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A combinatorial decomposition of higher level Fock
spaces

N. Jacon *and C. Lecouvey!

Abstract

We give a simple characterization of the highest weight vertices in the crystal graph of the level [ Fock spaces. This
characterization is based on the notion of totally periodic symbols viewed as affine analogues of reverse lattice words
classically used in the decomposition of tensor products of fundamental sl,-modules. This yields a combinatorial
decomposition of the Fock spaces in their irreducible components and the branching law for the restriction of the
irreducible highest weight sl.-modules to sl..

1 Introduction

To any I-tuple s €Z! is associated a Fock space Fs which is a C(g)-vector space with basis the set of I-
partitions (i.e. the set of I-tuples of partitions). This level [ Fock space was introduced in [7] in order to

construct the irreducible highest weight representations of the quantum groups Z/l,;(gl\e) and Uy(sly). It

provides a natural frame for the simultaneous study of the representation theories of U, (5/[\6 ) and U, (sl ). It
moreover permits to categorify the representation theory of the Ariki-Koike algebras (some generalizations
of the Hecke algebras of the symmetric groups) in the nonsemisimple case (see [1]).

The Fock space Fs has two structures of U(;(ﬁ/[\e) and U, (sl )-modules. For these two structures, the
empty [-partition @ is a highest weight vector with dominant weights Ag . and Ag . We denote by V,(s) and

Voo (s) the corresponding highest weight 2, (5/[\6 ) and Uy (sls)-modules. In fact, any highest weight irreducible

U, (5/[\6) or Uq(slo)-module can be realized in this way as the irreducible component of a Fock space with
highest weight vector . It is also known [2, 7] that the two modules structures are compatible. This means

that the action of any Chevalley generator for Z/l(;(ﬁf[;) can be obtained from the actions of the Chevalley

generators for Uy(slo). In particular, Vi (s) admits the structure of a U, (5/[\6)—1110(11116.

The first purpose of this paper is to give a simple combinatorial description of the decomposition of Fg
in its irreducible U, (5/[\6) and Uy (sl )-components. For the U, (sl )-module structure, this problem is very
similar to the decomposition of a tensor product of fundamental U, (s, )-modules into irreducible ones. It is
well-known that this decomposition can be obtained by using the notion of reverse lattice (or Yamanouchi)
words. Here our description of the decomposition into irreducible is based on the notion of totally periodic
symbols which can be regarded as affine analogues of reverse lattice words.

The Kashiwara crystal associated to the Fock space F5 admits as set of vertices, the set Gg of all [-partitions.
According to Kashiwara crystal basis theory, it suffices to characterize the highest weight vertices in G to
obtain the decomposition of Fg into its irreducible components. We prove in fact that the totally periodic
symbols label the highest weight vertices of Gs. It is also worth mentioning that, according to recent papers
by Gordon-Losev and Shan-Vasserot [5, 12], there should exist a natural labelling of the finite dimensional
irreducible representations of the rational Cherednik algebras by highest weight vertices of Gg, thus by a
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subset of the set of totally periodic symbols. Nevertheless the combinatorial characterization of this subset
seems not immediate. . .
The set Gs admits two Uy (sle) and Uy (sl )-crystal structures. In [6] we established that the U (sl.)-
structure of graph on Gs is in fact a subgraph of the U, (sl )-structure. This implies that each U, (sl)-
connected component decomposes into U (;[;)—connected components. Each [-partition then admits a U (5/[\6)
and a Uy (sl )-weight. In particular, We can consider the decomposition of the U, (sl )-connected component

Gs,00(0) with highest weight vertex @ in its U] (;[\e)—connected components, that is the decomposition of the
crystal graph of V(s) in Z/{; (sle)-crystals. We prove that this decomposition gives the branching law for the

restriction of the U, (sl )-module V. (s) to Uy (5/[\6) Observe this does not follow immediately from crystal
(€0)

basis theory since the root system of affine type A

also establish that the number of highest weight Ué(s/[;)—vertices in Gs oo (0) with fixed U, (sl )-weight is
counted by some particular (skew semistandard) tableaux we call totally periodic. These tableaux can be
regarded as affine analogues of the usual semistandard skew tableaux relevant for computing the branching
coeflicients associated to the restriction of the irreducible gl,-modules to gl,,, ® gl,,_,, with m < n some
positive integers.

It also follows that the number of U (f?[\e)—highest weight vertices in Gs with fixed U (sl )-weight is finite
and can be expressed in terms of the Kostka numbers and the number of totally periodic tableaux of fixed
shape and weight.

; is not parabolic in the root system of type A... We

The paper is organized as follows. In Section 2, we introduce the notion of symbol of an [-partition.
Section 3 is devoted to some background on Fg, its two module structures and the corresponding crystal
bases theory. In Section 4, we show that the two crystal bases on Fs for U(sl.) and for U,(sly) are
compatible. This implies that the decomposition of Gs (@) into its Uy (5/[\6 )-connected components yields the
desired branching law. Section 5 characterizes the highest weight vertices in Gg by totally periodic symbols.
Finally in Section 6, we first express the multiplicities of the irreducible U, (sl )-modules appearing in the
decomposition of Fg in terms of the Kostka numbers. Next, we establish that the branching coefficients
for the restriction of Vio(s) to U (sle) can be graded by the U, (sl )-weights and then counted by totally

periodic semistandard tableaux. This gives the decomposition of Fg in its irreducible U; (g[;)—components.

2 Preliminaries on multipartitions and their symbols

2.1 Nodes in multipartitions.

Let n €N, | € Z and s = (sg, 51,...,5-1) € ZL.

A partition X is a sequence (Mg, ..., \) of decreasing non negative integers.

An [-partition (or multipartition) X is an [-tuple of partitions (A°, ..., AI=1). We write A F; n when X is an
[-partition of total rank n. The empty [-partition (which is the [-tuple of empty partitions) is denoted by 0.
If A is not the empty multipartition, the height of A is by definition the minimal non negative integer 7 such
that there exists ¢ € {0,...,] — 1} satisfying \¢ # 0. By convention, the height of @ is 0.

