The Spread of a Catalytic Branching Random Walk
Résumé
We consider a random walk on $\Z$ that branches at the origin only. In the supercritical regime we establish a law of large number for the maximal position $M_n$. Then we prove convergence in distribution for the sequence $M_n -\alpha n$ where $\alpha$ is a deterministic constant.
Domaines
Probabilités [math.PR]Origine | Fichiers produits par l'(les) auteur(s) |
---|