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Abstract

We consider the dynamic programming equation arising from the time-discretization

of backward stochastic differential equations. When the sequence of conditional

expectations is computed using empirical least-squares regressions, we show that

the Multi step-forward Dynamic Programming (MDP) equation yields better er-

ror estimates than the usual One-step forward DP (ODP) equation. We provide

full error estimates, depending on the time-grid, the number of simulations and

the approximation spaces for regression. The generator is assumed to be locally

Lipschitz, which includes some cases of quadratic drivers.

Keywords: Backward stochastic differential equations, dynamic programming

equation, empirical regressions, error estimates.
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1. Introduction

Framework. Let T > 0 be a fixed terminal time and W be a q-dimensional

(q ≥ 1) Brownian motion defined on a filtered probability space (Ω,F ,P), where

the filtration (Ft)0≤t≤T satisfies the usual hypotheses; the filtration may be

larger than that generated by W . We are given a deterministic time grid π :=

{0 = t0 < . . . < tN = T} for the interval [0, T ], whose (i + 1)-th time-step is

denoted ∆i = ti+1 − ti and mesh size is defined by |π| := max0≤i<N ∆i ≤ T .

The (i+ 1)-th Brownian motion increment is defined by ∆Wi := Wti+1 −Wti .
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In this work, we deal with the numerical resolution of (Y, Z), a discrete
BSDE with data (ξ, fi(y, z)), which is generated by

{

YN = ξ, Yi = Ei (Yi+1 + fi(Yi+1, Zi)∆i) , 0 ≤ i < N,

∆iZi = Ei

(

Yi+1∆W
⊤
i

)

, 0 ≤ i < N
(1.1)

where Ei(·) := E(·|Fti
), ⊤ denotes the transpose operator and

• ξ is a given FT -measurable random variable in L2,

• Y := (Yi)0≤i≤N is a scalar process, Z := (Zi)0≤i<N is R
q-valued process

(as a row vector),

• for each i, the so-called driver (ω, y, z) 7→ fi(y, z) is Fti ⊗ B(R) ⊗ B(Rq)-

measurable.

Equation (1.1) is a backward Dynamic Programming (DP for short) equation,

which is solved at i = N − 1 by first evaluating ZN−1 using YN = ξ, then YN−1

using YN and ZN−1, and then iterating these evaluations until i = 0.

Application. Equation (1.1) appears naturally when approximating a continuous-

time BSDE by a discrete-time process along the time grid π. The continuous

time BSDE may be a generalized BSDE of the form

Yt = ξ +

∫ T

t

f(s, Ys, Zs)ds−
∫ T

t

ZsdWs − (LT − Lt), (1.2)

where L is a martingale orthogonal toW . The presence of L occurs, for example,

when ξ = Φ(XT ) whereX is a jump-diffusion process driven byW and a Poisson

random measure. In this context, and for f(s, ω, y, z) = f(s,Xs(ω), y, z), it

is shown in [LGW06, Theorem 1] that the discrete time process (Yi, Zi)0≤i<N

generated by (1.1) converges to (Y,Z), in suitable L2-spaces, as the mesh size |π|
goes to 0. Note that the general formulation (1.1) using conditional expectations

w.r.t. Fti allows for path-dependent drivers/terminal conditions: one can take

ξ = Φ(Xt1 , . . . , XtN
) (see [GGG11]) or ξ = Φ(XT ,

∫ T

0
Xtdt) for a diffusion

process X (see [GLW05]).

DP equation (1.1) is written in an explicit form because the driver fi depends

on Yi+1. Discrete BSDEs have traditionally been studied in implicit form, i.e.

where fi depends on Yi. The explicit and implicit schemes usually give, to

the best of our knowledge, the same rate of convergence as N → +∞ for the

discretization error (the error incurred by approximating the continuous BSDE

by a discrete process) in an appropriate L2-space: compare the results of [BT04]

(implicit scheme) to [LGW06] (explicit scheme).

A lot of attention - [Zha04][BT04][GM10] among others - has been paid to

the analysis of the discretization error. This is not the focus of the current
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article; rather, we focus on the numerical resolution of the DP equations (1.1),

allowing N → +∞.

Numerical approximation. One has to approximate the conditional ex-

pectations in (1.1) in order to have a fully implementable scheme. This is

because one cannot, in general, calculate the conditional expectation explicitly.

Over the last ten years, various different approaches have been developed to

do this - see the introduction of [GL10] for an overview - but very few papers

[BT04][LGW06][Mos10] have tackled the global error analysis. In the current

article, we follow the empirical regression approach presented in [LGW06] and

estimate the global error that this method incurs in the approximation of (Y, Z).

Suppose that

(Yi, Zi) := (yi(Xi), zi(Xi)) (1.3)

for some (unknown but deterministic) measurable functions yi(·), zi(·) and a

d-dimensional explanatory process X := (Xi)0≤i≤N (in the jump-diffusion ex-

ample above, X would be the Euler approximation at times (ti)i). Since each

conditional expectation Ei(·) can be viewed as solution of a least-squares prob-

lem in L2(P), the functions yi(·) and zi(·) are then approximated using a finite-

dimensional approximation. The coefficients of this approximation are com-

puted using empirical least-squares regression [GKKW02, Chapters 10-11-12]

using M simulations of the paths of the explanatory variable X. The use of

such an empirical regression scheme is supported by two important features:

first, it requires as an input only independent paths of the explanatory pro-

cess X and of the Brownian motion W ; second, using distribution-free tools

[GKKW02], one may achieve model-independent error estimates related to the

statistical error. These robust estimates (Theorem 4.2) are presumably too con-

servative; on the other hand, the estimates allow the error analysis to be applied

to very general probability spaces, because we make very few assumptions on

the explanatory process X: see Section 2.

The resulting global error is known to be very difficult to analyze, because

all regression problems are stochastically dependent through the DP equation;

moreover, the numerical parameters (the time-grid π, functions basis used for

the finite-dimensional approximations of yi(·), zi(·) and the number of simula-

tions M) play multiple, often contradictory, roles in the convergence, and it is

crucial to find the right trade-off between them. We achieve the global error

analysis in Theorem 4.1, which is one of our main results. We then apply these

results to optimize the numerical parameters needed for a given accuracy in the

asymptotics N → +∞, see Section 4.3. For the reader interested in empirical

analysis, we refer to [Mos10][Ric10][Tur12].
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1.1. Our contributions

In this paper, we revisit the error analysis derived in [LGW06], achieving

several important improvements and extensions.

1. We derive stability results for discrete BSDEs; see Section 3.1. These

stability results are used to prove additional boundedness (Section 3.3)

and smoothness (Section 3.5) properties for the discrete BSDEs. These

properties are proved under quite weak assumptions.

2. We prove that the One step-forward Dynamic Programming (ODP for

short) equation (1.1) provides worse estimates than the Multi step-forward

Dynamic Programming (MDP for short) equation given by

{

Yi = Ei

(

ξ +
∑N−1

k=i fk(Yk+1, Zk)∆k

)

,

∆iZi = Ei

(

[ξ +
∑N−1

k=i+1 fk(Yk+1, Zk)∆k]∆W⊤
i

)

.
(1.4)

Because of the tower property of conditional expectations, definitions (1.1)

and (1.4) coincide. When approximations of the conditional expectations

are incorporated, the definitions differ and the MDP-based scheme gives

raise to a smaller propagation of errors; see Theorem 3.1. This is in agree-

ment with some features of the Bender-Denk algorithm [BD07] and the

Longstaff-Schwartz algorithm [LS01] for optimal stopping problems. The

main difference with the [BD07] is that we prove that Picard iterations are

unnecessary. This is good news because it greatly simplifies the algorithm

without deteriorating the estimates.

3. We derive a full error analysis for the MDP equation, including the effect of

statistical errors (finite number of Monte Carlo simulations); see Theorem

4.1. These estimates are obtained by exploiting stability inequalities -

Section 3.1 - for discrete BSDEs. We also show that the estimates are an

improvement on [LGW06], where ODP equations are analysed; see Section

4.3. Moreover, we do not require Lipschitz continuity assumptions on the

Markov functions yi to obtain our estimates.

4. We allow the driver to satisfy a weaker assumption than in [LGW06,

BD07]: only local Lipschitz conditions are considered, see (AF) below.

This allows the results of this paper to be applied to a wider range of

approximation problems for BSDEs, including some cases of quadratic

BSDEs; see Section 2.

5. We allow the time grid π to be non uniform; see (AF-iii) . Indeed, to

reduce the discretization error for BSDE with irregular terminal conditions

ξ = Φ(XT ), it has been recently proposed in [GM10] to choose nonuniform
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grids: the grid points are more concentrated close to the terminal time

T in order to compensate the lack of regularity of Φ. Similar results are

obtained for for path dependent ξ in [GGG11];

6. Finally, we demonstrate how higher orders of smoothness of the Markov

functions yi and zi defined in (1.3) lead to improvements in the error-

computational work trade-off. We also demonstrate that MDP has a bet-

ter error-computational time trade off than ODP in the context of these

theoretical analysis; see Section 4.3.

Organization of the paper. In the remainder of this section, we define

notation used throughout the paper. In Section 2, we state our working as-

sumptions and give several examples to show how these assumptions are useful

for approximating a wide variety of continuous-time BSDEs. In Section 3, we

establish stability estimates for discrete BSDEs, and apply them to derive tight

pointwise and L2-estimates for (Y, Z). We define the MDP-based scheme and

we analyze the L2-error incurred when conditional expectations are approxi-

mated by projections on closed convex subsets of L2. This allows comparison

between ODP and MDP-based schemes. Finally, we determine boundedness and

smoothness properties of discrete BSDEs under some additional assumptions.

In Section 4, the projections are computed using M independent simulations of

the explanatory process X. The global error is stated in Theorems 4.1 and 4.2.

The rest of the section is devoted to (long and technical) proofs. A discussion

related to algorithm complexity is given in Subsection 4.3. In particular, we

show how higher order of smoothness of the Markov functions yi and zi leads to

an improved error-computational time trade-off, and compare this to the results

for the ODP. Some intermediate results are detailed in Appendix.

Further notation.

• |x| stands for the Euclidean norm of the vector x.

• |U |Lp
= (E|U |p) 1

p stands for the Lp(P)-norm (p ≥ 1) of a random variable

U . To indicate that U is additionally measurable w.r.t. the σ-algebra Q,

we may write U ∈ Lp(Q,P).

• We reserve the letter γ := (γ0, . . . , γN−1) ∈ R
N
+ for the parameter ap-

pearing in the weighted L2-norms below. Moreover for a given γ, we

set Γi :=
∏i−1

k=0(1 + γk∆k) for 0 ≤ i < N (with the usual convention
∏−1

k=0 · · · = 1).

• For a q(> 1)-dimensional process U = (Ui)0≤i≤N , its l-th component is

denoted by Ul = (Ul,i)0≤i≤N .
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2. Standing assumptions and applicability to practical continuous-

time problems

In this section, we give the standing assumptions for this paper. These as-

sumptions are more general than in previous numerical schemes for BSDEs,

and we outline several examples to demonstrate how these more general as-

sumptions lead extended applicability of the results of this paper to practical

continuous-time BSDE problems.

The standing assumptions are separated into two parts: the first set consists

of the minimal assumptions necessary for basic results of Section 3, and the

second set consists of the Markovian assumptions necessary for Section 4. The

minimal assumptions used in this paper are that the terminal condition ξ is

square integrable and the driver is locally Lipschitz continuous in the sense that

the Lipschitz constant depends on ti. To be more precise:

(Aξ) ξ is in L2(FT ,P).