For all A F; n, we consider its Young diagram:

A ={(a,b,c)a>1, c€{0,....0 =1} 1 <b< A}

The nodes of X are usually defined as the elements of [A]. However, by slightly abuse the notation, they will
be regarded in the sequel as the elements of the (infinite) set:

{(a,b,c)a>1, c€{0,...,1 —1}H0<b< A}
We define the content of a node v = (a, b, ¢) € [A] as follows:

cont(y) =b—a+ s,



and the residue res(y) is by definition the content of + taken modulo e. An i-node is then a node with
residue ¢ € Z/eZ. The nodes of the right rim of A are the nodes (a, XS, ¢) with XS # 0. We will say that v
is an i-node of A when res(y) = i(mod e). Finally, We say that v is removable when v = (a,b,¢) € XA and
A\{7} is an [-partition. Similarly 7 is addable when v = (a,b,c) ¢ A and AU {~} is an [-partition.

2.2 Symbol of a multipartition

Let A k; n. Then one can associate to A its shifted s-symbol denoted by B(\,s). Our notation slightly
differs from the one used in [4, §5.5.5] because the symbols we use here are semi-infinite with possible
negative values. Thus, the symbol B(,s) is the [-tuple

(B, 8)?,B(N,8) ..., B\ s) )
where for each ¢ € {0,1,...,1 — 1}, and i = 1,2,..., we have
BA,8)y =N —i+s.+1
This symbol is usually represented as an [-row tableau whose ¢-th row (counted from bottom) is B(A, s)c.

Example 2.1. With A =(3,2.2.2,2.1) and s = (1,0, 2), we obtain

. =3 =2 -1 0 2 4
BAs)=| ... =3 0 1 2
-3 -2 -1 0 4

We make the following observations.

e It is casy to recover the multipartition A and the multicharge s from the datum of B(A,s).

e Forall c € {0,...,l — 1}, let j. be the maximal integer such that B(A,s)j # —jc + s+ 1, if it exists,
we set j. := 0 otherwise. Then the entries B (A, s)§ of the symbol such that 0 < ¢ <! —1and j < j.
are bijectively associated with the nodes (j, A§, ¢) of the right rim of A.

2.3 Period in a symbol

We now introduce the notion of period in a symbol which is crucial for the sequel.

Definition 2.2. Consider a pair (A, s) and its symbol B(A,s). We say that (A, s) is e-periodic if there exists
a sequence (i1, c1), (i2,¢2), ..., (fe;ce) in N x {0,1,...,1 =1} and k € Z satisfying

BOAs) =k, B2 =k—1,...,BA,8) =k—e+1
and such that
l.c1>2c>...2ce,
2. forall 0 <c¢<[l—1andieN, we have B(A,s)f <k (i.e. kis the largest entry of B(A,s)).

3. given t € {1,...,e} and (j,d) such that B(X,s)} = k —t + 1, we have ¢, < d.(i.e. there is no entry
k—t+1in B(A,s) strictly below than the one corresponding to (i, ct)) .

The e-period of B(A,s) is the sequence (i1, Aj!, c1), (i2, A7, c2), ..., (ie, A{°, cc) and the form of the e-
period is the associated sequence (k,k —1,...,k — e+ 1) which can be read in the symbol.



2.4 Reading of a symbol

An e-period can be easily read on the symbol B()\,s) associated with (A,s) as follows. First, consider the
truncated symbol B*(\,s). It is obtained by keeping only in B(A,s) the entries of the symbol of the form
B(A,s)§ for j =1,...,he + e (where h. denotes the height of \°) and ¢ =0,1,...,1 - 1.

Denote by w the word with letters in Z obtained by reading the entries in the rows of B¢(\;s) from right
to left, next from top to bottom. We say that w is the reading of B*(\,s). Each letter of w encodes a node
in (A, s) (possibly associated with a part 0).

When it exists, the e-period of B(A,s) is the sequence of nodes corresponding to the subword u of w
of the form uw = k(k —1)---(k — e + 1) where k is the largest integer appearing in w (and thus also in the
symbol) and each letter k —a,a =0,...,e — 1 in ¢ is the rightmost letter k¥ — a in w.

Example 2.3. For s = (0,—1,1) and A = (3,2.2.2,2.1), the symbol

. -4 -3 -2 -1 1 3
BAs)=|[ ... -4 -1 0 1
4 -3 -2 -1 3

admits no 4-period. So (A, s) is not 4-periodic.
For s’ = (—1,-1,1) and v = (3.3.1,4.3.1,4.4.2), we have:

... =5 —4 -3 -2 1 4 5
Bv,s)=| ... -5 -4 -2 1 3
-5 -4 -2 1 2

Thus A admits a 5-period with form (5,4, 3,2,1). The word associated w described in §2.4 is:

w = 54123456 31234567 21245678
where we write Z for —x for any € Z~q. So B(v,s’) is 5-periodic.
Remark 2.4. A pair (0,s) is always e-periodic with form of the e-period M, M — 1,...,M — e + 1 where
M = max(s).
2.5 Removing periods in B(0,s)
For [ € N and e € N, we denote
Tie={t=(to,....,t11) €EZ |tg<---<ti_yand t;_; —tg<e—1}.

We now describe an elementary procedure which permits to associate to any I-tuple s €Z! an element
t €7 such that B(0,t) is obtained from B(0,s) by deleting e-periods.

If s = s(O¢T ., we set s1) = s’ where B(0,s’) is obtained from B(0,s) by deleting its e-period. More
generally we define s*1) from sP)¢7; . such that s+ = (s(P))’,

Lemma 2.5. For any s €7, there exists p > 0 such that s??) € Tie-

Proof. First observe that for any ¢ = 0,...,l — 2 such that s;;1 —s; < 0, we have SQH — 8} > sip1 — s; with
equality if and only if s} = s; and s, | = s;41. For any s €Z, set

-2
f(S) = Z min(O, Si+1 — Si)-
=0

For any ¢ = 0,...,l — 2 with s;41 — s; < 0, there is an integer p such that sz(-p) < 8; (the i-th coordinates

of the I-tuples s, p > 0 cannot be left all untouched by the iteration of our procedure). Therefore, for



such a p, we have f(s(?)) >f(s). Since f(s) < 0 for any s €Z!, we deduce there exists an integer py such
that f(sP°) = 0 and thus such that sz(-f_ol) - sz(-p[)) >0 forany i = 0,...,0 — 2. We can thus assume that the
coordinates of s €7Z' satisfy s;,1 —s; > 0 for any i = 0,...,] — 2. One then easily verifies that for any p > 0,
the coordinates of s(P) also weakly increase. Observe that for any i = 0,...,] — 2 such that s; 11 — s; > e, we
have s;,; — s; < s;41 — s; with equality if and only if 5] = s; and s}, = s;41. Set

