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Abstract. This paper proposes a simple framework to combine binary
classifiers whose outputs are imprecise probabilities (or are transformed
into some imprecise probabilities, e.g., by using confidence intervals).
This combination comes down to solve linear programs describing con-
straints over events (here, subsets of classes). The number of constraints
grows linearly with the number of classifiers, making the proposed frame-
work tractable even for problems involving a relatively large number of
classes.

1 Introduction

In complex multi-class classification problems, it often makes sense to decompose
the initial problem into several simpler ones, training simple classifiers on each
of these problems and then combining their results. This is the central idea of
technics such as Boosting or classifiers combinations [3, Ch.14].

In this paper, we deal with the case where each simple problem is a binary
one, and where each classifier task is to tell two subsets of classes apart. When
those classifiers return conditional probabilities estimating whether an instance
belong to a given class subset, these conditional probabilities are seldom consis-
tent, due to the fact that they are only approximations of the (admittedly) true
but unknown conditional probabilities.

Usually, this inconsistency problem is tackled by considering some optimisa-
tion problem whose solution is a consistent probability whose conditional proba-
bilities are close to each of the estimated ones [7, 13]. This consistent probability
is then considered as the final predictive model.

In this paper, we address the problem from a slightly different viewpoint, that
is the one of imprecise probabilities. Imprecise probabilities [12] are concerned
with the cases where the available information is not sufficient (or too conflicting)
to identify a single probability distribution as our model of uncertainty. They
are therefore fit to deal with the problem of combining inconsistent (precise or
imprecise) conditional probabilities. Instead of searching for a close (w.r.t. some
objective function) consistent solution, we suggest to weaken the given condi-
tional assessments to make them consistent, and to consider the resulting set



of probabilities as our final predictive model. Due to their robustness, imprecise
probabilistic models appear particularly interesting in those cases where some
classes are difficult to separate, where some classes are poorly represented in the
training set or when the data are very noisy.

In this paper, after a brief reminder about imprecise probabilities (Section
2), we first describe (Section 3) how binary classifiers returning imprecise prob-
abilities (precise probabilities then becoming a special case) as their conditional
assessments can be combined. As this combination can still lead to inconsis-
tent results (i.e., non-feasible linear programs), we then propose a discounting
strategy ensuring that a consistent (but possibly non-informative) result will be
reached (Section 4). Finally, we make some first experiments for the special case
of one-vs-one classifiers on simulated and well-known data sets, considering both
the case of precise and imprecise classifiers (Section 5).

2 Imprecise probability: a short introduction

Let X = {x1, . . . , xM} be a finite space of M elements describing the possible
values of (ill-known) variables (here, X consists in the classes of an instance). In
imprecise probability, the uncertainty about a variable X true value is described
by a convex set of probablities P, often called credal set [9]. A classical way
to describe this set is by giving a set of linear constraints restricting the set of
possible probabilities in P (Walley’s lower previsions [12] correspond to bounds
of such constraints).

Credal sets have been proposed as models of uncertainty when available in-
formation does not allow one to identify a unique probability of interest. In
this paper, we propose to apply the imprecise probabilistic framework to the
combination of binary classifiers.

From a credal set P, one can compute lower and upper probabilities P , P
such that, for any event A ⊆ X ,

P (A) = inf
P∈P

P (A) and P (A) = sup
P∈P

P (A).

They are dual, in the sense that P (A) = 1− P (Ac), with Ac the complement of
A. More generally, given a real-valued and bounded function f on X , one can
compute lower and upper expectation bounds E,E such that

E(f) = sup
p∈P

E(f) and E(f) = inf
p∈P

E(f).

with E the expected value of f w.r.t. p. They are also dual, in the sense that
E(f) = −E(−f). Note that lower and upper probabilities of an event A equal
the lower and upper expectations of its indicator function. Alternatively, one
can start from constraints on expected or probability values and take the set of
probabilities satisfying these constraints.



3 Combining binary classifiers with imprecise
probabilities

The basic task of classification is to predict the class or output value x of an
object knowing some of its characteristics or input values y assuming their value
in some space Y. Usually, it is assumed that to a given input y correspond a
probability mass p(x|y) modelling the class distribution under input y. Classifi-
cation then amounts to estimate as accurately as possible p(x|y) from a limited
set of training samples.

A binary classifier on a set of classes X aims at predicting whether an instance
class belongs to a subset A ⊆ X or to a (disjoint) subset B ⊆ X (i.e., A ∩ B =
∅). Its prediction is then an estimation of the conditional probability P (A|A ∪
B, y) that the instance belongs to A (P (B|A ∪ B, y) = 1 − P (A|A ∪ B, y) by
duality).3 Combining binary classifier then consists in finding p from a set of
such conditional assessments.

