Approximation of discrete BSDE using least-squares regression - Archive ouverte HAL
Rapport Année : 2011

Approximation of discrete BSDE using least-squares regression

Résumé

We consider the dynamic programming equation arising from the time-discretization of backward stochastic differential equations. When the sequence of conditional expectations is computed using empirical least-squares regressions, we show that the Multi step-forward Dynamic Programming (MDP) equation yields better error estimates than the usual One-step forward DP (ODP) equation. We provide full error estimates, depending on the time-grid, the number of simulations and the approximation spaces for regression. The generator is assumed to be locally Lipschitz, which includes some cases of quadratic drivers.
Fichier principal
Vignette du fichier
ExplBDTGFinalVersion.pdf (423.15 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00642685 , version 1 (18-11-2011)
hal-00642685 , version 2 (28-06-2013)
hal-00642685 , version 3 (09-07-2013)
hal-00642685 , version 4 (25-03-2014)

Identifiants

  • HAL Id : hal-00642685 , version 1

Citer

Emmanuel Gobet, Plamen Turkedjiev. Approximation of discrete BSDE using least-squares regression. 2011. ⟨hal-00642685v1⟩
1124 Consultations
1569 Téléchargements

Partager

More