1—2
g(s) = Zmin(o,e —1—(Si+1 — 8i))-
=0

Assume s¢7; .. Since a pair (s;, s;+1) with s;41 — s; > e cannot remain untouched by the iteration of our
procedure, there exists an integer p such that g(s®) > g(s). So we have an integer py such that g(s®0)) =0
and since the coordinates of s(P°) weakly increase, one has s®0) Ti,c as desired. O

Example 2.6. Consider s = (5,3,5,0,1) for e = 3. We obtain

s = (5,3,5,0,1),s" = (2,3,5,0,1),5? = (2,2,3,0,1),
s® =(0,2,2,0,1),s® = (=1,0,2,0,1) and s©® = (-1, -1,0,0,1),

and we have s(®) ¢ Ts.3-

3 Module structures on the Fock space

We now introduce quantum group modules structures on the Fock space of level [ and describe the associated
crystal graphs.

3.1 Roots and weights
Let e € Zsq1 U {o0}. Let Ué(;[\e) (resp. Uy(slss)) be the quantum group of affine type Agl_)l (resp. of type
As). This is an associative Q(g)-algebra with generators e;, f;, t;, ti_l with ¢ =0,...,e — 1 (resp. ¢ € Z). We
refer to [4, chap. 6] for the complete description of the relations between these generators since we do not
use them in the sequel. To avoid repetition, we will attach a label e to the notions we define. When e is
finite, they are associated with U (f?[;) whereas the case e = co corresponds to U, (sl ).

We write A;.,i =0, ...,e — 1 for the fundamental weights. The simple roots are then given by:

Qe =—Ni—1e+2Nc—Nit1e

fori=0,...,e—1. As usual the indices are taken modulo e. For s € Z!, we also write Ase =D gcociq1 Mo e

There is an action of the extended affine symmetric group §l on Z! (see [6, §5.1]). This group is generated
by the elements o1, ...,0;_1 and ¥, ...., y;—1 together with the relations

OcOei10c = Oci10c0ct1, 0c0q=0q0 for [c—d| >1, o2 =1,
YelYd = YaYe;  OcYa = Yaoe for d # c,c+ 1, 0cyeOe = Yot
for relevant indices. Then we obtain a faithful action of S; on Z! by setting for any s = (sq, ..., s;_1) € Z'
0c(8) = (804 vy Sey Se—1y -y S1—1) aNd Ye(8) = (S0, ooy Se—1, S + €, vy S1—1).

Given s, s’ € Z!, we have Age = Ay if and only if s and 8" are in the same orbit modulo the action of §l.
In this case, we denote s =.s’. Set

Vie={v=(vo,....,0-1) €Z' |0< vy < -+ <y <e—1} (1)

Given any s € Z! there exists a unique v in V; such that s =.v.



3.2 Module structures

We fix s € Z!. The Fock space Fs is the Q(q)-vector space defined as follows:

Fo= P P e

n€l>g Akin

According to [13, §2.1], there is an action of Z/l(;(ﬁA[e) on the Fock space (see [4, §6.2]). This action depends

on e and we will denote by Fs . the Z/l,; (f?[e)—module so obtained. In Fg ., each partition is a weight vector
(with respect to a multicharge s) with weight given by (see [13, §4.2])

wt(A,8)e = Age — Z Ni(A; s)aie,

0<i<e—1

where N; (A, s) denotes the number of i-nodes in A (where the residues are computed with respect to s). For
any e € Zs1 U {oo}, the empty multipartition is always a highest weight vector of weight Ag.. We write
Ve(s) for the associated Uy (;[e)—module. We clearly have V,(s) ~ V_.(s) if and only if s =.s’.

In general, the modules structures on Fg are not compatible when we consider distinct values of e.
Nevertheless, we have the following proposition stated in [2, §2.1].

Proposition 3.1. Let e € Nyg.

1. Any Uy (sl )-trreducible component Voo of Fs oo is stable under the action of the Zz{é(ﬁ/[\(i)—C’hevalley
generators e;, fi, ti,i € Z/eZ. Therefore Vi, has also the structure of a L{é(ﬁ/[\e)—module.

2. In particular, the L{;(ﬁ/[\e)—module Voo (s) is endowed with the structure of a L{;(;[\e)—module. Moreover

Ve(s) then coincides with the L{;(ﬁ/[\e)—irreducible component of Voo (s) with highest weight vector the
empty l-partition (.

Remark 3.2. The algebras sl,, and sl, can be realized as algebras of infinite matrices (see [8]). Then sl is
regarded as a subalgebra of sl. In particular, the irreducible sl.-module of highest weight Ag o admits the
structure of a ;[;-module by restriction. The highest ;[;-weights involved in its decomposition into irreducible
then coincide with those appearing in the decomposition of V. (s) into its irreducible ¢ (;E)-components.

3.3 Crystal bases and crystal graphs

We now recall some results on the crystal bases of Fs . established in [7] and [13]. Let A(g) be the ring of
rational functions without pole at ¢ = 0. Set

L:= @ @ A(g)X and

n>0AHn
G :={A (mod ¢L) | A is an [-partition}.

Theorem 3.3 (Jimbo-Misra-Miwa-Okado, Uglov). The pair (£,G) is a crystal basis for Fs . and Fg co-

Observe that the crystal basis of the Fock space is the same for Fs . and Fs ... Nevertheless, the crystal
structures G. s and Go s on G do not coincide for Fs . and Fs . To describe these crystal structures we
begin by defining a total order on the removable or addable i-nodes. Let «, 4" be two removable or addable
i-nodes of A. We set

either b—a-+s.<b —a + su,

/
Y <s Y A {or b—a+s.=b —a +ssandc>c.