(AF) i) (ω, y, z) 7→ fi(y, z) is Fti
⊗B(R)⊗B(Rq)-measurable for every i < N ,

and there exist deterministic parameters θL ∈ (0, 1] and Lf ∈ [0,+∞)

such that

|fi(y, z) − fi(y
′, z′)| ≤ Lf

(T − ti)(1−θL)/2
(|y − y′| + |z − z′|), (2.5)

for any (y, y′, z, z′) ∈ R × R × R
q × R

q.

ii) There exist deterministic parameters θc ∈ (0, 1] and Cf ∈ [0,+∞)

such that

|fi(0, 0)| ≤ Cf

(T − ti)1−θc
, ∀0 ≤ i < N. (2.6)

iii) The time-grids π := {0 = t0 < . . . < tN = T} are such that

Cπ = sup
k<N

∆k

(T − tk)1−θL
→ 0 as N → +∞, (2.7)

lim sup
N→∞

Rπ < +∞, where Rπ = sup
0≤k≤N−2

∆k

∆k+1
. (2.8)

Under (Aξ) and (AF-i-ii) , it is straightforward to check from (1.1) that (Yi)0≤i≤N

and (Zi)0≤i<N are well defined and belong to L2 (see Proposition 3.1 for tight

estimates).

When analyzing the influence of M in Section 4, we reinforce the basic

assumptions with the following set of Markovian assumptions:

(AX) X is a Markov chain in R
d (1 ≤ d < +∞) adapted to (Fti

)i.
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(A′
ξ) i) ξ is a bounded FT -measurable random variable; we set Cξ := P −

ess supω |ξ(ω)| < +∞.

ii) ξ is of form ξ = Φ(XN ) for a measurable function Φ.

(A′
F
) For every i < N , the driver is of the form fi(y, z) = fi(Xi, y, z) where

(x, y, z) 7→ fi(x, y, z) is B(Rd) ⊗ B(R) ⊗ B(Rq)-measurable and (AF) is

satisfied.

These give us a Markov representation for solutions of the discrete BSDEs: for

all k < N , there exist measurable, deterministic functions yk : R
d → R and

zk : R
d → R

q such that Yk = yk(Xk) and Zk = zk(Xk) holds almost surely.

Indeed, taking the Markov chain (Xk,x
i )i≥k started at tk with value x ∈ R

d

with the same transition probabilities as (Xk)k yields, by induction, ∆kzk(x) =

E[∆W⊤
k yk+1(X

k,x
k+1)] and yk(x) = E[yk+1(X

k,x
k+1) + fk(x, yk+1(X

k,x
k+1), zk(x))∆k];

see the proof of Lemma 4.2 for details.

We emphasize that we do not make any further assumptions on X - no

non-degeneracy condition, no specific distributions, etc; our error estimates are

model-free in this sense. This lends flexibility and robustness to the empirical

least-squares regression scheme.

The assumptions above derive from particular continuous time settings; see

below. This means that it is natural for us to assume that the constants θL, Lf ,

θc, and Cf are time-grid independent. This assumption simplifies the complexity

analysis in Section 4.3.

At first glance, the boundedness assumption (A′
ξ-i) appears to be a serious

restriction of our scheme. Indeed, (Aξ) is the minimal assumption to ensure the

existence of a continuous-time BSDE in L2-spaces [EPQ97]. The raison d’être
of (A′

ξ-i) is to derive robust estimates for the global error (see Theorem 4.1)

using the tools of nonparametric regression [GKKW02]. On the other hand,

ξn = −n ∨ ξ ∧ n (n ≥ 0) defines a sequence of bounded approximations of ξ

and by L2-stability results on continuous-time BSDEs (see [EPQ97, Proposition

2.1] for instance), the truncation error converges to 0 as n→ +∞. Since in our

global error estimates we keep track on the dependence on Cξ, it would be a

priori possible to let this upper bound go appropriately quickly to infinity, while

maintaining a converging scheme.

Assumptions (AF-i-ii) may be surprising because they extend the usual

global Lipschitz continuity conditions in an unusual way. Globally Lipschitz

drivers are related to the case θL = 1, and θc = 1 describes the usual situation

where drivers are uniformly (in time) bounded at (y, z) = (0, 0). The singular-

ity at the terminal time allows us to extend the applicability of our numerical

scheme to include a wider class of continuous-time Markovian BSDE related

to a R
d-valued Brownian diffusion process (Xt)0≤t≤T . We outline two canon-

ical examples that motivate (AF-i-ii) . Take ξ = Φ(XT ) and f(t, ω, y, z) =
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f(t,Xt(ω), y, z). For simplicity, assume q = d and that the coefficients of X are

smooth and bounded and that its diffusion coefficient σ(t, x) satisfies a uniform

ellipticity condition. We denote by L the infinitesimal generator of X.

Quadratic BSDEs. Consider a quadratic growth driver satisfying

|f(t, x, y, z)| ≤ c (1 + |y| + |z|2),
|f(t, x, y, z) − f(t, x, y′, z′)| ≤ c (1 + |z| + |z′|)(|y − y′| + |z − z′|)

for any (t, x, y, y′, z, z′) ∈ [0, T ]×R
d×R×R×R

d×R
d and for a given constant c ≥

0. Assume additionally that the terminal function Φ is Hölder continuous and

bounded. Then [DG06, Theorem 2.1] yields that the continuous-time BSDE is

given by Yt = u(t,Xt) and Zt = ∇u(t,Xt)σ(t,Xt) where u solves the semi-linear

PDE ∂tu(t, x) + Lu(t, x) + f(t, x, u(t, x),∇u(t, x)σ(t, x)) = 0 with u(T, x) =

Φ(x). Moreover, there exist constants θ ∈ (0, 1] and Cu ∈ R
+ such that

(T − t)(1−θ)/2|∇u(t, x)σ(t, x)| ≤ Cu, ∀(t, x) ∈ [0, T ) × R
d.

In a personal discussion, François Delarue has brought to our attention that in

this BSDE setting, θ is equal to the Hölder exponent of Φ. Now, set ϕt : ζ ∈ R 7→
ϕt(ζ) = sign(ζ) min

(

|ζ|, Cu

(T−t)(1−θ)/2

)

and define the new driver f̄(t, x, y, z) :=

f
(

t, x, y, ϕt(z1) . . . , ϕt(zd)
)

. Observe that f̄(t,Xt, Yt, Zt) = f(t,Xt, Yt, Zt), thus

it is equivalent to solve the BSDE with driver f or f̄ . Notice also that ϕt(·) is 1-

Lipschitz continuous and bounded by Cu

(T−t)(1−θ)/2 , hence fi(y, z) := f̄(ti, Xti
, y, z)

satisfies (AF-i-ii) with Cf = c, θc = 1, Lf = c(T (1−θ)/2 +2
√
dCu), θL = θ. One

may argue that the construction of f̄ depends on the knowledge of Cu, which is

not straightforward; see [Ric10] for some explicit estimates.

Using proxys for numerical stability. Consider a standard Lipschitz

driver f . Assume that we know by expertise that the solution (Yt, Zt)t is ex-

pected to be close to (v(t,Xt),∇v(t,Xt)σ(t,Xt))t, where v is the explicit solu-

tion to a linear parabolic equation ∂tv(t, x) + L̃v(t, x) + f̃(t, x) = 0; the diffu-

sion process associated to L̃, the terminal condition and the driver may have

changed to produce an analytical solution. v is called proxy in [BGM09]. It is

then natural to numerically compute the residual (Y 0
t , Z

0
t ) := (Yt−v(t,Xt), Zt−

∇v(t,Xt)σ(t,Xt)). It solves a BSDE with terminal function Φ(.) − v(T, .) and

driver

f0(t, x, y, z) := f(t, x, y + v(t, x), z + ∇v(t, x)σ(t, x)) − f̃(t, x) + (L − L̃)v(t, x).

The new driver f0 is uniformly Lipschitz w.r.t. y and z, so (AF-i) is satis-

fied with θL = 1. If v(T, .) is θ-Hölder continuous (θ ∈ (0, 1]), then usual

PDE estimates on the parabolic operator L̃ give (T − t)(
k−θ

2 )+ |Dk
xv(t, x)| ≤ Cv

(k = 0, 1, 2), from which (AF-ii) is derived with θc = θ/2. To conclude this

example, we mention that in the case L̃ = L, v(T, .) = Φ(.) and f̃ = 0, it is
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proved in [GM10] that the L2-time-regularity of (Y 0, Z0) is usually more well-

behaved than that of (Y, Z), suggesting that the discretization error from the

DP equation for (Y 0, Z0) would be smaller.

Assumption (AF-iii) is used to derive stability results for discrete BSDEs

(see Proposition 3.1) and for the numerical schemes (see Theorems 3.1 and

4.1) as the number N of grid times becomes large. If θL = 1, the condition

(2.7) is equivalent to |π| → 0. If θL ∈ (0, 1) and π is a time-grid with higher

concentration at T as in [GM10] (i.e. tk = T −T (1−k/N)1/θπ with θπ ∈ (0, 1]),

then one easily checks conditions (2.7) and (2.8) hold (see [GT11]):

Cπ ≤ T θL

θπ

1

N1∧ θL
θπ

, Rπ ≤ 1

θπ

(

1 ∨
( 1

2θπ

)
1

θπ
−1
)

.

Hence, (2.7) and (2.8) hold true whatever the value θπ is. This shows that in

most usual situations |π| → 0 implies (AF-iii) .

3. ODP scheme vs. MDP scheme

The aim of this section is threefold. Firstly, we use the minimal assumptions

(Aξ) and (AF) to determine a priori stability estimates for discrete BSDEs.

Secondly, we use the stability results to show that the MDP scheme combined

with L2-projection yields a smaller error than the ODP scheme. In doing so, we

revisit the results of [BD07], but avoid the Picard iterations of their scheme. This

also serves as a warm-up to Section 4, where the a priori stability results also

play a crucial role. Thirdly, we demonstrate how slightly stronger assumptions

yield time uniform almost sure bounds on the solutions of the BSDEs, and

smoothness properties in the case of Markovian BSDEs; these properties are

extremely useful in Section 4.

3.1. General a priori estimates
Definition 3.1. The truncation of the i-th Brownian increment at threshold
R = [0,+∞] is defined by

[∆Wi]w = (−R
√

∆i ∨ ∆W1,i ∧R
√

∆i, · · · ,−R
√

∆i ∨ ∆Wq,i ∧R
√

∆i)
⊤.

For R = +∞, [∆Wi]w = ∆Wi. Replacing ∆Wi by [∆Wi]w has small impact

in the DP equations (1.1), provided that R is large enough (see Proposition

3.3). On the other hand, taking finite R ensures that some quantities are a.s.

bounded, which is crucial in our error analysis in Section 4.

In this subsection, we study the difference between two discrete BSDEs with

truncated Brownian increments, (Y R
i , ZR

i )i and (Ȳ R
i , Z̄R

i )i, given by






Y R
i = Ei

(

ξ +
∑N−1

k=i fk(Y R
k+1, Z

R
k )∆k

)

,

∆iZ
R
i = Ei

(

[ξ +
∑N−1

k=i+1 fk(Y R
k+1, Z

R
k )∆k][∆W⊤

i ]w

)

,
(3.9)
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and similarly for (Ȳ R
i , Z̄R

i )i with data (ξ̄, f̄i(y, z)). The superscript R refers to

the fact the Brownian increments are truncated at the threshold R ∈ [0,+∞].

