Combining binary classifiers with imprecise probabilities - Archive ouverte HAL
Communication Dans Un Congrès Année : 2011

Combining binary classifiers with imprecise probabilities

Résumé

This paper proposes a simple framework to combine binary classifiers whose outputs are imprecise probabilities (or are transformed into some imprecise probabilities, e.g., by using confidence intervals). This combination comes down to solve linear programs describing constraints over events (here, subsets of classes). The number of constraints grows linearly with the number of classifiers, making the proposed framework tractable even for problems involving a relatively large number of classes.
Fichier principal
Vignette du fichier
CombiIP_conf.pdf (455.61 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00655600 , version 1 (31-12-2011)

Identifiants

Citer

Sébastien Destercke, Benjamin Quost. Combining binary classifiers with imprecise probabilities. Integrated Uncertainty in Knowledge Modelling and Decision Making, Oct 2011, Hangzhou, China. pp.219-230, ⟨10.1007/978-3-642-24918-1_24⟩. ⟨hal-00655600⟩
121 Consultations
408 Téléchargements

Altmetric

Partager

More