Let A be an [-partition. We can consider its set of addable and removable i-nodes. Let w;(A) be the
word obtained first by writing the addable and removable i-nodes of A in increasing order with respect to
~s next by encoding each addable i-node by the letter A and each removable i-node by the letter R. Write
w;(A) = AP R? for the word derived from w; by deleting as many subwords of type RA as possible. The word
w;(A) is called the i-word of A and w;(\) the reduced i-word of A. The addable i-nodes in w;(A) are called
the normal addable i-nodes. The removable i-nodes in w;(\) are called the normal removable i-nodes. If
p > 0, let v be the rightmost addable i-node in w;. The node ~ is called the good addable i-node. If ¢ > 0,
the leftmost removable i-node in w; is called the good removable i-node. We set

wi(A) =pand ;(A) = q. (2)

By Kashiwara’s crystal basis theory [9, §4.2] we have another useful expression for wt(A,s).

wi(A,8)e = D (piA) =g, (M)A, .. 3)

€L/ el

We denote by G, s the crystal of the Fock space computed using the Kashiwara operators e; and ﬁ By
[7], this is the graph with

e vertices : the [-partitions A - n with n € Z>¢

o arrows: A p that is e; o = A if and only if @ is obtained by adding to A a good addable i-node, or
equivalently, A is obtained from p by removing a good removable i-node.

Note that the order induced by <s does not change 1/f\ we translate each component of the multicharge
by a common multiple of e (nor does the associated U, (slc)-weight). Thus, if there exists k& € Z such that
s =(80,81,-..,5_1) = (so+ ke s1+ke, ... s1_1+k.e) then the crystal G. s and G, ¢ are identical.

The crystal G, s has several connected components. They are parametrized by its highest weight vertices
which are the [-partitions A with no good removable node (that is such that £;(A) = 0). Given such an
l-partition A, we denote by G, s(A) its associated connected component. One easily verifies that wt(@,s). =
Ag(mod ¢)- So the crystal G, (@) is isomorphic to the abstract crystal Go(Ag(mod ¢)). In general, for any highest
weight vertex A, G, s(A) is isomorphic to the abstract crystal G, (wt(A, s)c). By setting Ay (mod ) = Wt(A,8)e,
we thus obtain a crystal isomorphism f&3 : Ges(A) = Ge v (0).

3.4 Crystal graphs and symbols

Consider i € Z/eZ. The reduced i-word w; of a multipartition A may be easily computed from its symbol.
Let jiow € Z be the greatest integer such that jj,, = i(mod e) and such that each row of B(A,s) contains
all the integers lowest or equal to j;. Such an integer exists since the rows of our symbols are infinite. For
any j € Z such that j = i(mod e) and j > jiow let u; be the word obtained by reading in the rows of B(A, s)
the entries j or j 4 1 from top to bottom and right to left. Write

oo
Ui = H Ujo+te
t=0

for the concatenation of the words u;. Here all but a finite number of words wu;,4++. are empty. We then
encode in u; each letter 7 by A and each letter j + 1 by R and delete recursively the factors RA. Write u;
for the resulting word.

Lemma 3.4. We have w; = u;.

Proof. For any j = i(mod e), write w; for the word obtained by reading the addable or removable nodes
with content j (with respect to s) successively in the partitions A°;¢ = [ —1,...,0. Observe there is no



ambiguity since each partition A contains at most one node with content j which is addable or removable.
By definition of the order <g, we have

w; = [ wiorte (4)
t=0

where all but a finite set of the words w; are empty. Now we come back to the word u;. The contribution to
the c-th row of B(A,s)¢ of u; is one of the factors (j +1)j, j+1, j or . The factors (j +1);j will be encoded
RA so they will disappear during the cancellation process and we can neglect their contribution. Write u;
for the word obtained by deleting in u; the factors (j + 1)j corresponding to entries in the same row. There
is a bijection between the letters of “3 and w; which associates to each letter j +1 (resp. j) in “3 appearing
in the row ¢ a node R (resp. A) of w;. This easily implies that u; = w;. O

4 Compatibility of crystal bases and weight lattices

4.1 Crystal basis of the 1/, (sl.)-module V. (s)

Consider e € Z~1 U {+oo}. The general theory of crystal bases (see [9]) permits to define the Kashiwara
operators é;, f;,i € Z/eZ on the whole Fock space Fs . by decomposing, for any i € Z/eZ, Fs . in irreducible

U, (5/[\6)z components. These operators do not depend on the decomposition considered (see [9, §4.2]). This

implies that the Kashiwara operators associated with any Ué (;[:)—submodule M. of Fs . are obtained by
restriction of the Kashiwara operators defined on Fg .

Set s € Z'. By Proposition 3.1, we know that V. (s) has the structure of a Z/lé(ﬁ/g)—module. Set Loo(s) =
L NVy(s) and Bx(s) = Loo(s)/qLoo(s). It immediately follows from crystal basis theory that the pair
(Loo(s), Boo(s)) is a crystal basis for Voo (s) regarded as a Uy(sls)-module. In fact this is also true when

Vo(s) is regarded as an U, (g[;)—module.
Proposition 4.1. The pair (Lo (8), Boo(S)) is a Uq(gi)-crystal basis of the Uq(gi)-module Voo (s).
Proof. Observe first that we have the weight spaces decompositions

Loo(s) = @D £, N Veo(s) and Buo(s) = €D (£,./aL,) N Boo(s)

neP. neP.

where P, is the weight space of the affine root system of type Agl_)l. By Theorem 3.3, for any i € Z/eZ, €; and
f; stabilize £. They also stabilize the Uy (f?[\e)—submodule Voo (8) by the previous discussion. Therefore, they
stabilize Loo(s) and Boo(s). Moreover, we have for any by, ba € Boo(s), fi(b1) = bs if and only if €;(b2) = by

since this is true in B. This shows that the pair (Lo (s), Boo(s)) satisfies the general definition of a crystal
basis for the U, (sl.)-module V(s). O

Since (Loo(s), Boo(s)) is a crystal basis for Vo (s) regarded as a Uy (sl )-module, Boo(s) has the structure

of a Uy(sls)-crystal that we have denoted by Goo s(@). By the previous proposition, Be(s) (which can be
regarded as the set of vertices of G, (@)) has also the structure of a U',(sl)-crystal that we denote by
GSs(0). This crystal is also a subcrystal of G s since the actions of the Kashiwara operators on G5, (@)
are obtained by restriction from G, s. Let us now recall the following result obtained in [6, Theorem 4.2.2]
which shows that G. s is in fact a subgraph of G ¢

Proposition 4.2. Consider A and p two l-partitions such that there is an arrow A EN pninGes. Let jeZ
be the content of the node p\ X. Then, we have the arrow X 2 poin Goos-

By combining the two previous propositions, we thus obtain the following corollary.

Corollary 4.3. The Uy(sle)-crystal G5, ((0) is a subgraph of the Uy(sls)-crystal Goo (@) It decomposes
into Uy (;[;)—connected components. This decomposition gives the decomposition of Vi (8) into its irreducible

Uy (sle)-components.