To model a set of binary classifiers, we will use the language of code correction
matrices. A code correction matrix is a matrix C with general element cij ∈
{+1, 0,−1}, i ∈ 1, . . . ,M with M the number of classes, and j ∈ 1, . . . , N
with N the number of binary classifiers to combine. For a given column j, the
sets Aj = {xi|cij = 1, i = 1, . . . ,M} and Bj = {xi|cij = −1, i = 1, . . . ,M} are
the positive and negative classes that classifier j separates. We now recall the
combination problem in a precise setting and then extend it to an imprecise
setting.

3.1 The precise case

In the precise case, classifier j returns a precise evaluation P (Aj |Aj ∪Bj) = αj .
Using the fact that P (Aj |Aj ∪ Bj) = P (Aj)/P (Aj∪Bj) and P (Bj |Aj ∪ Bj) =
P (Bj)/P (Aj∪Bj) = 1 − P (Aj |Aj ∪ Bj), we obtain from these two equations the
following equality4

P (Aj) =
αj

1− αj
P (Bj).

This gives N equalities that describe partial knowledge about the true but un-
known probabilities. As the number of equalities will be usually much higher than
the number M of elements of X , the problem will often be over-constrained and
without solutions, as shows the next example.

Example 1. Consider a 3 classes problem X = {x1, x2, x3}. Assuming we are
working with a one-against-one framework (each Aj , Bj is reduced to a single-
ton), consider the following output of classical probabilistic classifiers:

P ({{x1}|{x1, x2}}) = 0.2, P ({{x1}|{x1, x3}}) = 1/3, P ({{x2}|{x2, x3}}) = 0.8.

3 From now on, we will drop the y in the conditional statements, as the combination
always concern a unique instance whose input features remain the same.

4 We assume here that p({x}) is strictly positive for any x ∈ X . In a practical setting,
this does not appear as a restrictive assumption, as p({x}) can be as small as possible.



These statements, once transformed to express unconditional constraints, re-
spectively give the equalities (using the notation pi = p(xi) = P ({xi}))

p1 = 1/4p2, p1 = 1/2p3, p2 = 4p3,

which lead (together with the consistency constraints
∑
xi∈X pi = 1, pi ≥ 0) to

a system with no solutions.

3.2 The imprecise case

Let us now consider imprecise binary classifiers. The output of classifier j (or
the transformation into imprecise probabilities of its precise output) will be a
pair of values bounding the conditional probabilities on Aj , Bj . We will denote
by αj , βj the bounds of P (Aj |Aj ∪Bj), that is

αj ≤ P (Aj |Aj ∪Bj) ≤ βj (1)

and, by complementation, we have

1− βj ≤ P (Bj |Aj ∪Bj) ≤ 1− αj . (2)

To get a joint credal set from these constraints, we will turn them into linear
constraints over unconditional probabilities. To get such constraints, we first
transform equations (1) and (2) into (again assuming that P (Aj ∪Bj) > 0)

αj ≤
P (Aj)

P (Aj ∪Bj)
≤ βj and 1− βj ≤

P (Bj)

P (Aj ∪Bj)
≤ 1− αj .

By dividing these two equations, we reach the following inequality

αj
1− αj

≤ P (Aj)

P (Bj)
≤ βj

1− βj
,

which can be transformed into two linear constraints

αj
1− αj

P (Bj) ≤ P (Aj) and P (Ai) ≤
βj

1− βj
P (Bj).

These equations can be restated as

αj
1− αj

∑
xi∈Bj

pi ≤
∑
xi∈Aj

pi and
∑
xi∈Aj

pi ≤
βj

1− βj

∑
xi∈Bj

pi (3)

with pi := p(xi). Such constraints correspond to a linear program inducing a
credal set P of possible probabilities. If N classifiers are trained, then there are
2N such equations. This means that the number of constraints grows linearly
with the number of classifiers, while the number of variables remains constant
(=M). As the quantity of classifiers will remain limited (usually betweenM and
M2), induced linear programs can be efficiently handled by modern optimisation
techniques.



Example 2. Consider the same situation as in Example 1, but that classifiers
provide the (slightly) relaxed system such that

1/9p2 ≤ p1 ≤ 1/2p2, 1/5p3 ≤ p1 ≤ 2/3p3, 2p3 ≤ p2 ≤ 4p3,

corresponding to the classifier outputs

P ({{x1}|{x1, x2}}) ∈ [0.1, 1/3], P ({{x1}|{x1, x3}}) ∈ [1/6, 0.4]

and
P ({{x2}|{x2, x3}}) ∈ [2/3, 0.8].

