T); Wy P (Q)) for any k = 0, and g(x,u, Vu) € LL_((0,T); L*(2));

loc loc

(ii) for any 0 < s <7 < T, u is a renormalized solution of problem

Ut — (1i‘/(f%L(1% t,?i, ‘77L)) _+'57(1E7 t71L7 ‘71L) - (L in 62527577’
UZO, on 8QX (O,T),
with initial data u(.,s);

(1) for ug € L" (), the extension of u by ug at time 0 belongs to C([0,T) ; L"(2)); for ug € My(2),
there holds

lim [ u(., t)dx = / Pdug, Vi € Cp(Q). (6.11)
Q

t—=0 Jo

Remark 6.5 Recall that Vu is defined by Vu = V(Ti(u)) on the set |u| < k. The assumption on
g means that, for any 0 < s <71 < T,

/ l9(,u, V)| dedt = 19(.,u, V(T (w))] dzdt < oo.
QQ,S,T k=1 QQ,S,Tn{k_lé‘u‘ék}

We first prove decay properties of the solutions.
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Theorem 6.6 Let p,q > 1, and A and g satisfying (6.1) (6.2) and (6.3).
1) Let ug € L"(2),r 2 1 and u be any renormalized solution of (Po ). Then for any t € [0,T),

/Q\u]r(.,t)dxg/ﬂ\uo\rdm. (6.12)

Moreover if r > 1, or if g is coercive, then v |ul*" 1 |Vul? + v |u]""2 [VulP € L ([0,T); L' (),

/|u| dm—{—r7/ /|u|)‘+r Y Vulldadt + r(r — 1) //|u|r 2|Vu|pdxdt</ lug|” dx.

(6.13)
2) Let ug € M;"(Q) and u be any nonnegative renormalized solution of (Po,r) of problem (5.9).
Then the same conclusions hold as in case ug € L*(Q2), where the norm |Jugl|1(q) is replaced by

/duo.
Q

Proof. ) Let 0 < s <t <T. Then for any a > 0, any k > 0, from Lemma 6.3,

/ﬁm dx—i—a/ /yT 1Y A, t,u, V).V (Ty (w) ) dadt
:/Q’ﬁg@m)(.,s))dx—/s /Q|Tk(u)|°‘_1Tk(u)g(.,u,Vu)da:dt.

And | Ty ()| Th(w)g (., u, Vi) > ~ |Th(w)|* VT (w)|? from (6.3). Therefore Jo Tra(w)(., 1)) is
decreasing for any k,« > 0, and

Qﬁﬂ(u)(.,T))dx—i—'y/:/Q]Tk(u)\aJ”\]VTk(u)]qdmdt—l—au/st/Q\Tk(u)]aI\VTk(u)]pdmdt

< Qﬁ7a(u)(.,s))dx. (6.14)

o If r > 1, we can take « =r —1 > 0 in (6.14) and get

/77” ) )dm+7/ / | T (w) "~ |V T (u )|qdazdt+au/ /|T "2 |V Ty (w) P dadt

< /977977,_1(u)(.,8))d$ < ;/Q|u|r(.,s)dx. (6.15)

Since u € C([0,T);L"(2)) we can go to the limit as k& — oo, and s — 0; we obtain that
~ |u|" A [ Vul? and aw [u|" "2 [VulP belong to L} ([0,T) ;Ll(Q)) ; and for any ¢ € (0,7,

loc

U t)yde +r ul I Vul?dzdt +r(r — 1)v ur 2\ Y|P dedt < uo "dx.
H v H

o If r =1, we take any a > 0 in (6.14); notice that

T3 (0)* !
OL < 700 < k01, (6.16)
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for any € > 0. Then

/Q]Tk(u)\o‘H(.,t))dm—i—(oz—i—l)'y/:/g]Tk(u)\o‘Jr’\]VTk(u)\qdmdtg (a—i—l)ka/glu\ (., 5)dz

Going to the limit as a — 0, we deduce

[ 1 e+ / | P T dedt < [ Jul ()

and then as s — 0 we find

/\Tk dw—i—’y/ /ka \VTk(u)]qudtg/Q]uo\dm,

and finally as k — oo, we obtain that fQ lu| (., t)dx < fQ |ug| dz. Moreover if v > 0, we find

t
[l oy [l vaptdsdr < [ fuo .
Q 0 JQ Q

thus (6.13) still holds with r = 1.

2) We still find (6.17). And lims_0 [, u(., s)dz = /duo from (6.11), hence the conclusion.
Q

Next we deduce L* estimates, in particular a universal one.

Theorem 6.7 Let p,q > 1, and A and g satisfying (6.1) (6.2) and (6.3). Let ug € L"(Q2),r

and u be any renormalized solution of (Por).