4.2 Weights lattices
Let P, and P be the weight lattices of U;(;[\e) and U, (sl ). We have a natural projection defined by

. Py — P,
' Aj,oo — Aj mode,e

(5)

Consider s €Z' and X an [-partition.
Lemma 4.4. We have wt(A,8). = m(Wt(X,8)oo)-

Proof. By (3), for any e € Z~1, the coordinate of wt(\,s). on A; . is also equal to the number of letters A in
u; minus the number of letters R. This is equal to the sum over the integer j such that j = i(mode) of the
number of letters A in u; minus the number of letters R. The coordinate of wt(X,s). on A; . is thus equal
to the sum of the coordinates of wt(\,s)s on the A; o with j = i(mode) as desired. O

One easily verifies that the kernel of 7 is generated by the wi := Agy1 .00 — Ak—c,00. k € Z. The weight
wy, have level 0. In fact level 0 weights for U, (sl) are the Z-linear combinations of the elementary weights
€ =ANjt1,00 — Nj oo, j € Z. The contribution of an entry j € Z of B(A,s) to the weight wt(A, s) is exactly
gj. We also have wy, = e + -+ + €p—et1-

5 A combinatorial characterization of the highest weight vertices

Our aim is now to give a combinatorial description of the highest weights vertices of G. s, the crystal of the
Fock space Fes. Such a vertex is an [-partition without good removable i-node for any i € Z/eZ.

5.1 Removing a period in a symbol
Let A\ be an [-partition. We define the [-partition A~ and a multicharge s~ as follows:
e If X\ is not e-periodic then A™ := X and s~ :=s.

e Otherwise, delete the elements of the e-period in B(A,s). This gives a new symbol B(u,s’) which is
the symbol of an [-partition associated with another multicharge s’. We then set A~ := pand s~ :=¢'.

Proposition 5.1. Let X be an e-periodic multipartition. For any i € Z/eZ, write w; and w; for the reduced
words obtained from the symbols X and A~ as in §3.4.

1w =1 .

Proof. 1: Write (ja,Aj*,ca), @ = 1,...,e for the e-period in B(A,s). Recall we have by convention ¢; >
-+« > ¢. Consider i € Z/eZ. Let u; be the word constructed in §3.4. By definition, there exists a unique
a € {1,...,e} such that B(A,s)j* = i(mod e). Assume first a > 1. Write 2,1 and x, for the letters of u;
associated to (Jq, )\;Z: ,Ca—1) and (Ja, )\;Z, ¢q). We have z4_1 = x4+ 1. Set u; = ujz,_1vz,ul where ul, v, u}
are words with letters in Z. By definition of the e-period, v is empty or contains only letters equal to z,.
Indeed, x,_1 should be the rightmost occurrence of the integer x,_1 in u;. Therefore the contribution of z,_1
and z, can be neglected in the computation of u; since they are encoded by symbols R and A, respectively.
Now assume a = 1. Write y; and y. the letters of u; associated with (j, Afr,e1) and (Jes Aje, ce). We have
Ye = y1 — e+ 1. By definition of u,;, we can write u; = ujyevyru; where u;, v, u] are words with letters in
Z. By definition of the e-period, v is empty or contains only letters y;. Indeed, y. should be the rightmost
occurrence of the integer y. in u;. Therefore the contribution of y. and y; can be neglected in the computation
of u; since they are encoded by symbols R and A, respectively. By the previous arguments, we see that the
contribution of the e-period in u; can be neglected when we compute ;. This shows that w; = u}. Assertion

2 follows immediately from 1, (2) and Lemma 3.4. O



5.2 The peeling procedure

Given X an arbitrary l-partition and s a multicharge, we define recursively the I-partition A° and the
multicharge s° as follows:

e If X\ is not e-periodic, or X is empty with s €7, ., then we set A° := X and s° :=s.
e Otherwise we set A° := (A7) and s° := (s)°.
Remark 5.2. When X = 0, we have s° :=s only if s €7 .

Lemma 5.3. The previous procedure terminates, that is the pair (A°,s°) is well-defined. Moreover we have

S € Tie if X° = 0.

Proof. If X is not empty and A~ # A, then ‘)\_‘ < |Al. So when we apply the previous procedure to (A;s),
we obtain after a finite number of steps an aperiodic pair (A’,s) or a pair (), u). In the first case, we have
(X';s") =(X\°,s°) and the procedure terminates. In the second case, we have already noticed in Remark 5.10
that (0, s") admits an e-period. The lemma then follows from Lemma 2.5. O

Definition 5.4. The pair B(A,s) is said to be totally periodic when A° = @ and s° € 7.

Example 5.5. Here are a couple of examples.
1. First, assume that e = 3, let s = (1,1) and let A = (3.3,4.4.3). We have

. =2 2 45
(’BO"S)<... -2 -1 3 4)

If we delete the 3-period we obtain the symbol:

W =2 2 4

Blu.s) = ( oo—2 -1 )
which is the symbol of the bipartition g = A~ = (,4.3) with multicharge s~ = (—1,0). We don’t
have any 3-period so A° = (1,3.2) and s° = (—1,0). Note that we have (—1,0) =, (0,2).
2. Now take e = 4, let s = (4,5) and A = (2.2.2.1.1,2). We obtain the following symbol
... =101 2 3 4 7
(’BO"S)(.. -1 12 45 6 >

By deleting the 4-period, we obtain:

- . -1 01 2 3 4
B ’S):(... -1 1 2 )

Thus, we get A~ = (1.1,0) and s~ = (1,4). Now deleting the 4-period, we have:
o ... =1 0 1 2
B 6= (] )

and we derive (A7)” = (0,0) and (s7)” = (—1,2). Finally, we can delete the 4-period 2,1,0,—1 in
the last symbol, this gives
%(AO,SO):( :1 )



5.3 Crystal properties of periods

Proposition 5.6. Lets € Z! and let A=y n. Then fori € {0,1,...,e— 1}, we have €;(\) = 0 if and only if
e(A7)=0

Proof. If X is A or the empty [-partition, the lemma is immediate. Otherwise it follows from Lemma
5.1. |

Proposition 5.7. Let A b; n be such that X # O and assume that €;(A) = 0 for any i € Ze/Z. Then A
admits an e-period.