Note that the constraints of Example 1 are included in these ones. The above
system is no longer without solution, e.g., p1 = 0.1, p2 = 0.6 and p3 = 0.3
is an admissible solution. Getting the minimal/maximal probabilities for each
class then comes down to solve 6 optimization problems (i.e., minimising and
maximising the probabilities pi, that give

p1 ∈ [0.067, 0.182] p2 ∈ [0.545, 0.735] p3 ∈ [0.176, 0.31].

Hence, we can safely choose x2 as the right class in this case.

Admitting imprecision in the classifier output will not always result in a
feasible problem. Such a situation corresponds to the case P = ∅. In the next
section, we suggest a relaxation strategy to ensure that a given set of classifier
outputs will end up in a feasible system (possibly providing a vacuous, i.e. non-
informative, solution).

4 Handling inconsistent output: a discounting strategy

Here, we assume again that binary classifiers provide imprecise probabilistic
outputs in the form of bounds [αj , βj ], j = 1, . . . , N (precise classifiers correspond
to the case αj = βj).

When the induced linear problem is not feasible, we propose to consider a
discounting factor ε ∈ [0, 1] and to increase this factor up to the point where the
linear problem becomes feasible (i.e. the associated credal set is no longer empty).
For a given value ε, the ε-discounted problem corresponds, for j = 1, . . . , N , to
the constraints

(1− ε)αj ≤ P (Aj |Aj ∪Bj) ≤ ε+ (1− ε)βj . (4)

Discounted constraints on P (Bj |Aj ∪ Bj) are obtained by complementation.
Note that this discounting strategy is common in robust Bayesian literature as
well as in other imprecise probabilistic approaches, since it corresponds to the
ε-contamination model [2] and to the basic discounting operation in evidence
theory [10]. We denote by Pε the credal set obtained by discounting the initial
problem with a value ε. Such a strategy ensures that there will be at least one
value of ε for which the problem will be feasible, as ε = 1 corresponds to trivial



constraints P (Aj |Aj ∪ Bj) ∈ [0, 1], meaning that the set P1 corresponds to the
set of all probability measures on X . This alone is sufficient to ensure that the
linear problem given by Eq. (4) will be feasible for some value ε.

For a given instance, let us denote ε∗ the lowest value such that ε∗ =
minε∈[0,1] Pε 6= ∅. ε∗ gives an indication of the global level of conflict of the
various classifiers. Indeed, if ε∗ = 0 this means that all classifiers are consistent
and no discounting is needed. On the contrary, if ε∗ ' 1 this means that at least
one classifier gives a conditional information that is strongly conflicting with the
others, and that a closer look should be taken to understand why such a conflict
happens.

Also note that the obtained credal sets for different values of ε are nested in
each others (i.e., Pε ⊆ Pε′ for any ε ≤ ε′. This makes the current approach close
to other similar models proposed in the imprecise probabilistic literature [4, 1, 5].
In the present work, the ε value should not be interpreted as having any statis-
tical meaning in terms of confidence value. Indeed, linking ε to some statistical
confidence value is the matter of further work.

5 Experiments

In this section, we perform some experiments on some classical and simulated
data sets. In order to assess the results of Imprecise classifiers, we need at least
two elements: how decision are taken, and how to evaluate performances when
decisions are allowed to be imprecise (since imprecise probabilistic approaches
allow for imprecise decisions. We first describe how this is done in the current
study, before the detailing the experiment results.

5.1 Decision rules

Consider the set of classes X , and the knowledge we have about the class of
an object given by the Constraints (3) (or a discounted problem). Imprecise
probability theory offers many ways to make a decision about the possible class
of an object [11]. Roughly speaking, classical decision based on maximal expected
value can be extended in two ways: by a decision rule whose result is a unique
class, or by a decision rule whose result is a set of possible optimal classes. We
will retain a rule of each type: the maximin and interval dominance rules.

For a class xi ∈ X , its lower and upper probabilities P ({xi}), P ({xi}) are
given by the solutions of the constrained optimisation

P ({xi}) = min pi and P ({xi}) = max pi

under the Constraints (3) and the additional constraints
∑
xi∈X pi = 1, pi > 0.

The maximin decision rule amounts to choose as the object class x̂ such that

x̂ := arg min
xi∈X

P ({xi}).



Using this rule requires to solve M linear systems with 2N +M + 1 constraints
and to achieve M comparisons.