(i) If g is coercive, then

D) - Ct=° *“IIuOHfI‘S)”, C=C(N,q,7,)\7), ifq#N,
u\ ., oo -~ @y, )
L=t =19 ¢ (te) T luoll gyt Ce=C(N,q,m,A,7,€), ifg=N
where
1 N

o = =W .

'f‘,q,N,)\ %_{_}\_{_q_l rq T7q7N7>‘
Moreover

()| ooy < CETI75, €= C(N,g,\, Q).
(ii) If A is coercive and r > (2 — p)N/p, in particular if p > 2N/(N + 1), then

CtioT’p’N’_lHUOHWT@’N?ia C - C(N,p,?”, v, Q)7 pr 7é N7

Lr(Q)

)| oo () =
HU( ’ )HL @ = { Cst_(1+6)UT’N’N’71Hu(]eryp’Nﬁl? Ce = C(N’p’ Ty V,Q,&), pr =N,

L7 (Q)

where
1 N

O-T7p7N771 = rp =
¥t+tp—2 mp

wr7p7N771'
Moreover if p > 2, then

_ 1
u( )l Lo ) = Ct P2, C =C(N,p,|Q)).

(6.17)

(6.18)

=1

= 9

(6.19)

(6.20)

(6.21)

(6.22)

(iti) The same conclusions hold if u is nonnegative and ug € M; (), as in case ug € L*(2), where

the norm |lug||z1(q) s replaced by /duo. In particular (6.22) holds for p > 2.
Q
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Proof. (i) Let 0 < s <t < T. Since g is coercive, from Theorem 6.6, for any o = 0 such that
lu|*T (., s) € L*(2), there holds

t
/\u\a“ (.,t)dx+(a+1)7/ /yu\“a\vuyqudtg/ o (., 5)da,
Q s Q Q

from (6.13); in particular

L de + @ vy [ [ @ 9T ded < [ sy

And [u* | Vul? = |V (jul’ T u)|? with 8 =14 (a+ A)/q = 1. Then [V((Jul’"u)(.,t))|, and also
IV (| T3 (w)|”~ Ty (w)) (., 1)) belong to L4(Q) for almost any ¢ € (0,T) . Since |Ty(u)[°~ Ty () (., t) €
L=(Q), it follows that |Tj ()|~ Tp(u)(.,t) € W4 (Q). Moreover Ty(u)(.,t) € Wol’p (€2)), hence
Ty (w) |~ Ty () (., 1) € Wol’q (Q).If ¢ < N, we deduce

/Q!Tk(u)\““ (-,t)dﬂc+’y(a+1 / /\T PR (. )dm)¥dag/ﬂyuya+l(.,s)dm.

Going to the limit as k — oo, we find

1
/\u!aﬂ(.,t)dw—i— (a+ CWN,q) / /]u\BN a (. )T < +1/\ 12*(, s)da.
QO (&%

Then we can apply Lemma 2.1 on [¢,T), with m = ¢ and § = N/(N — q); indeed (2.1) is satisfied,
since A 2 0; we deduce the estimate for [¢,T),

[u(s )l (@) S Ot = €)™ ul, )|l

with C = C(N,q,7, A, 7,Q). Going to the limit as e — 0, we get (6.20), and (6.19) for ug € L"(Q2),
and the analogous when ug € M;(Q) In case ¢ = N we proceed as in Theorem 5.12.

(ii) Assume that A is coercive. Then for any « > 0,

/ﬂw d:c+ou// /|Tk L VT (u )|pdxdt</77w ),

from (6.14). First assume p < N. From the Sobolev injection of Wol’p (Q) into LNP/(N=P) (Q), we
deduce

1 N,p) [t [F75
Lot e+ ar SRR LT o) ot £ = [l e
(X+1 Q kp s Q (X+1

with k =14 (e —1)/p.

First suppose r > 1; then we start from g = r — 1 > 0, and we can apply Lemma 2.1
with Cy = (r — 1)vC(N,p), m = p, § = N/(N — p) and A = —1; indeed (2.1) is satisfied, since
r > N(2—p)/p.
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Next suppose = 1. Then 1 > (2 — p)N/p, thus p — 1 + p/N > 1. For any o > 0,

/Q\Tk(u)ya“ )z + ala + 1) //\T VT ()P ddt < (a+ 1)k /yu\

Taking o = 1, we get from (6.12),

t
y/ /\VTk(u)\pdxdtgk/ lul (., s)dz < k:/ o] da
s JQ Q Q

And from (6.12), u € L ((s,T); L' (2)) . From standard estimates, there holds u € L?(Qq ) for
any p € (1,p—1+p/N), see [19]. Then |u|’ (.,t) € L' (Q) for almost any ¢ € (0,7) . Hence we can
apply Lemma 2.1 on [¢,T') for € > 0, with the same parameters, after fixing such a p = p, x such
that pN(2 — p)/p < 1. We obtain that

(s )l ) S Ot =€) lul Ol G,

where C = C(N, ppp.n) = C(N, p); finally we go to the limit as e — 0 because u € C([0,T]; L*(Q)).
Estimate (6.22) follows, since —1+p—1> 0.