Proof. Consider ¢; minimal such that B(X,s)7" = M is the largest entry of B(A,s). Let i € Z/eZ be such
that M =i+ 1 (mod e). Then, in the encoding of the letters of u; by symbols A or R, the contribution of
B(A,s)]" is the rightmost symbol R of u;. Since €;(A) = 0, there exists in u; an entry B(A,s)52 encoded by A
immediately to the right of B(X,s)]* (to have a cancellation RA). By maximality of M and definition of w,,
we must have B(, 5)222 =M — 1 and ¢z < ¢;. We can also choose ¢z minimal such that B(A, 5)222 =M-1
(or equivalently, the contribution of B(X,s):2 is the rightmost A in wu;). Then, the entries in any row
c with ¢ < ¢ are less than M — 1. If we use €; _1(A) = 0, we obtain similarly an entry B(X,s):? with
B(A,8)i3 = M — 2, c3 < co such that the entries in any rows ¢ with ¢ < c3 are less than M — 2. By
induction, this gives a sequence of entries B(A, s)gm =M —m+1,form=1,...,e,¢1 > > c. and the
entries in any row ¢ < ¢, are less than M — m + 1, that is the desired e-period. |

Proposition 5.8. Lets € Z' and let X F; n be such that X # 0. Assume that (X, 8) admits an e-period of
the form M, M —1,...,M —e+ 1. We have

1. wt(A,8)e = WwH(A™,87 )e.
2. Wt(A,8)oo = WH(AT,87 Joo + was-
Proof. 1: Recall that for any (A, s), we have by §3.3
wi(A,8) = D (pi(A) —g,(N)A,.
i€L[el

By assertion 2 of Proposition 5.1, we have £;(A) = £;(A7) and ¢;(A) = @; (A7) for all ¢ € Z/eZ. Therefore
wt(\,8)e = Wt(A7,87).. Assertion 2 follows from the fact that the contribution to each entry j € Z in
B(A,s) to wt(A, s)so I8 £5. So

WH(A,8)oo = WEAT,8 ) + M+ EM—et1 = WEH(AT,8T oo + Wi

5.4 A combinatorial description of the highest weight vertices

Theorem 5.9. Let s € Z! and let X =) n then (X,s) is a L{é(ﬁ/[\e)—highest weight vertex if and only if it is
totally periodic.

Proof. First assume that (X, s) is totally periodic, that is A° is the empty [-partition and s° € 7; .. An easy
induction and Proposition 5.6 show that (X,s) is a U’,(sl.)-highest weight vertex. In addition, the weight

of (A, s) is equal to the weight of (A°;s°) by Prop 5.8. Conversely, if A is a Uq'(s/[;)—highest weight vertex,
we know by Prop 5.7 that it admits a period and by Proposition 5.6 that A~ is also a highest weight vertex.
Moreover, for any s ¢ T ., we have seen in Remark 2.4 that B((),s°) contains an e-period. By Lemma 5.3,
this implies that A° is empty with s° € 7T, .. O

Remark 5.10.
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1. We can obtain the highest weight vertices of s » by adapting the previous theorem. It suffices to
interpret Gs oo as the limit when e tends to infinity of the crystals Gs .. Then (A, s) is a highest weight
vertex if and only if B(,s) is totally periodic for e = co. A period for e = 0o is defined as the natural
limit of an e-period when e tends to infinity. This is an infinite sequence of the form M, M —1, M —2,...
in B(\,s) where M is the maximal entry of B(A,s). We say that B(A,s) is totally periodic for e = co
when it reduces to the empty symbol after deletion of its periods following the procedure described in
§ 5.2. In this case, since these periods are infinite, a row of the symbol disappears at each deletion of
a period. In particular, there are [ infinite periods.

2. Recall that a word w with letters in Z is a reverse lattice (or Yamanouchi) word if it can be decomposed
into subwords of the form a(a — 1) --- min(w) where min(w) is the minimal letter of w. Let m be the
maximal integer in B(A,s) such that each row of B(A,s) contains all the integer k£ < m. One easily
verify that the periodicity of B(A,s) for e = oo is equivalent to say that the word w obtained by
reading successively the entries greater or equal to m in the rows of B(\,s) from left to right and top
to bottom is a reverse lattice word. Indeed, we always dispose in the symbol B(A,s) of integers less
than m to complete any decreasing sequence a,a — 1,...,m into an infinite sequence. Observe that

this imposes in particular that M < zlc;é(sc —m+1). We will see in § 6.2 that this easily gives the

decomposition of Fg cinto its Uy (sl )-irreducible components.

Example 5.11. Take e = 4,1 =3,s = (3,4,6) and A = (0,2.2,2.2.1.1.1.1). Consider the symbol

... =2 -1 0 2 3 4 5 7 8
BAs)=| ... -2 -1 01 2 5 6
-2 -1 0 1 2 3
By deleting successively the 4-periods (pictured in bold), we obtain
... —2 -1 0 2 3 4 5
BA s )= ... -2 -1 0 1 2
-2 -1 0 1 2 3
-2 -1 0 2 3 .. —2 -1 0 2 .. —2 =10
2 -1 0 1 2|, 2 101 |, .. —2 -1
-2 -1 0 1 . =2 -1 . =2

Finally we obtain the empty 3-partition and s° = (—=2,—1—0) € T34. So (A, s) is a highest weight vertex.

6 Decomposition of the Fock space

Consider s = (sg, ..., 5;) € Z!. We can assume without loss of generality that s €7} o, that is so < -+ < ;1.

The aim of this section is to provide the decomposition of Gs . into its connected U, (fa/[\e)—components. The
multiplicity of an irreducible module in Fs . can be infinite. Nevertheless, we have a filtration of the highest
weight vertices in Gs oo by their Uy (sl )-weights. We are going to see that the number of totally periodic
symbols of fixed U, (sl )-weight is finite and can be counted by simple combinatorial objects. We proceed
in two steps. First, we give the decomposition of Gg  into its U, (sl )-connected components, next we give

the decomposition of each crystal Goo(v), v €7 into its L{; (;[\e)-connected components.

6.1 Totally periodic tableaux

Let t €7, . such that ¢; < s; for any ¢ =0,...,l — 1. We denote by s\ t the skew Young diagram with rows
of length s, —t.,c =0,...,l—1. By a skew (semistandard) tableau of shape s\ t, we mean a filling 7 of s\ t
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by integers such that the rows of 7 strictly increase from left to right and its column weakly increase from
top to bottom. The weight of 7 is the U, (sl )-weight

Wt (T)oo = Z Ec(b)

ber

of level 0. Here b runs over the boxes of s\ t and ¢(b) is the entry of the box b in 7. The trivial tableau of
shape s\ t denoted T\t 18 the one in which the c-th row contains exactly the letters t. +1,..., sc.