We assume that ξ and ξ̄ are both in L2 (assumption (Aξ) ). We allow

rather greater generality than afforded by (AF) : firstly, the drivers fi(y, z)

and f̄i(y, z) are Lipschitz continuous w.r.t. (y, z) and the dependence of their

Lipschitz constant w.r.t. i is general; finally, we do not insist that the drivers be

adapted. We will require the extension to non-adapted drivers later in Section

4, where we will apply these results to BSDEs with data dependent drivers.

However, we assume that each fi(Y
R
i+1, Z

R
i ) and f̄i(Ȳ

R
i+1, Z̄

R
i ) are in L2, so that

Y R
i , ZR

i , Ȳ R
i , Z̄R

i are also in L2 for any i. Using the tower property of conditional

expectations, observe that

{

Y R
N = ξ, Y R

i = Ei

(

Y R
i+1 + fi(Y

R
i+1, Z

R
i )∆i

)

,

∆iZ
R
i = Ei

(

Y R
i+1[∆W

⊤
i ]w

)

,
(3.10)

and similarly for (Ȳ R, Z̄R). We study the differences:

∆Y R
i = Y R

i − Ȳ R
i , ∆ZR

i = ZR
i − Z̄R

i

and we set

∆fi = fi(Y
R
i+1, Z

R
i ) − f̄i(Y

R
i+1, Z

R
i ), ∆ξ = ξ − ξ̄.

We shall use the following Lemma repeatedly:

Lemma 3.1 (Local estimates). For 0 ≤ i ≤ N − 1, assume that f̄i is Lip-
schitz w.r.t. y and z, with a Lipschitz constant equal to Lf̄i

∈ R
+. For any

R ∈ [0,+∞], ∆i ≤ T and γi > 0 satisfying 6q(∆i + 1
γi

)L2
f̄i

≤ 1, we have

|∆Y R
i |2 ≤ (1 + (γi +

1

2
)∆i)Ei(|∆Y R

i+1|2) + 3(∆i +
1

γi
)∆iEi(∆f

2
i ). (3.11)

Proof. Preliminary estimates for ∆ZR
i . From (3.10) we have

∆i∆Z
R
i = Ei([∆Y

R
i+1 − Ei(∆Y

R
i+1)][∆W

⊤
i ]w).

By the Cauchy-Schwarz inequality, note that

|Ei([∆Y
R
i+1 − Ei(∆Y

R
i+1)][∆W

⊤
i ]w)|2 ≤ q ∆i

(

Ei[(∆Y
R
i+1)

2] − (Ei∆Y
R
i+1)

2
)

uniformly in R, whence

∆i|∆ZR
i |2 ≤ q

(

Ei[(∆Y
R
i+1)

2] − (Ei∆Y
R
i+1)

2
)

. (3.12)

Estimates for ∆Y R
i . We have

∆Y R
i = Ei∆Y

R
i+1 + ∆iEi[∆fi] + ∆iEi[f̄i(Y

R
i+1, Z

R
i ) − f̄i(Ȳ

R
i+1, Z̄

R
i )].
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Combining the Young inequality (a+ b)2 ≤ (1 + γi∆i)a
2 + (1 + 1

γi∆i
)b2 and the

Lipschitz property of f̄i and (3.12), we deduce

(∆Y R
i )2 ≤(1 + γi∆i)(Ei∆Y

R
i+1)

2 (3.13)

+ 3(∆i +
1

γi
)∆i

[

Ei[∆f
2
i ] + L2

f̄i
Ei[(∆Y

R
i+1)

2] + L2
f̄i
|∆ZR

i |2
]

≤
(

1 + γi∆i − 3qL2
f̄i

(∆i +
1

γi
)

)

(Ei∆Y
R
i+1)

2 + 3(∆i +
1

γi
)∆iEi[∆f

2
i ]

+

[

3(∆i +
1

γi
)∆iL

2
f̄i

+ 3qL2
f̄i

(∆i +
1

γi
)

]

Ei[(∆Y
R
i+1)

2]. (3.14)

Under our assumptions on γi, we have γi ≥ 3qL2
f̄i

, which ensures 1 + γi∆i −
3qL2

f̄i
(∆i + 1

γi
) ≥ 0 for any ∆i. This allows us to combine terms of (Ei∆Y

R
i+1)

2

and Ei[(∆Y
R
i+1)

2] using Jensen’s inequality in (3.14):

(∆Y R
i )2 ≤

(

1 + γi∆i − 3qL2
f̄i

(∆i +
1

γi
)

)

Ei[(∆Y
R
i+1)

2] + 3(∆i +
1

γi
)∆iEi(∆f

2
i )

+

[

3(∆i +
1

γi
)∆iL

2
f̄i

+ 3qL2
f̄i

(∆i +
1

γi
)

]

Ei[(∆Y
R
i+1)

2]

=

(

1 + γi∆i + 3(∆i +
1

γi
)∆iL

2
f̄i

)

Ei[(∆Y
R
i+1)

2] + 3(∆i +
1

γi
)∆iEi(∆f

2
i ),

which proves (3.11) since 3(∆i + 1
γi

)∆iL
2
f̄i

≤ ∆i

2 . �

The following Proposition will be used extensively in the statistical analysis:

Proposition 3.1 (Global pointwise estimates). Assume that, for each i,
f̄i is Lipschitz w.r.t. y and z with Lipschitz constant Lf̄i

∈ R
+. Then, for any

R ∈ [0,+∞], and any time grid π and γ ∈ (0,+∞)N satisfying 6q(∆k + 1
γk

)L2
f̄k

≤
1 for all k ≤ N − 1, we have for 0 ≤ i ≤ N

|∆Y R
i |2Γi +

N−1
∑

k=i

∆kEi(|∆ZR
k |2)Γk

≤ C3.15

(

ΓNEi(∆ξ
2) + 3

N−1
∑

k=i

( 1

γk
+ ∆k

)

∆kEi(∆f
2
k )Γk

)

, (3.15)

where Γi :=
∏i−1

k=0(1 + γk∆k) and C3.15 := 2q + (1 + T )eT/2.

Note that, whenever necessary, the above pointwise estimates can be easily

turned into uniform L2-estimates:

sup
i≤k≤N

E(|∆Y R
k |2)Γk +

N−1
∑

k=i

∆kE(|∆ZR
k |2)Γk

11



≤ C3.15

(

ΓNE(∆ξ2) + 3
N−1
∑

k=i

( 1

γk
+ ∆k

)

∆kE(∆f2
k )Γk

)

.

Proof. Starting at (3.11), multiply both sides by

λi := (1 + (γi−1 +
1

2
)∆i−1)λi−1, λ0 := 1,

sum between k = i to k = N − 1, and take conditional expectations Ei to
deduce:

(∆Y R
i )2λi ≤ λNEi(∆ξ

2) + 3

N−1
∑

k=i

(
1

γk
+ ∆k)∆kEi(∆f

2
k )λk. (3.16)

From the simple inequality Γi ≤ λi = e
Pi

k=0 ln(1+(γk+ 1
2 )∆k) ≤ eT/2Γi, we get for

0 ≤ i ≤ N

(∆Y R
i )2Γi ≤ eT/2ΓNEi(∆ξ

2) + 3eT/2
N−1
∑

k=i

(
1

γk
+ ∆k)∆kEi(∆f

2
k )Γk. (3.17)

Final estimates for ∆Zi. From (3.12), we have

N−1
∑

k=i

∆kEi[|∆ZR
k |2]Γk ≤

N−1
∑

k=i

qΓk+1

(

Ei[(∆Y
R
k+1)

2] − Ei[(Ek∆Y R
k+1)

2]
)

≤ qΓNEi(∆ξ
2) +

N−1
∑

k=i+1

qΓk

(

Ei[(∆Y
R
k )2] − (1 + γk∆k)Ei[(Ek∆Y R

k+1)
2]
)

.

From (3.13), we have

Ei[(∆Y
R
k )2]−(1 + γk∆k)Ei[(Ek∆Y R

k+1)
2]

≤ 3(
1

γk
+ ∆k)∆k

[

Ei(∆f
2
k ) + L2

f̄k
Ei[(∆Y

R
k+1)

2] + L2
f̄k

Ei[|∆ZR
k |2]

]

.

Plugging this inequality into that above yields

N−1
∑

k=i

∆kEi[|∆ZR
k |2]Γk

≤ qΓNEi(∆ξ
2) + 3

N−1
∑

k=i+1

q(
1

γk
+ ∆k)∆kL

2
f̄k

Ei(|∆ZR
k |2)Γk

+ 3

N−1
∑

k=i+1

q(
1

γk
+ ∆k)∆kEi(∆f

2
k )Γk + 3

N−1
∑

k=i+1

q(
1

γk
+ ∆k)∆kL

2
f̄k

Ei[(∆Y
R
k+1)

2]Γk.

12



For γk and ∆k as in the Proposition statement, we have 3q( 1
γk

+ ∆k)L2
f̄k

≤ 1
2 ,

and thus

N−1
∑

k=i

∆kEi[|∆ZR
k |2]Γk

≤ 2qΓNEi(∆ξ
2) + 6

N−1
∑

k=i+1

q(
1

γk
+ ∆k)∆kEi(∆f

2
k )Γk +

N−1
∑

k=i+1

∆kEi[(∆Y
R
k+1)

2]Γk

≤ (2q + TeT/2)ΓNEi(∆ξ
2) + (6q + 3TeT/2)

N−1
∑

k=i+1

(
1

γk
+ ∆k)∆kEi(∆f

2
k )Γk,

where we have used the estimate (3.17) on ∆Y in the last inequality. �

3.2. Projection errors for the ODP and MDP-based schemes

Projection on a closed convex subspace of L2.

Definition 3.2. Let S be a non-empty closed convex subset of L2(FT ,P). Then,
to any random variable U ∈ L2(FT ,P) we can associate P(U) ∈ S, the (unique)
projection of U on S, which satisfies E|U −P(U)|2 = infS∈S E|U −S|2. For any
S ∈ S, we have

E
(

(U − P(U))(S − P(U)
)

≤ 0. (3.18)

S can be a finite dimensional vector space, i.e. S := {S = S0 +
∑K

k=1 αkpk,

(αk)1≤k≤K ∈ R
K} for some pk ∈ L2: this is our choice (with S0 = 0) in Section

4. It can also be a convex ball of the form S = {S = S0+
∑K

k=1 αkpk, (αk)1≤k≤K ∈
R

K , ‖α‖ ≤ ρ} (ρ ≥ 0) where ‖ · ‖ is a norm in R
K . When ‖ · ‖ is the Euclidean

norm, we obtain the ridge regression [GL96, Section 12.1], whereas the ℓ1-norm

leads to the Lasso technique [Tib96], providing sparsity in the coefficients.

The projection operator P satisfies some simple but important properties:

• If S consists of Q-measurable random variables, then P(U) = P(E(U |Q)).

Indeed, P(U) is the minimizer over S ∈ S of E|U−S|2 = E|U−E(U |Q)|2+

E|E(U |Q) − S|2.