The interval dominance rule amounts to select as the possible optimal classes
the set X̂ such that

X̂ := {xi ∈ X | 6 ∃xj s.t. P ({xi}) ≤ P ({xj})}.

Using this rule requires to solve 2M linear systems with 2N +M +1 constraints
and to makeM(M−1) comparisons at most. Its complexity is thus only slightly
higher than the maximin rule. Also note that we have x̂ ∈ X̂.

5.2 Evaluating classifiers performances.

Combined classifiers used with a maximin rule can be directly compared to
classical classifiers or to more classical combinations, as both return a single
class as output. In this case, accuracy is simply measured as a classical accuracy
(acc)

However, one of the main assets of imprecise probabilistic approaches is the
(natural) ability to return sets of classes when information is ambiguous or not
precise enough to return a single class. In this case, it can be hard to compare
the IP classification output with a more classical one.

A solution is to use a discounted accuracy. Assume we have T observations
whose classes xi, i = 1, . . . , T are known and for which T predictions X̂1, . . . , X̂T

have been made. The discounted accuracy d− acc of the classifier is then

d− acc = 1

T

T∑
i=1

∆i

f(|X̂i|)
,

with ∆i = 1 if xi ∈ X̂i, zero otherwise and f an increasing function such that
f(1) = 1. Although f(x) = x is a usual choice for the discounted accuracy, it has
recently been shown [15] that this choice leads to consider imprecise classification
as being equivalent to make a random choice inside the set optimal classes. This
comes down to consider that a Decision Maker is risk neutral, i.e., does not
consider that having imprecise classification in case of ambiguity is an advantage.
This means that to reward the robustness of imprecise classification, one should
take a concave (i.e., risk-averse) function f . Since we think that returning an
imprecise classification is an interesting feature and that classification robustness
should be rewarded, we take here f(x) =

√
(x).

In addition, when using the interval dominance rule, we have computed the
set-accuracy s − acc = 1/T

∑T
i=1∆i as well as the average number of retained

optimal classes on the instances that were well classed with the precise criterion
and on those that were badly classed with the same criterion. This gives com-
plementary information, as it allows to check whether imprecise classification
mostly reject those cases that are difficult to classify.



5.3 Data-sets and set-up

In this case study, we performed the experiments on data sets issued from the
UCI repository, whose details are recalled in Table 1, along with those of a syn-
thetic data set Synth. Synth is a simulated data set consisting of four (partially
overlapping) classes sampled according to 2-dimensional Gaussian mixtures.

Data set #classes #input #samples
name M features training set test set
glass 6 9 139 75

pageblocks 5 10 3284 2189
satimage 6 36 2921 2573
segment 7 19 1400 910
Synth 4 2 2250 750
vowel 11 10 528 462

waveform 3 8 1491 3509
yeast 10 8 890 594

Table 1. UCI data sets used in experiments

Since the optimisation problem to find the discounting factor ε∗ is not easy
to solve, we have adopted the following strategy in our first experiments: for
each test data, we start with a low ε = 0.001 and increment it gradually and
linearly by steps of 0.05 (note that we are certain to reach a feasible solution).

Precise case In the precise case, the classifiers used to perform the experiment
were obtained by logistic regression [8]. Logistic regression being a linear classi-
fier, it is well adapted to the combination of binary classifiers (it is easy to train
but can only provide simple decision bounds).

For the Synthetic data set, Figures and respectively pictures the discounting
level ε and the number of optimal decisions on the 2 dimensional input space.
Roughly speaking, the behaviour of the combination methods corresponds to
what can be expected: discounting (or, equivalently, conflict) increase on regions
where multiple classes significantly overlap, and the number of optimal decisions
increases along the decision boundaries of the different binary classifiers.

Table 2 summarises the results obtained by our method for the precise classi-
fier. Among the results, we can distinguish two kinds of data sets: those for which
interval dominance often gives precise results (waveform, pageblocks, synth), and
those for which interval dominance often gives imprecise results. In the former
sets, results are relatively stable in terms of all accuracy, meaning that binary
classifiers gives relatively consistent results most of the time. In the latter sets,
imprecision can be important, and s is the difference between d−acc and s−acc.
In such data sets, conflict among classifiers is likely to be important, and in-
stances difficult to classify. In most of them, imprecision brings robustness (low



Fig. 1. Discounting levels for Synth test data set

s − acc), but at the price of important imprecision (high mean number of op-
timal classes). In all problems, imprecise classifications seem evenly distributed
among well and wrongly classified items. That is not so surprising, since difficult
to classify items will sometimes be well, sometimes be wrongly classified by a
precise classifier.