A tableau is a skew tableau of shape s\ t where t is such that tp = --- = #;—1. In that case A = s\ t is
an ordinary Young diagram. Given a level 0 weight u =" jez Mi€; (where all but a finite number of p; are
equal to zero), we then denote by K , the Kostka number associated to A and p. Recall that K , is the
number of tableaux of shape A and U, (sl )-weight p.

Example 6.1. Take e =2, s = (2,3,6) and t = (0,0,1). Then

4 5 7 8
6

Tt W N

1
2
is a tableau of shape s\ t and weight u = ws + ws + ws + w3 + wa.

The peeling procedure described in § 5.2 can be adapted to the skew tableaux by successively removing
their periods. For a skew tableau 7, denote by w(7) the word obtained by reading the entries in the rows of
7 from right to left and from top to bottom. When it exists, the e-period of 7 is the subword u of w(r) of
the form u = ug - - - ue—1 where for any k =0,...,e — 1

e up = M — k with M the largest entry in w(7),
e uy, is the rightmost letter of w(7) equal to M — k.

When 7 is e-periodic, we write 7~ for the skew tableau obtained by deleting its period. By condition on
the rows and the columns of 7, 77 is also a skew tableau. Its shape can be written on the form s’ \ t with
s € Tl oo
More generally, given a skew tableau 7 of shape s\ t, define the skew tableau 7" of shape s° \ t as the result
of the following peeling procedure:

e If 7 is not periodic or 7 = 74\ with s €7j, then 7° = 7 and s° =s.
e Otherwise, 7° = (7°)'and s° = (s°)’.

When 7° = 0 is the empty tableau, we have
WH(T) oo = ZwM(T)
T

where T' runs over the e-periods of 7 and for any period, M(T) is the largest integer in 7. Write 7} for the
set of Uy, (sl )-weights which are linear combinations of the wj, j € Z with nonnegative integer coefficients.
When 7° = 0, we have wt (7)o € 7.

Definition 6.2. A totally periodic skew tableau of shape s\ t is a skew tableau 7 of shape s\ t such that

1. Each row ¢ =0,...,] — 1 contains integers greater than ¢..
2. We have 7° = 0.

We denote by Tabg\t the set of totally e-periodic skew tableaux of shape s\ t. For any v € 7, let
Tabg,y -, be the subset of Tabg, ¢ of tableaux with U, (sl )-weight .

13



Example 6.3. By applying the peeling procedure to the tableau 7 of Example 6.1, we first obtain the
sequence of tableaux

]
S
t

4 5

4 5 7 8 2
6 3 and 73 =

2
3

w
D

T = ,T(l) = 1

2

C

Tt W N

1 1 1
2 2 2

ot

The tableau 7(3) has shape s©) \ t with t
procedure goes on. We obtain

(0,0,1) and s® = (1,2,2). Since 7 # 744, the peeling

2
@ = 1

which has shape s \ t with s(*) = (0,1,2). Now s™*) ¢ T; ., so the procedure finally yields 7®) = 7° = @.
Therefore, 7 is totally 2-periodic.

6.2 Decomposition of G .,

In the sequel we assume s €7} » is fixed. By a slight abuse of notation, we will identify each vertex (A, s)
of G oo with its symbol B(A,s). For any v €7 «, let Hs « be the set of highest weight vertices in Gs o of
highest weight Ay .

Consider B(A,s) € HY . For any fixed k& € Z, the contribution of all the integers & in B(A,s) to
wWt($B(A,'s))o is equal to diej, where dj, is the number of occurrences of k in B(A,s). Each row contains at
most a letter k, therefore di <1 and dy, = [ if and only if k appear in each row of B(A,s). Since B(A,s)
has weight Ay o, we must have d;, = [ for any k < vy and dj, < [ otherwise. This means that the maximal
integer m such that B(A,s) contains each integer k& < m defined in Remark 5.10 is equal to vy + 1. Let
B(A, s)y be the truncated symbol obtained by deleting in B(A,s) the entries less or equal to vg. By Remark
5.10 (2), the reading of B(A, s)y is a reverse lattice word.

Example 6.4. One verifies that

101 2 35 6
101 2 4
B(A,s) = 11 2 3
“1 0

with s = (0,2, 3,5) is of highest weight Ay o with v =(—1,2,3,6). Then the reading of

3 5 6
4

DO =

B(A,s)y =

o= o o
W NN

is the reverse lattice word
w = 65321042103210.

Set t(v) = (vo,...,v0) € Z'. Set A = v \ t(v). Then ) can be regarded as an ordinary Young diagram.
We define A\* has the conjugate diagram of A. We now associate to B(X, s)y a tableau T' of shape A(v) = \*
and weight

-1
M(V) = Z Hc€e
c=0

where for any ¢ = 0,...,0 — 1, g. = s. — vy is the length of the c-th row of B(A,s)y. Observe that \* is
simply the sequence recording the number of occurrences of each integer k& > vy in B(\, s)y (see the example
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below). Our procedure is a variant of the one-to-one correspondence (reflecting the Schur duality) described
in [10] between the highest weight vertices of the U, (sl,,)-Fock spaces and the semi-standard tableaux.
First normalize B(\, s)y by translating its entries by —vo. Write B(, s)!, for the resulting truncated symbol.
It has entries in Z-( and its reading is a reverse lattice word. Let T®) be the tableau with one column
containing po letters 1. Assume the sequence of tableaux T, ... T(¢=1 ¢ <[ —1 is defined. Then T is
obtained by adding in 7~ exactly . letters ¢+ 1 at distance from the top row given by the nonnegative
integers appearing in the c-th row of B(\,s). Since the reading of B(\,s)% is a reverse lattice word, T(¢)
is in fact a semi-standard tableau. We set T = T(=1),

Example 6.5. Let us compute T for B(A,s)y as in (6). We have vy = —1

1 2 3 4 6 7
. | 1 2 3 5
%(Aas)vf 2 3 4
1
and we successively obtain for the tableaux 7'(¢)
1 3 4
1 1 3 2 3 4
9 2 3 2 3 4
7O =(1),7W = 5 T =12 3 | andT® =] 2 4
5 2 3
3 4
4

We verify that T(3) = T has shape A\(v) = (3,3,3,2,1,1,1) and weight u(v) = (1,3,4,6).