• The operator P is 1-Lipschitz. Indeed, for any U1, U2 in L2, write

E|U1 − U2|2 =E|P(U1) − P(U2)|2 + E|U1 − P(U1) − (U2 − P(U2))|2

+ 2E
(

(P(U1) − P(U2))(U1 − P(U1) − (U2 − P(U2))
)

≥E|P(U1) − P(U2)|2 + E|U1 − P(U1) − (U2 − P(U2))|2

≥E|P(U1) − P(U2)|2

using (3.18) with U = Ui and S = P(Uj), 1 ≤ i 6= j ≤ 2.
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Projection operators in the DP equations. In the following of this sec-

tion, the conditional expectation operators in the DP equations will be replaced

by projection operators. That is, for each i ∈ {0, . . . , N − 1}, we consider

SY
i ,SZ,1

i , . . .,SZ,q
i that are non-empty closed convex subsets of L2(Fti

,P). We

let PY
i and PZ,1

i , . . . ,PZ,q
i be the related projection operators and denote the

tensor projection PZ := (PZ,l, . . . ,PZ,q). We sum up the above stated proper-

ties of the Pi (= PY
i or PZ

i ):

Lemma 3.2. Let U and V be in L
2(FT ,P). Then, we have

a) Pi(U) = Pi(Ei(U)),

b) |Pi(U) − Pi(V )|L2
≤ |U − V |L2

.

MDP scheme with projection. Using the above projection operators in the

discrete BSDE (3.9), we obtain the following approximation scheme:







Ŷ R
i = PY

i

(

ξ +
∑N−1

k=i fk(Ŷ R
k+1, Ẑ

R
k )∆k

)

,

∆iẐ
R
l,i = PZ,l

i

(

[ξ +
∑N−1

k=i+1 fk(Ŷ R
k+1, Ẑ

R
k )∆k][∆Wl,i]w

)

,
(3.19)

for R ∈ [0,+∞]. The following theorem estimates the error between (Y R, ZR)

and (Ŷ R, ẐR).

Theorem 3.1. Assume (Aξ) and (AF-i-ii) . For a given γ ∈ [0,+∞)N and
Γi :=

∏i−1
k=0(1+ γk∆k), we define the weighted time-average of error projections

on Y R and ZR as follows:

EP,Y
i (γ) =

N−1
∑

k=i

∆kE(|Y R
k − PY

k (Y R
k )|2)Γk, EP,Z

i (γ) =
N−1
∑

k=i

∆kE(|ZR
k − PZ

k (ZR
k )|2)Γk.

For any R ∈ [0,+∞], any π and any γ ∈ (0,+∞)N such that 24C3.15(1+T )(1∨
Rπ)( 1

γk
+ ∆k)

L2
f

(T−tk)1−θL
≤ 1 for any k < N , we have for any 0 ≤ i ≤ N − 1

E(|Y R
i − Ŷ R

i |2)Γi ≤ 2E(|Y R
i − PY

i (Y R
i )|2)Γi + 2EP,Y

i+1 (γ) + 2EP,Z
i (γ), (3.20)

N−1
∑

k=i

∆kE(|ZR
k − ẐR

k |2)Γk ≤ 4EP,Y
i+1 (γ) + 4EP,Z

i (γ). (3.21)

The choice γk = 48C3.15(1+T )(1∨Rπ)
L2

f

(T−tk)1−θL
obviously implies 24C3.15(1+

T )(1 ∨ Rπ)( 1
γk

+ ∆k)
L2

f

(T−tk)1−θL
≤ 1

2 + 24C3.15(1 + T )(1 ∨ Rπ)CπL
2
f ≤ 1 for N

large enough (assuming (AF-iii) ) and moreover, we derive the easy bounds

1 ≤ Γi ≤ exp(
N−1
∑

k=0

γk∆k) ≤ exp(

∫ T

0

48C3.15(1 + T )(1 ∨Rπ)L2
f

(T − t)1−θL
dt)
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= exp(
48C3.15(1 + T )(1 ∨Rπ)L2

fT
θL

θL
) := C3.22, (3.22)

which remains bounded π-uniformly as N → +∞ owing to (2.8). As a conse-

quence, we obtain

Corollary 3.1. Assume (Aξ) and (AF) . For any R ∈ [0,+∞] and for any π
with N large enough (such that (1 ∨Rπ)CπL

2
f ≤ 1

48C3.15(1+T )), we have for any
0 ≤ i ≤ N − 1

E(|Y R
i − Ŷ R

i |2) ≤ 2E(|Y R
i − PY

i (Y R
i )|2) + 2C3.22

[

EP,Y
i+1 (0) + EP,Z

i (0)
]

, (3.23)

N−1
∑

k=i

∆kE(|ZR
k − ẐR

k |2) ≤ 4C3.22

[

EP,Y
i+1 (0) + EP,Z

i (0)
]

. (3.24)

These estimates show how the error due to projections in the MDP scheme is

controlled by the time-average of the projection errors on Y and Z. Moreover, we

obtain similar estimates to the Bender-Denk scheme (compare [BD07, Theorem

11] with our estimates), but we avoid the Picard iterations.

Proof. (of Theorem 3.1). We first prove a weaker result on the global error,
that is

Ei(γ) :=

N−1
∑

k=i+1

∆kE(|Y R
k − Ŷ R

k |2)Γk +

N−1
∑

k=i

∆kE(|ZR
k − ẐR

k |2)Γk

≤ 4EP,Y
i+1 (γ) + 4EP,Z

i (γ). (3.25)

We will also make use of the following intermediate process:







Ȳ R
i = Ei

[

ξ +
∑N−1

k=i fk(Ŷ R
k+1, Ẑ

R
k )∆k

]

,

∆iZ̄
R
i = Ei

[

(ξ +
∑N−1

k=i+1 fk(Ŷ R
k+1, Ẑ

R
k )∆k)[∆W⊤

i ]w

]

.

Observe that, from Lemma 3.2(a), one has the useful properties (for i < N)

Ŷ R
i = PY

i (Ȳ R
i ) and ẐR

i = PZ
i (Z̄R

i ). (3.26)

Moreover, (Ȳ R, Z̄R) solves a discrete BSDE with truncated Brownian incre-
ments and data (ξ, f̄k : (y, z) 7→ fk(Ŷ R

k , ẐR
k )); the Lipschitz constant of f̄k

equals zero for all k. Using Cauchy’s inequality and Lemma 3.2(b), we obtain

Ei(γ) ≤ 2

N−1
∑

k=i+1

∆kE(|Y R
k − PY

k (Y R
k )|2)Γk + 2

N−1
∑

k=i

∆kE(|ZR
k − PZ

k (ZR
k )|2)Γk

+ 2

N−1
∑

k=i+1

∆kE(|PY
k (Y R

k ) − Ŷ R
k |2)Γk + 2

N−1
∑

k=i

∆kE(|PZ
k (ZR

k ) − ẐR
k |2)Γk
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≤ 2EP,Y
i+1 (γ) + 2EP,Z

i (γ) + 2
N−1
∑

k=i+1

∆kE(|Y R
k − Ȳ R

k |2)Γk + 2
N−1
∑

k=i

∆kE(|ZR
k − Z̄R

k |2)Γk.

To bound the last two terms in the above inequality, we apply Proposition 3.1
on the BSDEs (Y R, ZR) and (Ȳ R, Z̄R) to get

2

N−1
∑

k=i+1

∆kE(|Y R
k − Ȳ R

k |2)Γk + 2

N−1
∑

k=i

∆kE(|ZR
k − Z̄R

k |2)Γk

≤ 6C3.15

(

1 +

N−1
∑

k=i+1

∆k

)

N−1
∑

k=i

(
1

γk
+ ∆k)∆kE

(

|fk(Y R
k+1, Z

R
k ) − fk(Ŷ R

k+1, Ẑ
R
k )|2

)

Γk

≤ 12C3.15(1 + T )
N−1
∑

k=i

(
1

γk
+ ∆k)∆k

L2
f

(T − tk)1−θL
E
(

|Y R
k+1 − Ŷ R

k+1|2 + |ZR
k − ẐR

k )|2
)

Γk

≤ 1

2
Ei(γ).

The penultimate inequality follows from ∆k ≤ Rπ∆k+1 and the conditions on
π and γ in the theorem statement. To sum up, we have obtained Ei(γ) ≤
2EP,Y

i+1 (γ) + 2EP,Z
i (γ) + 1

2Ei(γ), which readily proves (3.25). This also implies
(3.21).

We now prove (3.20). Proceeding similarly, we obtain

E(|Y R
i − Ŷ R

i |2)Γi ≤ 2E(|Y R
i − PY

i (Y R
i )|2)Γi + 2E(|Y R

i − Ȳ R
i |2)Γi

≤ 2E(|Yi − PY
i (Y R

i )|2)Γi

+ 12C3.15

N−1
∑

k=i

(
1

γk
+ ∆k)∆k

L2
f

(T − tk)1−θL
E
(

|Y R
k+1 − Ŷ R

k+1|2 + |ZR
k − ẐR

k )|2
)

Γk

≤ 2E(|Yi − PY
i (Y R

i )|2)Γi +
1

2
Ei(γ)

and the proof is complete using (3.25). �

Comparison with the ODP scheme with projection. The ODP equa-

tion associated with the MDP equation (3.19) is
{

Y̌ R
N = ξ, Y̌ R

k = PY
k

(

Y̌ R
k+1 + fk(Y̌ R

k+1, Ž
R
k )∆k

)

,

∆kŽ
R
l,k = PZ,l

k

(

Y̌ R
k+1[∆Wl,k]w

)

.

In this case, the ODP and MDP equations do not match up, because projection

operators do not in general benefit from a tower law. This means that the error

analysis would be fundamentally different, because (3.26) would no longer be

true and one could not apply the stability result for discrete BSDEs. In fact, for

uniform time-grid π (∆k = T
N for all k) one would need to multiply the EP,Y

i+1 (0)

term in (3.23) and (3.24) by N for the ODP estimates. This is also observed in

the error analysis of [LGW06, Theorem 2].
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3.3. Application of a priori estimates to almost sure bounds

When the terminal condition is bounded, pointwise bounds on Y R and ZR

are available. These bounds are used in Section 4.

Proposition 3.2 (a.s. upper bounds). Assume (A′
ξ-i) and (AF) . For any

R ∈ [0,+∞] and for any π with N large enough (such that CπL
2
f ≤ 1

12q ), the

following almost sure bounds on Y R
i and ZR

i apply:

|Y R
i | ≤ Cy := C3.27

(

Cξ +
T θc

√

4q(2θc − θL ∧ θc)
Cf

)

, |ZR
l,i| ≤ Cz,i :=

Cy√
∆i

,

(3.27)

for 0 ≤ i ≤ N − 1 and C3.27 = exp
(

T
4 +

6q(1∨L2
f )

θL∧θc
(T θL ∨ 1)

)

.

Observe that Cy and C3.27 are uniform in i and R ∈ [0,+∞], and that they

remain bounded as Lf and T go to 0 (as we naturally expect).

Proof. We derive the almost sure bounds from the global pointwise estimates
in Proposition 3.1. To apply the results of this proposition, we take the pair
(0, 0) for the first discrete BSDE - the solution associated to the null driver
and terminal condition - and (Y R, ZR) for the second discrete BSDE, which
is given by the DP equation (3.9). From (3.16), for any ∆i and γi such that

6q(∆i + 1
γi

)
L2

f

(T−ti)1−θL
≤ 1, and recalling that λi :=

∏i−1
k=0(1 + (γk + 1

2 )∆k), we

have

(∆Y R
i )2 ≤ (∆Y R

i )2λi ≤ λNEi(ξ
2) + 3

N−1
∑

k=i

(1 + γk∆k)

γk
λk∆kEi(f

2
k (0, 0))

≤ λN

(

C2
ξ + 3C2

f

N−1
∑

k=0

∆k

γk(T − tk)2(1−θc)

)

.

For N large enough, we have CπL
2
f ≤ 1

12q ; additionally, we set

γk := 12q
(1 ∨ T−θL)(1 ∨ L2

f )

(T − tk)1−θL

( T

T − tk

)θL−θL∧θc ≥
12qL2

f

(T − tk)1−θL
, 0 ≤ k < N.