It should also be noted that interval dominance is one of the most "cautious"
imprecise probabilistic decision rule, in the sense that it results in the largest
possible sets of optimal classes. Other more precise, i.e. resulting in narrower
sets, decision rules could have been used. Devising a method to pick the "best"
decision rule is the matter of future work.

data acc d− acc s− acc mean # optimal classes
set all data well classed wrongly classed

Synth 4.80 4.98 4.00 1.04 1.04 1.00
glass 41.3 44.69 28.00 2.16 2.50 3.05

pageblocks 3.79 5.80 2.10 1.23 1.21 1.20
satimage 14.54 24.66 8.05 2.05 2.12 2.08
segment 4.18 20.12 2.53 2.57 2.59 1.00
vowel 50.43 61.24 7.14 8.47 8.33 6.91

waveform 13.85 12.26 9.09 1.11 1.11 1.12
yeast 41.98 47.40 9.60 4.08 4.18 4.89

Table 2. Results of binary combination with logistic regression



Fig. 2. Number of optimal classes for Synth test data set

Imprecise case In the imprecise case, we used the evidential k-nn algorithm [6]
as a binary classifier. A first remark is that results are quite different from the
ones obtained for the precise model. In particular, imprecision resulting from
the use of interval dominance is here quite limited, as the mean value of optimal
classes is always below two (for well and wrongly classed items).

This means that in many cases, results are both precise and fairly consistent.
We see two main reasons for this: k-nn classification method has more complex
and non-linear decision boundaries than logistic regression, and return imprecise
probabilistic estimations that are usually not as close as 1 or 0 than the precise
estimations returned by logistic regression models. We can therefore expect less
conflict in the final assessment, whence more precise decisions. These results
clearly show that the choice of the algorithm (and of its parameters) is important,
and that this matter should be treated in further works.

Finally, Table compares the accuracy obtained with the multi-class equivalent
of the binary classifiers with the accuracy obtained with our binary approach.
For the logistic approach, results are either comparable or significantly better
for the binary case (this is especially true for the segment data sets). For the k-
nn approach, results are roughly comparable. In summary, the proposed binary
decomposition either give better or comparable results. It is also worthwhile to
note that, in the case of the k-nn approach, allowing imprecision systematically
gives a better accuracy (in terms of s−acc) while not giving too imprecise results
(mean number of optimal classes below 2).



data acc d− acc s− acc mean # optimal classes
set all data well classed wrongly classed

Synth 4.80 4.76 4.67 1.00 1.00 1.00
glass 44.0 45.42 42.67 1.19 1.07 1.06

pageblocks 5.39 9.87 4.75 1.36 1.38 1.31
satimage 10.57 10.20 9.72 1.02 1.02 1.00
segment 9.12 14.96 8.24 1.55 1.59 1.03
vowel 39.18 36.74 33.77 1.14 1.15 1.06

waveform 16.47 18.85 8.44 1.36 1.38 1.49
yeast 37.88 38.30 35.52 1.23 1.23 1.38

Table 3. Results of binary combination with evidential k-nn

Data set #multiclass #binary (acc)
name logistic k-nn logistic k-nn
Synth 4.80 4.67 4.80 4.80
glass 44.0 48.0 41.30 44.0

pageblocks 4.02 5.16 3.79 5.39
satimage 14.26 10.53 14.54 10.57
segment 18.02 8.57 4.18 9.12
vowel 51.30 39.39 50.43 39.18

waveform 13.94 16.44 13.85 16.47
yeast 46.30 37.37 41.98 37.88

Table 4. Accuracy comparison of multiclass and binary methods



6 Conclusions

In this paper, we have introduced a method to combine binary classifiers based on
an imprecise probabilistic approach. It handles classifiers with both precise and
imprecise probabilistic outputs (including possibilistic, evidential [6] and credal
classifiers [14]). We have also proposed a method that allows to always reach
a solution, possibly leading to non-informative predictive model if classifiers
outputs are too conflicting.

We also use imprecise decision rule, so that conflicting classifiers output
points out to sets of possible optimal classes, and no longer to single classes,
therefore producing more robust and trustable results.

First results on precise classifier (i.e. logistic regression) look very promising,
while conclusions on the imprecise classifier are more mitigated, as they give
good results but make poor use of imprecision. However, we think that this may
be due both to the choice of the classification algorithm (as there are better
choice for binary decomposition) and to the chosen parameters.

Future works therefore include the design of optimisation methods fitted to
the imprecise framework, the use of the method on other well-known imprecise
classification algorithms (such as credal networks or classification trees), and the
design of optimisation mehods for the discounting value ε
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