The previous procedure is reversible (for s,v €7} « fixed). Starting from T a tableau of shape A(v) and
weight p(v), we can construct a truncated symbol B(X,s)!, next B(A,s)y by translating the entries by vy.
This proves that the cardinality of HY , is finite and equal to K(v),u(v) the number of tableaux of shape

A(v) and weight p(v). We thus obtain the following theorem.

Theorem 6.6. Consider s €7; . As a Uy(sls)-module, the Fock space Fs o~ decomposes as

Faco= @D Vaolw)®Formco,
vETl 00

6.3 Branching rule for the restriction of V_(s) to Z/{;(;[\e)

Consider s €7/ . We now give the decomposition of G, (@) into its L{; (;[\e)—connected components. By
Corollary 4.3, this reflects the branching rule for the restriction of Vi (s) from U, (sl ) to the Uy (5/[;) action.
By our assumption we have sg < --- < §;_1. It is then easy to describe the symbols associated with the
l-partitions appearing in G s(0). Indeed, B(A,s) € Goo s(0) if and only if it is semistandard (see [6]). This
means that its columns weakly increase from top to bottom.

Assume that B(A,s) is totally periodic in Goo s(0). Set s° = (s§,...,5_1) € Ti,e. We define the level
l-part of the symbol B(A,s) as the symbol B(A,s); = B(0,s°) which can be regarded as a subsymbol of
B(A,s) in a natural sense. The level O-part of B(A,s) is then

B(A,s)o = B(A,s) \ B(O,s°).

For any t €7} ., we set
St = {B(\,s) € Goo s(0) totally periodic | s° = t}.

The following lemma is immediate from the definitions of the peeling procedures on symbols and tableaux.
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Lemma 6.7. Fizt €T, .. The map ¢ : B(X,s) — B(A,8)o is a one-to-one correspondence between the sets
Sg and Tabg,y. We have moreover

WH(A,8) 0o = At,0o + WH(B(A, 8)0). (7)
Example 6.8. Take e =2, s = (2,3,6) and

-2 -1 01 2 45 78
BAs)=| -2 -1 01 3 6
-2 -1 .0 2 5
We obtain
2 4 5 7 8
B(A,so=[1 3 6 € Tab\,
25

with t = (0,0,1). We have wt(A,8)o0 = At 00 + Ws + we + w5 + w3 + wo.

Let P, o.be the subset of P, of weights v which can be written on the form

v = A¢(),00 +7(v) with t(v)€T; . and y(v) = Z apwy € T (8)
k>to(v)+e

where all but a finite number of the coefficients aj, are equal to 0. Observe that the previous decomposition
is then unique. Indeed, for any t €7; . and any k& > to + e, the weight A¢ o + wy cannot be written on the
form Ay oo with t/ € Tj . Let B(A,s) a highest weight vertex of Gs . with weight v.

Lemma 6.9. The U,(sl)-weight of B(A,s) belongs to Pe o. Moreover, we have
t(v) =s° and y(v) = wt(B(A,8)o)
where s° and B(A,8)o are obtained by the peeling procedure as in (7).

Proof. In view to (7), the weight v decomposes on the form
v = Ago 0o + Wt(B(A,8)o

where by Theorem 5.9 and Lemma 6.7, we have s°€7;, . and wt(B(A,s)g € 7. Set wt(B(A,8)g =
> kez @kwr. The entries of B(A,s)y are those of the periods of B(A,s) and ay is the number of periods
{k,....,k—e+1} in B(\,s)g. Let kg be the minimal integer such that ap, # 0. By definition of the peeling
procedure, the addition of the letters {ko —e + 1,...,ko} in the symbol B(0,s°), yields a symbol B(0, u)
with u €7}, but u ¢7; .. Since u €7} o, we must have kg —e + 1 > 5§, that is ky > s§ + e. We cannot
have ky = s§ + e, otherwise u = (s3,...,s7,s5 +¢e) € T;. Thus ky > s§ + e. Since the decomposition (8) is
unique, this imposes that t(rv) = s® and v(v) = wt(B(A,s)o) as desired. O

Proposition 6.10. Consider a totally periodic symbol B(X,s) in Goo s(0) of Uy (sl )-weight v.

1. The successive symbols appearing during the peeling procedure of B(N,s) of Goo s(0) remain semistan-
dard.

2. The number of highest weight vertices in Goo s(0) with Uy (sl )-highest weight v € P, o is finite equal
to mg, = |Tabs\) 4| -

Proof. Assertion 1 follows from the fact that the columns of ®B(A,s) increase from top to bottom and each
entry k£ in a period is the lowest possible occurrence of the integer k in the symbol considered. Consider
B(A,s) of highest weight . By Lemma 6.9, we have the decomposition v = s° + wt(B(A,s)p). Then
the restriction of the bijection ¥ defined in Lemma 6.7 to the symbols of weight v yields a one-to-one
correspondence between the symbols B(A, s) of highest weight v and the tableaux B(X,s)o of shape s\ s°
and weight v(v). Assertion 2 follows. O
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We thus obtain the following theorem.

Theorem 6.11. Assume e is finite and consider s €7 .

1. The crystal Goo s(@) decomposes into irreducible Uy (;[:)—components whose highest weight vertices are
also weight vertices for the Uy(sloo)-structure.

2. The Uy (sl )-weight of such a vertex belongs to Pe

3. The number of highest weight vertices in Goo s(0) with Uy(sleo)-highest weight v € Pe o is finite equal
to the cardinality mg , = ’Tabs\t(l,)ﬁ(l,)’ .

By combining with Theorem 6.6, this yields the decomposition of the Fock space in its irreducible U; (g[\e )-
components.

Theorem 6.12. Assume e is finite and consider s €7 o.

1. The crystal Gs,. decomposes into irreducible L{; (g[;)—components whose highest weight vertices are also
weight vertices for the Uy(sls)-structure Gs o .

2. The Uy(sl)-weight of such a vertex belongs to Pe o

3. The number of U, (;[;)—highest weight vertices in G. with Uy (sl )-highest weight v € P, o is finite equal
to Mse,u = ZVETl,oo KA(V),u(v)mfz,v'
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