It follows 6q(∆k + 1
γk

)
L2

f

(T−tk)1−θL
≤ 1. Easy computations similar to (3.22) give

λN ≤ exp
(T

2
+ 12q(1 ∨ T−θL)(1 ∨ L2

f )T θL−θL∧θc

∫ T

0

(T − t)θL∧θc−1dt
)

= exp
(T

2
+

12q(1 ∨ L2
f )

θL ∧ θc
(T θL ∨ 1)

)

,

N−1
∑

k=0

∆k

γk(T − tk)2(1−θc)
=

N−1
∑

k=0

∆k(1 ∧ T θL)T θL∧θc−θL

12q(1 ∨ L2
f )(T − tk)(1−2θc+θL∧θc)
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≤ T 2θc

12q(2θc − θL ∧ θc)

(observing that 2θc − θL ∧ θc ≥ θc > 0). Combining the last three inequalities,
we obtain the required upper bounds (3.27) on Y R. The bound on ZR

i is clear
from the Cauchy-Schwartz inequality and the bound on Y R

i+1. �

3.4. Impact of the threshold R

In the spirit of [LGW06], we compare the discrete BSDE (3.10) (or equiva-

lently (3.9)) with R < +∞, to (1.1) (or equivalently (1.4)). While unessential,

we assume for simplicity that the terminal condition is bounded.

Proposition 3.3. Assume (A′
ξ-i) and (AF) . For any R ∈ [0,+∞] and for

any π with N large enough (such that CπL
2
f ≤ 1

12q ), the following almost sure

error bounds on Yi − Y R
i and Zi − ZR

i hold for any 0 ≤ i < N :

|Yi − Y R
i | ≤ Cy exp

(T

8
+

12qL2
f

θL
T θL

)

exp
(

− 1

4
R2
)
√
N,

(

N−1
∑

k=i

Ei|Zk − ZR
k |2∆k

)
1
2 ≤ Cy exp

(12qL2
f

θL
T θL

)(

8q + T exp(
T

4
)
)

1
2 exp

(

− 1

4
R2
)
√
N.

For the proof, see [GT11]. Consequently, taking R in a logarithmic scale w.r.t.

N is sufficient to make the threshold error negligible: for instance, taking R =
√

4(p+ 1
2 ) log(N + 1) (for p ≥ 0) gives an error of magnitude O(N−p).

3.5. Application of a priori bounds and Markov assumptions to additional smooth-
ness properties

In this subsection, the Markovian assumptions (AX) , (A′
ξ) and (A′

F
) are

in force. We demonstrate how additional smoothness conditions of the terminal

condition Φ and the driver fk strongly improve the smoothness properties of

yR
k and zR

k . Increased smoothness is essential in the complexity analysis of

numerical algorithms, as will be demonstrated in Section 4.3.

Lemma 3.3. Assume x 7→ Φ(x) is uniformly Lipschitz continuous with Lips-
chitz constant LΦ, and that the Lipschitz property of the driver fk is extended
to the x component; i.e.,

|fk(x, y, z) − fk(x′, y′, z′)| ≤ Lf

(T − tk)(1−θL)/2
(|x− x′| + |y − y′| + |z − z′|).

Furthermore, assume that, for any x1, x2 ∈ R
d and 0 ≤ k ≤ N − 1, two Markov

chains (Xk,x1

i )k≤i≤N and (Xk,x2

i )k≤i≤N started at time tk with values xi (i =

1, 2) with the same transition probabilities as (Xk)k enjoy the property E[|Xk,x1

i −
Xk,x2

i |2] ≤ CX |x1 − x2|2 for some constant CX .
Then, if 12qCπL

2
f ≤ 1 for all k, x 7→ yR

k (x) is Lipschitz continuous uniformly
in k and N .
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Proof. Let (Y 1, Z1) and (Y 2, Z2) be discrete BSDEs from k to N with data

(Φ(X
k,xj

N ), fi(X
k,xj

i , y, z)) (j = 1, 2 resp.). Then yR
k (xj) = Y j

k and zR
k (xj) = Zj

k

(j = 1, 2 resp.) hold almost surely. We use the result of (3.17), together with
the choice γk = 12qL2

f (T − tk)−(1−θL), to obtain

|yR
k (x1) − yR

k (x2)|2 ≤ eT/2CΓE[|Φ(Xk,x1

N ) − Φ(Xk,x2

N )|2]

+ 3eT/2CΓ

N−1
∑

i=k

(∆i +
1

γi
)E[|fi(X

k,x1

i , Y 1
i+1, Z

1
i ) − fi(, X

k,x2

i , Y 1
i+1, Z

1
i )|2]∆i

≤ eT/2(
T

2q
+ L2

Φ)CXCΓ|x1 − x2|2 (3.28)

where CΓ := e12qL2
f T θL/θL comes from the choice of γk; see (3.22) for details. �

We now show that, under assumptions of Lipschitz continuous data, the a.s.

bound of Z does not suffer from the inverse dependency on the time increments.

Corollary 3.2. Under the assumptions of Lemma 3.3 and additionally that for
all x ∈ R

d, the Markov chain (Xk,x
i )i≥k started at tk with value x enjoys the

property that E[|Xk,x
k+1−x|2] ≤ CX∆k, then the function x 7→ zR

k (x) is uniformly
bounded, with a bound independent of the time increments.

Proof. The result follows directly from Lemma 3.3:

|zR
k (x)|2 =

1

∆2
k

|E
[

[∆Wk]w(yR
k+1(X

k,x
k+1) − yR

k+1(x))]|2 ≤ eT/2(
T

2
+ qL2

Φ)C2
XCΓ

where we have used the fact that yR
k+1 is deterministic in the first equality, and

the Cauchy-Schwartz inequality combined with (3.28) in the second inequality.
�

The additional assumptions made in Lemma 3.3 and Corollary 3.2 are quite

natural: they are satisfied by, for example, the Euler scheme for a jump-diffusion

with bounded coefficients. Extensions to Lemma 3.3 and Corollary 3.2 to higher

derivatives will be carried out in future work.

4. Empirical regression scheme

In this section, we approximate the projection scheme (3.19) using least-

squares regression on simulated data. The details of the algorithm are made

explicit in Section 4.1, and a full error analysis is undertaken in Section 4.2.

Then the algorithm complexity is discussed in Section 4.3. Finally, Sections 4.4

and 4.5 are devoted to the proof of our main results.
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4.1. Notation and algorithm

Markovian framework. In what follows, we always assume (AX) , (A′
ξ)

and (A′
F
) . This allows the representation

(Y R
i , ZR

i ) := (yR
i (Xi), z

R
i (Xi)) (4.29)

for measurable, deterministic functions yR
i (·) and zR

i (·).
Samples. Let {(Xm

k )k≥0}m=1,...,M denote M independent paths of the

Markov chain, and {(∆Wm
k )k≥0}m=1,...,M the independent increments of the

Brownian Motion from which the Markov chain is generated. We denote the

samples of the Markov chain at time k by X1:M
k := {Xm

k }m=1,...,M .

For function ψ : R
d → R, we define the empirical norm with respect to the

sample X1:M
k by

‖ψ‖k,M :=
( 1

M

M
∑

m=1

|ψ(Xm
k )|2

)1/2
.

Basis functions. For each l = 0, . . . , q and k = 0, . . . , N − 1, we are

given a finite number of deterministic basis functions (pi
l,k(.))1≤i≤Kl,k

, where

pi
l,k(.) : R

d → R satisfies E[|pi
l,k(Xk)|2] < +∞. We write the functions as a

column vector pl,k(.) = (p1
l,k(.), . . . )⊤, where ⊤ denotes the transpose operator.

Without loss of generality, we assume that M ≥ Kl,k. The random variables

(pi
l,k(Xk))1≤i≤Kl,k

span a linear subspace of L2(Ftk
,P), which is denoted SY

k if

l = 0 and SZ,l
k if l 6= 0 in the language of Subsection 3.2. The extension of our

error estimates to more general closed convex subspaces will be considered in

future research.

We write pm
l,k (resp. pi,m

l,k ) to mean pl,k(Xm
k ) (resp. pi

l,k(Xm
k )).

Least-squares problem. Instead of projections in the L2(P)-sense as in

Subsection 3.2, we numerically compute empirical regressions using the sam-

ples. Generally speaking for given observation X1:M
k and response S1:M =

(Sm)m=1,...,M , we aim at computing the best approximation of the response in

the vector space generated by the basis functions pl,k w.r.t. the norm ‖.‖k,M :

it is defined by α⋆ · pl,k(.) where

α⋆ = arg inf
α∈R

Kl,k

‖α · pl,k − S‖2
k,M . (4.30)

Since colinearities may exist between basis functions, the above coefficient α⋆

may be not unique and one must first clarify which solution to take. We take the

Singular Value Decomposition (SVD in short) approach by taking the coefficient

with minimal Euclidean norm (see Appendix A for details). We refer to this

choice as the SVD-optimal coefficient. We now state basic properties related to

least-squares regression with random observation X1:M
k that will be frequently

used in this work.
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Proposition 4.1. Let α⋆ be the SVD-optimal coefficient solving arg infα∈R
Kl,k ‖α·

pl,k − S‖2
k,M . The following properties are satisfied:

i) linearity: the mapping S 7→ α⋆ is linear.

ii) contraction property: ‖α⋆ · pl,k‖k,M ≤ ‖S‖k,M .

iii) conditional expectation solution: assume that (pm
l,k)m=1,...,M is measur-

able with respect to the sub-σ-algebra Q. Then the SVD-optimal coeffi-
cient associated to the response E(S|Q) = (E(Sm|Q))m=1,...,M is given by
E(α⋆|Q).

The proof is given in Appendix A.

Soft thresholds for approximate solutions. yR
i and zR

i are bounded

by Cy and Cz,i, respectively, provided that N is large enough (see Proposition

3.2). We force the approximated solutions to satisfy these bounds: for (y, z) :=

(y, (z1, · · · , zq)) ∈ R × R
q we define the soft thresholding

[y]y = −Cy∨y∧Cy, [zl]z = −Cz,i∨zl∧Cz,i, [z]z = ([z1]z, · · · , [zq]z). (4.31)

In the notation for the z-threshold, we do not indicate that it depends on i

because this is clear from the context.

Coefficients and solution approximations. We set yR,M
N (·) := Φ(·). For

k < N , we iteratively define the SVD-optimal coefficients

αM
0,k := arg min

α

1

M

M
∑

m=1

(

Φ(Xm
N )

+

N−1
∑

i=k

fi(X
m
i , y

R,M
i+1 (Xm

i+1), z
R,M
i (Xm

i ))∆i − α · pm
0,k

)2
, (4.32)

αM
l,k := arg min

α

1

M

M
∑

m=1

( [∆Wm
l,k]w

∆k

(

Φ(Xm
N )

+

N−1
∑

i=k+1

fi(X
m
i , y

R,M
i+1 (Xm

i+1), z
R,M
i (Xm

i ))∆i

)

− α · pm
l,k

)2
. (4.33)

Then we define the following functions used to approximate yR
k and zR

k respec-

tively

yR,M
k (x) := [αM

0,k · p0,k(x)]y, zR,M
l,k (x) := [αM

l,k · pl,k(x)]z, (4.34)

where the thresholds [·]y and [·]z are defined in (4.31). Thanks to these thresh-

olds, the random function

ΨR,M
k (xk, . . . , xN ) := Φ(xN ) +

N−1
∑

i=k

fi(xi, y
R,M
i+1 (xi+1), z

R,M
i (xi))∆i (4.35)
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is bounded independently of the samples and of (xk, . . . , xN ); this property will

be used repeatedly in the subsequent analysis.

