A combinatorial decomposition of higher level Fock spaces - Archive ouverte HAL Access content directly
Journal Articles Osaka Journal of Mathematics Year : 2013

A combinatorial decomposition of higher level Fock spaces

Abstract

We give a simple characterization of the highest weight vertices in the crystal graph of the level l Fock spaces. This characterization is based on the notion of totally periodic symbols viewed as affine analogues of reverse lattice words classically used in the decomposition of tensor products of fundamental $\mathfrak{sl}_{n}$-modules. This yields a combinatorial decomposition of the Fock spaces in their irreducible components and the branching law for the restriction of the irreducible highest weight $\mathfrak{sl}_{\infty}$-modules to $\widehat{\mathfrak{sl}_{e}}$.
Fichier principal
Vignette du fichier
crystalhighestweights15.pdf (261.04 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-00669336 , version 1 (13-02-2012)

Licence

Attribution - NonCommercial

Identifiers

Cite

Nicolas Jacon, Cédric Lecouvey. A combinatorial decomposition of higher level Fock spaces. Osaka Journal of Mathematics, 2013, ANR-12-JS01-0003 (3), 18 p. ⟨hal-00669336⟩
334 View
73 Download

Altmetric

Share

Gmail Facebook X LinkedIn More