A combinatorial decomposition of higher level Fock spaces - Archive ouverte HAL
Article Dans Une Revue Osaka Journal of Mathematics Année : 2013

A combinatorial decomposition of higher level Fock spaces

Résumé

We give a simple characterization of the highest weight vertices in the crystal graph of the level l Fock spaces. This characterization is based on the notion of totally periodic symbols viewed as affine analogues of reverse lattice words classically used in the decomposition of tensor products of fundamental $\mathfrak{sl}_{n}$-modules. This yields a combinatorial decomposition of the Fock spaces in their irreducible components and the branching law for the restriction of the irreducible highest weight $\mathfrak{sl}_{\infty}$-modules to $\widehat{\mathfrak{sl}_{e}}$.
Fichier principal
Vignette du fichier
crystalhighestweights15.pdf (261.04 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00669336 , version 1 (13-02-2012)

Licence

Identifiants

Citer

Nicolas Jacon, Cédric Lecouvey. A combinatorial decomposition of higher level Fock spaces. Osaka Journal of Mathematics, 2013, ANR-12-JS01-0003 (3), 18 p. ⟨hal-00669336⟩
353 Consultations
105 Téléchargements

Altmetric

Partager

More