Lemma 4.1. Under (AX) , (A′
ξ) and (A′

F
) , we have

sup
0≤k≤N

sup
xk∈Rd,...,xN∈Rd

|ΨR,M
k (xk, . . . , xN )| ≤ CΨ

where CΨ := Cξ + LfCyT
θL
2

[

2
√

T
1+θL

+
√

q
√

N√
θL

]

+ Cf
T θc

θc
.

Proof. From (A′
ξ-i) , (AF-i-ii) , (4.34) and (4.31), we readily obtain

|ΨR,M
k (xk, . . . , xN )| ≤ Cξ +

N−1
∑

i=0

[

Lf

(T − ti)
1−θL

2

(

Cy +
√
q
Cy√
∆i

)

∆i +
Cf

(T − ti)1−θc
∆i

]

≤ Cξ + LfCy

[

T (1+θL)/2

(1 + θL)/2
+
√
q
√
N
(

N−1
∑

i=0

(

√
∆i

(T − ti)
1−θL

2

)2)1/2
]

+ Cf
T θc

θc

and the announced upper bound follows. �

4.2. Error analysis

In contrast to standard regression problems, a major difficulty for the error

analysis is related to the non-independence of the random variables {Φ(Xm
N )

+
∑N−1

i=k fi(X
m
i , y

R,M
i+1 (Xm

i+1), z
R,M
i (Xm

i ))∆i}m=1,...,M due to the interdepen-

dence of the random functions (yR,M
i (.), zR,M (.))i=k,...,N−1. To deal with this,

we follow the method of [LGW06], which uses methods from statistical learning,

but introduce some important adaptations. In particular, we use intermediate

processes in order to take advantage of the a priori results for discrete BSDEs,

leading to important improvements in the error estimates. The subsection is

organized as follows: first, we introduce the tools of statistical learning we re-

quire, the intermediate processes, and the local error terms; then we state a

global error decomposition in terms of the local error terms in Theorem 4.1,

which is the corner stone of our error analysis, and bound the local error terms

in Theorem 4.2.

Ghost sample. In the upcoming error analysis, we employ the method of

symmetrization, which is standard in statistical learning; see [Pol84] or [GKKW02].

This involves the introduction of paths of the Markov chain which are identi-

cally distributed but independent (ghost) to the original samples.

Let k be given. For each m, we denote by (X̃k,m
i )i≥k an independent copy of

the Markov chain (Xm
i )i≥k starting at tk with value Xm

k (X̃k,m
k = Xm

k ). Addi-

tionally, we denote by ∆W̃ k,m
k the ghost Brownian increment used to generate

the Markov chain (X̃k,m
i )i≥k: it is independent of and identically distributed to

∆Wm
k . Conditionally on

FM
k := σ(Xm

i ,∆W
m
j−1 : i, j ≤ k, 1 ≤ m ≤M),
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the ghost paths {(X̃k,m
i )i≥k,∆W̃

k,m
k : 1 ≤ m ≤ M} are independent. Fur-

thermore, we write E
M
k (PM

k ) for the conditional expectation (probability) with

respect to FM
k .

Extra coefficients. To analyze the convergence, we make use of coefficients

calculated using the ghost paths:

α̃M
0,k := arg min

α

1

M

M
∑

m=1

(

Φ(X̃k,m
N )

+

N−1
∑

i=k

fi(X̃
k,m
i , yR,M

i+1 (X̃k,m
i+1 ), zR,M

i (X̃k,m
i ))∆i − α · pm

0,k

)2
, (4.36)

α̃M
l,k := arg min

α

1

M

M
∑

m=1

( [∆W̃ k,m
l,k ]w

∆k

(

Φ(X̃k,m
N )

+

N−1
∑

i=k+1

fi(X̃
k,m
i , yR,M

i+1 (X̃k,m
i+1 ), zR,M

i (X̃k,m
i ))∆i

)

− α · pm
l,k

)2
. (4.37)

In addition, we need the following coefficients, also calculated with the ghost

paths but with the functions yR and zR, from the Markov representation (4.29)

of (Y R, ZR), in the place of yR,M and zR,M :

β̃M
0,k := arg min

α

1

M

M
∑

m=1

(

Φ(X̃k,m
N )

+

N−1
∑

i=k

fi(X̃
k,m
i , yR

i+1(X̃
k,m
i+1 ), zR

i (X̃k,m
i ))∆i − α · pm

0,k

)2
, (4.38)

β̃M
l,k := arg min

α

1

M

M
∑

m=1

( [∆W̃ k,m
l,k ]w

∆k

(

Φ(X̃k,m
N )

+

N−1
∑

i=k+1

fi(X̃
k,m
i , yR

i+1(X̃
k,m
i+1 ), zR

i (X̃k,m
i ))∆i

)

− α · pm
l,k

)2
. (4.39)

Intermediate processes. Let (Xk,x
i )k≤i≤N be a Markov chain starting at

ti with value x with the same transition probabilities as X. We generate the

following intermediate (sample dependent) functions:

ȳR,M
k (x) :=

∫

ΨR,M
k (x, xk+1, . . . , xN )µx(dxk+1, . . . ,dxN ) , (4.40)

∆kz̄
R,M
k (x) :=

∫

[w]⊤wΨR,M
k+1 (xk+1, . . . , xN )µx,W (dw,dxk+1, . . . ,dxN ) (4.41)

where µx is the law of (Xk,x
k+1, . . . , X

k,x
N ) and µx,W the law of (∆Wk, X

k,x
k+1, . . . , X

k,x
N ).

The following lemma is derived from the Markov property and the independence

of the ghost sample; it is proved in [GT11].
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Lemma 4.2. With the current notation and assumptions, for all m we have

ȳR,M
k (Xm

k ) = E
M
N

[

Φ(X̃k,m
N ) +

N−1
∑

i=k

fi(X̃
k,m
i , yR,M

i+1 (X̃k,m
i+1 ), zR,M

i (X̃k,m
i ))∆i

]

,

∆kz̄
R,M
l,k (Xm

k ) = E
M
N

[

[∆W̃m
l,k]w

(

Φ(X̃k,m
N ) +

N−1
∑

i=k+1

fi(X̃
k,m
i , yR,M

i+1 (X̃k,m
i+1 ), zR,M

i (X̃k,m
i ))∆i

)]

.

Local error terms. For given accuracy parameters ε.
.,A, ε

.

.,B , ε
.
.,C ∈ (0,+∞)2N ,

we define the events:

AY,M
k :=

{

‖(αM
0,k − α̃M

0,k) · p0,k‖2
k,M > εY

k,A

}

, (4.42)

AZ,M
k :=

{

∃l ∈ {1, . . . , q} s.t. ‖(αM
l,k − α̃M

l,k) · pl,k‖2
k,M > εZ

k,A

}

,

BY,M
k :=

{

εY
k,B + 2E

M
N [(ȳR,M

k (Xk) − yR
k (Xk))2] < ‖ȳR,M

k − yR
k ‖2

k,M

}

, (4.43)

BZ,M
k :=

{

∃l ∈ {1, . . . , q} s.t. εZ
k,B + 2E

M
N [(z̄R,M

l,k (Xk) − zR
l,k(Xk))2] < ‖z̄R,M

l,k − zR
l,k‖2

k,M

}

,

CY,M
k :=

{

εY
k,C + 2‖yR,M

k − yR
k ‖2

k,M < E
M
N [(yR,M

k (Xk) − yR
k (Xk))2]

}

, (4.44)

CZ,M
k :=

{

∃l ∈ {1, . . . , q} s.t. εZ
k,C + 2‖zR,M

l,k − zR
l,k‖2

k,M < E
M
N [(zR,M

l,k (Xk) − zR
l,k(Xk))2]

}

.

These six events are large deviation events. In Theorem 4.2, we show that their

probabilities are exponentially small under appropriate choice of the accuracy

parameters; the exponent ought to depend on the complexity of the class of

functions spanned by pl,k, on ∆k, Cy, CΨ, R and M . We also consider

TY,M
1,k := E

(

inf
α

‖α · p0,k − yR
k ‖2

k,M

)

, (4.45)

TZ,M
1,k :=

q
∑

l=1

E
(

inf
α

‖α · pl,k − zR
l,k‖2

k,M

)

, (4.46)

TY,M
2,k := E

∥

∥(α̃M
0,k − E

M
N [α̃M

0,k]) · p0,k

∥

∥

2

k,M
, (4.47)

TZ,M
2,k :=

q
∑

l=1

E
∥

∥(α̃M
l,k − E

M
N [α̃M

l,k]) · pl,k

∥

∥

2

k,M
. (4.48)

Equations (4.45) - (4.48) have standard interpretation in regression theory: the

two first terms are square bias terms (best approximation error of the basis

functions), while the last two are variance terms (statistical errors).

Error decomposition. We now state the main results of the global error

analysis. Similarly to Corollary 3.1, these global errors read as time-average of

local errors.

Theorem 4.1. Assume (AX) , (A′
ξ) and (A′

F
) . Define

EY
k (R,M) := TY,M

1,k + 3TY,M
2,k + 3εY

k,A + 12C2
ΨP(AY,M

k )
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+ 3εY
k,B + 6(C2

y + C2
Ψ)P(BY,M

k ) +
1

4
εY

k,CRπ + C2
yRπP(CY,M

k ),

EZ
k (R,M) := TZ,M

1,k + 3TZ,M
2,k + 3qεZ

k,A + 12
C2

ΨR
2

∆k
P(AZ,M

k )

+ 3qεZ
k,B + 6q

(C2
y + C2

ΨR
2)

∆k
P(BZ,M

k ) +
1

4
qεZ

k,C + q
C2

y

∆k
P(CZ,M

k ).

For any R ∈ [0,+∞) and any π such that CπL
2
f (Rπ ∨1) ≤ (288C3.15(1+T ))−1,

we have, for all 0 ≤ i ≤ N − 1, that

E‖yR
i − yR,M

i ‖2
i,M ≤ EY

i (R,M) + 2C6
3.22

(

N−1
∑

k=i+1

∆kEY
k (R,M) +

N−1
∑

k=i

∆kEZ
k (R,M)

)

,

N−1
∑

k=i

∆kE‖zR
k − zR,M

k ‖2
k,M ≤ 2C6

3.22

(

N−1
∑

k=i+1

∆kEY
k (R,M) +

N−1
∑

k=i

∆kEZ
k (R,M)

)

.

Theorem 4.2. Under the assumptions of Theorem 4.1, the bias and variance
terms are bounded as follows:

TY,M
1,k ≤ min

α
E|yR

k (Xk) − α · p0,k(Xk)|2, TY,M
2,k ≤ C2

Ψ

K0,k

M
,

TZ,M
1,k ≤

q
∑

l=1

min
α

E|zR
l,k(Xk) − α · pl,k(Xk)|2, TZ,M

2,k ≤ C2
ΨR

2

∆k

q
∑

l=1

Kl,k

M
.