If p = N, we proceed as above, applying Lemma 2.1 with m = N, A = —1 and 8 > 1 arbitrary.
Next assume p > N. In case r > 1, there holds, for any ¢t € (0,7,

rr—1)% // V(Jul* ypdxdtg/ ol da,
Klp RN

where K =1+ (r —2)/p > 0. From Lemma 3.4, applied to v = |u|”, withm =p, 1/k =1+ r(p —
N)/Npk, we obtain

Kp k((1—k)p
IOl ey < C Oy [ 19l P
and by integration, with a new constant C' = C'(N,p,r,v),

4 u((=k)p
(1) @ S Clluoll gt

which is precisely (6.21). In case r = 1, we choose p = p € (1,p—14p/N), and obtain from
above, for any 0 < e < s <t < T,

“1,p,N,—1 “1,p,N,—1

s )y < O = )0 u [ EHaY ™ S Ot r ul8) ey Nollpd) -

where C'= C(N, p,v). From Lemma 3.1, we deduce precisely

(s )l oe ) S CE— )7 v uo | i

and we conclude as € — 0.
(iii) We obtain the estimates on (¢,7") as above and go to the limit as € — 0. ]
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Remark 6.8 Our results apply in particular to the problem

uy — div(A(z, t,u, Vu)) =0, inQaor,
u=0, ondQx(0,T),
u(z,0) = ugp

Thus we find again and improve the estimates of [33, Theorem 5.3/, with less regqularity on the solu-
tions: those estimates were proved for solutions u € C([0,T); L"(2)) such that u € LP((0,T) ; Wy * ()N
C([0,T); L%()). The notion of renormalized solutions, equivalent to the notion of entropy solutions

of [35] (see [27]), is weaker. Moreover our results in case p > N are optimal.

Remark 6.9 The extension of results of section 4 to the case of equation of type (1.2) in the case
Q = RN will be treated a further article.

7 Appendix

Proof of Lemma 4.10. (i) Let u be a mild M solution. Then clearly (4.10) holds. Moreover for
any ¢ € Cy (]RN ) , from the assumption on the gradient,

t
< ePug,p >=< ug, e!Pep >= / e ipdug = / (u(.,t) —|—/ et =I)B |\ Vu(., 5)|9ds)pdz
RN 0

n

The relation extends to any ¢ € Cy (RN ) : we can assume that ¢ = 0; from the Beppo-Levi theorem,

t
/ e'® pdug :/ u(.,t)godx—i—/ (/ et =B |\Vu(., 5)|9ds) pda
RN RN RN Jo
t
:/ u(.,t)pdr + / |Vu|lpdxds,
RN 0 JRN

since the measure is bounded. From the integrability of the gradient and the dominated convergence
theorem in L'(RY, duy), we deduce

t
}/im/ / |Vullpdrds = 0, lim emgod,uoz/ wdg,
=0 Jo JrN t—=0 JrN RN

since HetAapHLoo &) S [l 0o vy and et converges to ¢ everywhere as t — 0; thus (4.11a) holds.

(i) Let u be a weak semi-group solution. Then obviously u € Cy((0,7); L' (RY)). As € — 0,
we have

t t
lim [ e®92|Vu(.,s)|%ds :/ =92 Tu(., s)|9ds in LY(RY).
0

e—0 €
Then

t
liI% et =Bu(.€) = u(.,t) +/ =98 |Vu(., 5)|ds in L'(RY).
€E— 0

Moreover (4.11a) entails that that u(.,e) — ug in S’'(RY) and

liH(l) eIy, €) = ePuy in S'(RY); (7.1)
e—
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indeed for any ¢ € S(RV),

<) = B >| < < B ul0) —ualp >] +

[ (0. (@92 = ) a)da
< ‘< e (u(.,€) —ug(.), >‘

(179~ em)SDHLOO(RN))

+ lluls Ol @y

and e'?is continuous on S(RY). Hence, for any ¢ € S(RY), we get

t
< eBug, >:/ (/ et =IB | Vu(., 5)|9ds)pdx

n JOo

u(.,t)pdx +/

n

which extends to any ¢ € Co(RY) by density. Thus (4.9) follows. ]
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