For the large deviation events, we have

P(AY,M
k ) ≤ 2K0,k exp

(

−
MεY

k,A

72C2
ΨK0,k

)

N−1
∏

i=k

3(q+1)∆
2(K0,i+1)
i

(96K0,kL
2
fT

1+θL(q + 1)C2
y

θLεY
k,A∆i

)2
Pq

l=0(Kl,i+1)
,

P(AZ,M
k ) ≤

q
∑

l=1

2Kl,k exp
(

−
M∆kε

Z
k,A

72C2
ΨR

2Kl,k

)

N−1
∏

i=k

3(q+1)∆
2(K0,i+1)
i

(96Kl,kL
2
fT

1+θL(q + 1)C2
yR

2

θLεZ
k,A∆i∆k

)2
Pq

l′=0
(Kl′,i+1)

,

P(BY,M
k ) ≤4 exp

(

−
MεY

k,B

60(CΨ + Cy)2
)

N−1
∏

i=k

3(q+1)∆
K0,i+1
i

(132LfT
1+θL

2 (q + 1)(CΨ + Cy)Cy

εY
k,B

√
∆i

)2
Pq

l=0(Kl,i+1)
,

P(BZ,M
k ) ≤4 q exp

(

−
MεZ

k,B∆k

60(CΨR+ Cy)2
)

N−1
∏

i=k

3(q+1)∆
K0,i+1
i

(132LfT
1+θL

2 (q + 1)(CΨR+ Cy)Cy

εZ
k,B

√
∆i

√
∆k

)2
Pq

l=0(Kl,i+1)
,
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P(CY,M
k ) ≤12 exp

(

−
MεY

k,C

507C2
y

) (1056C2
y

5εY
k,C

)2(K0,k+1)
,

P(CZ,M
k ) ≤12 exp

(

−
MεY

k,C∆k

507C2
y

)

q
∑

l=1

( 1056C2
y

5εZ
k,C∆k

)2(Kl,k+1)
,

provided that εY
k,A, ε

Z
k,A, ε

Y
k,B , ε

Z
k,B , ε

Y
k,C , ε

Z
k,C are small enough in the sense that

0 < εY
k,A ≤

(

1 ∧ min
i=k...N−1

∆−1
i

)

K0,k

9C2
yL

2
fT

1+θL(q + 1)

2θL
,

0 < εZ
k,A ≤

(

1 ∧ min
i=k...N−1

∆−1
i

)(

min
l=1...q

Kl,k

)R2

∆k

9C2
yL

2
fT

1+θL(q + 1)

2θL
,

0 < εY
k,B ≤

(

1 ∧ min
i=k...N−1

∆
−1/2
i

)

15LfT
1+θL

2 (q + 1)(CΨ + Cy)Cy,

0 < εZ
k,B ≤

(

1 ∧ min
i=k...N−1

∆
−1/2
i

)15LfT
1+θL

2 (q + 1)(CΨR+ Cy)Cy√
∆k

,

0 < εY
k,C ≤ 24C2

y , 0 < εZ
k,C ≤ 24C2

y∆
−1/2
k .

4.3. Algorithm complexity

The error analysis of Section 4.2 shows us that the numerical parameters may

play multiple and often contradictory roles in the convergence of the scheme:

the higher the number N of steps, the smaller the discretization error but the

larger effect for the propagation of errors through the DP equation; the higher

the dimension of the function spaces for the empirical regression, the better the

approximation accuracy (the bias term in regression) but the larger the statisti-

cal error (the variance term); the higher the number of simulations, the smaller

the statistical error, but the more computational work to be done. We now

demonstrate how the results of Theorems 4.1 and 4.2 can be used to optimize

these parameters by means of an error vs. computational work (complexity)

analysis. Moreover, we show how extra smoothness of the Markov functions

can bring about substantial improvements in the complexity analysis.

For simplicity, we assume that the time-grid is uniform: ∆i = T/N .

Assume that the function yi (defined in (1.3)) is of class Cκ+1+η
b uniformly

in i, meaning that yi is uniformly bounded and κ+1-continuously differentiable

(κ ≥ 0), with bounded derivatives, and the κ + 1-th derivatives are η-Hölder

continuous (η ∈ (0, 1]). Additionally, assume that zi is Cκ+η
b . These enhanced

assumptions are natural: in the continuous time case, see [CD11] for a recent

account, yi inherits from the smoothness of the terminal condition and the

driver, and zi is once less differentiable that yi. We already see in Lemma 3.3

and Corollary 3.2 that these assumptions are viable under the assumption of

Lipschitz continuity for the terminal condition and the driver. The bounds on

the functions yi and zi and their derivatives are assumed to be uniform in N .
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This improves the bounds in Theorems 4.1 and 4.2, because one can remove the

the dependence of the constant CΨ on N .

Let us make the squared global errors E‖yR
i −yR,M

i ‖2
i,M and

∑N−1
k=i ∆kE‖zR

k −
zR,M
k ‖2

k,M be of magnitude (N−2θconv) where θconv > 0. The parameter θconv

can be the convergence order of the time discretization scheme: in the case of

Lipschitz continuous f and Φ in a diffusion setting, θconv = 1
2 (see [LGW06,

Theorem 1]). When the forward component is simulated with a strong error of

order 1, then one can achieve θconv = 1 (see [GL07, Theorems 7 and 8]). It is

sufficient due to Theorem 4.1 to tune the parameters (basis functions, number

of simulations) so that each term in EY
i (R,M) and EZ

i (R,M) be O(N−2θconv).

For the basis functions, we take local polynomials defined on disjoint hy-

percubes (Hn)n=1,...,Kl,k
(l = 0, . . . , q) with edge length δy (for y) and δz (for

zl). The union of these hypercubes is of the form [−R̄, R̄]d for each component

y, z1, . . . , zq. The degree of local polynomials is κ + 1 for y, and κ for zl. We

denote by xn the center of the n-th hypercube Hn.

In the following, c is a positive constant that does not depend on N and may

change from line to line; c is assumed to be large enough for the arguments to

be consistent.

Bias terms. Because of Proposition 3.3, we can replace yR and zR by y

and z (that is R = +∞) in the expression of TY,M
1,i and TZ,M

1,i by choosing

R =
√

4(θconv + 1
2 ) log(N + 1). It adds an extra squared error O(N−2θconv).

The projection error minα E|yi(Xi) − α · p0,i(Xi)|2 is equal to

E|yi(Xi)1|Xi|∞>R̄|2 +

K0,i
∑

n=1

min
α

E|yi(Xi) − α · p0,i(Xi)|21Xi∈Hn

≤ |yi|2∞P(|Xi|∞ > R̄) +

K0,i
∑

n=1

c|yi|2κ+1+η(δκ+1+η
y )2P(Xi ∈ Hn)

≤ |yi|2∞P(|Xi|∞ > R̄) + c|yi|2κ+1+η(δκ+1+η
y )2

where we have used a Taylor expansion on each set Hn and taken the local

polynomials to be equal to the first terms of the expansion. Assume addition-

ally that Xi has exponential moments (uniformly in i), i.e. for some λ > 0,

supN≥1 sup0≤i≤N E(eλ|Xi|∞) < +∞, so that the choice R̄ = 2θconvλ
−1 log(N +

1) is sufficient to ensure P(|Xi| > R̄) = O(N−2θconv). Hence, the choice

δy = cN− θconv
κ+1+η ensures that TY,M

1,i = O(N−2θconv). With similar arguments

for the zl components, we have to choose δz = cN− θconv
κ+η . Thus the sizes of the

vector spaces are K0,i = cNd θconv
κ+1+η logd(N+1) and Kl,i = cNd θconv

κ+η logd(N+1).

Variance terms. Making TZ,M
2,i of orderN−2θconv impliesM = cN1+2θconvKl,i

log(N + 1) = cN1+2θconv+d θconv
κ+η logd+1(N + 1); this dominates the requirements

on M for TY,M
2,i .

27



Large deviation events. We set εY
k,A, ε

Y
k,B , ε

Y
k,C , ε

Z
k,A, ε

Z
k,B , ε

Z
k,C equal toN−2θconv .

In order to make the probability upper bound exponentially small a quick look

at Theorem 4.2 shows that the strongest constraint comes from P(AZ,M
i ) which

imposes c(NKl,i log(N + 1) + log(N + 1)) = M
N1+2θconvKl,i log(N+1)

. This condi-

tion on M is much stronger than the previous one, ensuring that the variance

terms have the right magnitude; the requirement of having more simulations

seems to be the price to pay for having a single set of paths and interdependent

regression problems. To fulfill this condition, take

M = cK2
l,iN

2+2θconv log2(N + 1) = cN2+2θconv+2d θconv
κ+η log2+2d(N + 1).

Complexity analysis. Due to the properties of hypercubes (disjoint intervals),

the final computational cost C (counting the elementary operations) is of order

MN , that is

C = cN3+2θconv+2d θconv
κ+η log2+2d(N + 1).

Equivalently, the global error, as a function of complexity and ignoring log

factors, is

N−θconv ≤ c C
−θconv

3+2θconv+2d
θconv
κ+η = c C

−1

2(1+ 3
2θconv

+ d
κ+η

) .

This analysis shows that the smaller the parameter 3
2θconv

+ d
κ+η , the quicker

the convergence. There are several numerically significant implications of this:

• The higher the smoothness of the solution, the better the convergence.

This may motivate first solving the BSDE without driver and then solve

the BSDE difference (which in general gives a smoother problem, see

[GM10]) - see our discussion about proxys in the Section 2.

• The higher the dimension, the worse the convergence. This is the usual

curse of dimensionality.

• The better the discretization error (θconv large), the better the conver-

gence. This motivates the development of high-order discretization schemes

for BSDEs.

If we apply the same analysis to [LGW06, Theorem 2] for κ + η ≥ 1 and

θconv = 1/2, we obtain that the error is of order C
− 1

2(4+ 2d
κ+1+η

) for the ODP.

In contrast, the MDP has error of order C
− 1

2(4+ d
κ+η

) . This implies that, for

sufficiently large N , the MDP performs better than the ODP for κ + η > 1,

at least in the theoretical framework given in this section. For κ + η = 1, the

performance is the same. In the future, we will undertake numerical comparisons

between ODP and MDP to test this theoretical analysis.
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4.4. Proof of Theorem 4.1

From [yR
k ]y = yR

k and the Lipschitz property of [·]y, it follows that

E‖yR
k − yR,M

k ‖2
k,M ≤ E‖yR

k − αM
0,k · p0,k‖2

k,M .

For any m,

E
M
N

[

Φ(X̃k,m
N ) +

N−1
∑

i=k

fi(X̃
k,m
i , yR

i+1(X̃
k,m
i+1 ), zR

i (X̃k,m
i ))∆i

]

= yR
k (X̃k,m

k ) = yR
k (Xm

k )

is clear from the definition of yR in (4.29). Hence, owing to (4.38) and Proposi-

tion 4.1(iii) (applied with Q = FM
N ), E

M
N [β̃M

0,k] is the SVD-minimizer of ‖yR
k −α ·

p0,k‖2
k,M . We now apply Pythagoras’ theorem and take expectations to obtain

E‖yR
k − yR,M

k ‖2
k,M ≤ TY,M

1,k + E‖(αM
0,k − E

M
N [β̃M

0,k]) · p0,k‖2
k,M .

To decompose the last term above, we introduce the coefficients α̃M
0,k and E

M
N (α̃M

0,k):

E‖(αM
0,k − E

M
N [β̃M

0,k]) · p0,k‖2
k,M

≤ 3E‖(αM
0,k − α̃M

0,k) · p0,k‖2
k,M + 3TY,M

2,k + 3E‖(EM
N [β̃M

0,k − α̃M
0,k]) · p0,k‖2

k,M .

The first term on the r.h.s. is estimated using the event AY,M
k in (4.42). To do

this, we first need to obtain an almost sure bound on the integrand. Indeed, from

Proposition 4.1(i), αM
0,k− α̃M

0,k is the SVD-optimal coefficient of the least-squares

problem w.r.t. the ‖·‖k,M -norm associated to the differences of the responses of

αM
0,k and α̃M

0,k. Proposition 4.1(ii) then applies to give ‖(αM
0,k − α̃M

0,k) ·p0,k‖2
k,M ≤

4C2
Ψ. Using this upper bound, we now have

E‖(αM
0,k − α̃M

0,k) · p0,k‖2
k,M ≤ εY

k,A + 4C2
ΨP(AY,M

k ). (4.49)

To handle E‖(EM
N [β̃M

0,k − α̃M
0,k]) ·p0,k‖2

k,M , observe that E
M
N [β̃M

0,k − α̃M
0,k] is the

SVD-optimal coefficient of the least-squares problem related to the response

E
M
N

[

Φ(X̃k,m
N ) +

N−1
∑

i=k

fi(X̃
k,m
i , yR

i+1(X̃
k,m
i+1 ), zR

i (X̃k,m
i ))∆i

]

− E
M
N

[

Φ(X̃k,m
N ) +

N−1
∑

i=k

fi(X̃
k,m
i , yR,M

i+1 (X̃k,m
i+1 ), zR,M

i (X̃k,m
i ))∆i

]

= yR
k (Xm

k ) − ȳR,M
k (Xm

k ) (by Lemma 4.2).

By the contraction property (item (ii) of Proposition 4.1),

E‖(EM
N [β̃M

0,k−α̃M
0,k]) · p0,k‖2

k,M ≤ E‖yR
k − ȳR,M

k ‖2
k,M

≤ εY
k,B + 2E(yR

k (Xk) − ȳR,M
k (Xk))2 + 2(C2

y + C2
Ψ)P(BY,M

k ).
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Bringing together the thus far obtained results yields

E‖yR
k − yR,M

k ‖2
k,M ≤ TY,M

1,k + 3εY
k,A + 12C2

ΨP(AY,M
k )

+ 3TY,M
2,k + 3εY

k,B + 6(C2
y + C2

Ψ)P(BY,M
k )

+ 6E[(yR
k (Xk) − ȳR,M

k (Xk))2]. (4.50)

We can perform analogous calculations for the Z component (replacing CΨ by

CΨ
R√
∆k

and Cy by
Cy√
∆k

), obtaining

E‖zR
k − zR,M

k ‖2
k,M ≤ TZ,M

1,k + 3qεZ
k,A + 12q

C2
ΨR

2

∆k
P(AZ,M

k )

+ 3TZ,M
2,k + 3qεZ

k,B + 6q
(C2

y + C2
ΨR

2)

∆k
P(BZ,M

k )

+ 6E[|zR
k (Xk) − z̄R,M

k (Xk)|2]. (4.51)

Observe that here, we rely on truncated Brownian increments in order to a.s.

upper bound ‖(αM
l,k − α̃M

l,k) · pl,k‖2
k,M by 4

C2
ΨR2

∆k
. We can use the same reasoning

as in Lemma 4.2 to show that

ȳR,M
k (Xk) =E[Φ(XN ) +

N−1
∑

i=k

fi(Xi, y
R,M
i+1 (Xi+1), z

R,M
i (Xi))∆i

∣

∣ FM
N ∨ Ftk

],

∆kz̄
R,M
l,k (Xk) =E

[

[∆Wl,k]w
(

Φ(XN )

+
N−1
∑

i=k+1

fi(Xi, y
R,M
i+1 (Xi+1), z

R,M
i (Xi))∆i

) ∣

∣ FM
N ∨ Ftk

]

,

which implies that (ȳR,M
k (Xk), z̄R,M

k (Xk))k≥0 solves a discrete BSDE with data

(Φ(XN ), f̄i(y, z) = fi(Xi,y
R,M
i+1 (Xi+1), z

R,M
i (Xi))). We now apply the stability

result from Proposition 3.1 (w.r.t. filtration (FM
N ∨Ftk

)0≤k≤N ), taking the first

discrete BSDE to be (yR
k (Xk), zR

k (Xk))k≥0 and the second to be (ȳR,M
k (Xk),

z̄R,M
k (Xk))k≥0 (Lf̄k

= 0). Combined with the local Lipschitz continuity of fk

and a choice of γ ∈ (0,+∞)N such that

144(Rπ ∨ 1)C3.15(1 + T )(
1

γk
+ ∆k)

L2
f

(T − tk)1−θL
≤ 1, (0 ≤ k < N), (4.52)

we obtain the bound

N−1
∑

k=i+1

∆kE[|yR
k (Xk) − ȳR,M

k (Xk)|2]Γk +
N−1
∑

k=i

∆kE[|zR
k (Xk) − z̄R,M

k (Xk)|2]Γk

≤ 6C3.15(1 + T )
N−1
∑

k=i

(
1

γk
+ ∆k)∆k

L2
f

(T − tk)1−θL
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× E
[

|yR
k+1(Xk+1) − yR,M

k+1 (Xk+1)|2 + |zR
k (Xk) − zR,M

k (Xk)|2
]

Γk

≤ 1

12
Ei,N (γ,R,M) (4.53)

+
1

24

N−1
∑

k=i

∆k

(

1k+1<N [εY
k+1,C + 4C2

yP(CY,M
k+1 )] + qεZ

k,C + 4q
C2

y

∆k
P(CZ,M

k )
)

Γk

where

Ei,N (γ,R,M) :=

N−1
∑

k=i+1

∆kE‖yR
k − yR,M

k ‖2
k,MΓk +

N−1
∑

k=i

∆kE‖zR
k − zR,M

k ‖2
k,MΓk.

Using (4.53) together with (4.50) and (4.51), it readily follows that

Ei,N (γ,R,M) ≤
N−1
∑

k=i+1

∆k{TY,M
1,k + 3εY

k,A + 12C2
ΨP(AY,M

k ) + 3TY,M
2,k + 3εY

k,B

+ 6(C2
y + C2

Ψ)P(BY,M
k )}Γk

+

N−1
∑

k=i

∆k{TZ,M
1,k + 3qεZ

k,A + 12q
C2

ΨR
2

∆k
P(AZ,M

k ) + 3TZ,M
2,k + 3qεZ

k,B

+ 6q
(C2

y + C2
ΨR

2)

∆k
P(BZ,M

k )}Γk +
1

2
Ei,N (γ,R,M)

+
1

4

N−1
∑

k=i

∆k{1k+1<N [εY
k+1,C + 4C2

yP(CY,M
k+1 )] + qεZ

k,C + 4q
C2

y

∆k
P(CZ,M

k )}Γk.

The choice γk = 288(Rπ ∨ 1)C3.15(1+T )
L2

f

(T−tk)1−θL
leads to 1 ≤ Γi ≤ C6

3.22 and

then for N large enough (such that CπL
2
f (Rπ∨1) ≤ 1

288C3.15(1+T ) ), the condition

(4.52) is satisfied and we obtain the announced estimate on the Z component.

Now, applying the same arguments used in (4.53) directly to E[|yR
i (Xi) −

yR,M
i (Xi)|2] in (4.50), we obtain

E‖yR
i − yR,M

i ‖2
i,MΓi ≤ EY

i (R,M)Γi +
1

2
Ei,N (γ,R,M)

+

N−1
∑

k=i+1

∆kEY
k (R,M)Γk +

N−1
∑

k=i

∆kEZ
k (R,M)Γk

and we easily complete the proof for the Y component. �

4.5. Proof of Theorem 4.2

In each of the following subsections, we prove the bounds for the local error

terms given in Theorem 4.2.

31



4.5.1. Bias/variance terms

The bounds on squared bias terms TY,M
1,k and TZ,M

1,k are straightforward. For

the variance terms TY,M
2,k and TZ,M

2,k , we use the same arguments as [GKKW02,

pp.186–187] or [LGW06, Proposition 4]. �

4.5.2. Large deviation events

In the proofs below we use covering techniques to allow us to apply expo-

nential inequalities to the large deviation events. We recall few definitions here

for the benefit of the reader; for a fuller account, see [GKKW02, Chapter 9].

If G is a class of functions from R
d to R and x1:M = {xm}m=1...M are M

points of R
d, an ε-cover (ε > 0) of G w.r.t. the Lp(p ≥ 1)-empirical norm

‖g‖M =
(

1
M

∑M
m=1 |g(xm)|p

)
1
p is a finite collection of functions g1, . . . , gn ∈ G

such that for any g ∈ G, we can find a j ∈ {1, · · · , n} such that ‖g − gj‖M ≤ ε.

The smallest integer n for which an ε-cover exists is called the ε-covering num-
ber and denoted by Np(ε,G, x1:M ); we usually consider an ε-cover with minimal

number of elements. In the following the points x1:M are possibly random. More

generally, we may consider ε-cover w.r.t. the Lp-norm of a probability measure

ν (instead of the empirical measure associated to x1:M ): the related covering

number is then denoted Np(ε,G, ν).

Bounds on P(AY,M
k ) and P(AZ,M

k ). We only prove the bound related to AY,M
k ;

the proof for AZ,M
k is analogous. We use a similar method to [LGW06] but with

some important differences.

Define the following sets of functions







[SY
N ]y := {Φ}, [SY

k ]y :=
{

[α · p0,k]y : α ∈ R
K0,k},

[SZ,l
k ]z :=

{

[α · pl,k]z : α ∈ R
Kl,k} (1 ≤ l ≤ q),

(4.54)

Gk :=
{

(xk, . . . , xN ) ∈
N
⊗

i=k

R
d 7→ Φ(xN ) +

N−1
∑

i=k

fi(xi, ψi+1(xi+1), ηi(xi))∆i

: ψi ∈ [SY
i ]y, ηl,i ∈ [SZ,l

i ]z
}

for k = N − 1, . . . , 0. These definitions originate from the observation that

yR,M
k ∈ [SY

k ]y, zR,M
l,k ∈ [SZ,l

k ]z and ΨR,M
k ∈ Gk. By the same arguments as in

Lemma 4.1, every element in Gk is bounded by CΨ. Define

Gm
k := ΨR,M

k (Xm
k , . . . , X

m
N ), G̃m

k := ΨR,M
k (X̃k,m

k , . . . , X̃k,m
N ).

Similarly, for any G ∈ Gk, we write Gm or G̃m for the function evaluated along

the m-th sample path or its ghost path. Firstly, observe that

P
(

‖(αM
0,k − α̃M

0,k) · p0,k‖2
k,M > εY

k,A

)

= E
(

P
M
k

(

‖(αM
0,k − α̃M

0,k) · p0,k‖2
k,M > εY

k,A

))

.
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Conditionally on FM
k , we can assume that the basis functions are orthonormal-

ized w.r.t. 〈·, ·〉k,M and that the coefficients αM
0,k and α̃M

0,k are computed for

the orthonormalized functions. Nevertheless, the dimension of the vector space

w.r.t. 〈·, ·〉k,M may be smaller than K0,k; we denote this empirical dimension of

the vector space by KM
0,k. Then

‖(αM
0,k − α̃M

0,k) · p0,k‖2
k,M = |αM

0,k − α̃M
0,k|2

R
KM

0,k
.

Furthermore, the coefficients αM
0,k and α̃M

0,k have simple expressions and we ob-

tain

P
M
k (|αM

0,k − α̃M
0,k|2

R
KM

0,k
> εY

k,A) = P
M
k (

KM
0,k
∑

i=1

∣

∣

1

M

M
∑

m=1

pi,m
0,k (Gm

k − G̃m
k )
∣

∣

2
> εY

k,A)

≤
KM

0,k
∑

i=1

P
M
k

(∣

∣

1

M

M
∑

m=1

pi,m
0,k (Gm

k − G̃m
k )
∣

∣

2
>
εY

k,A

KM
0,k

)

≤
KM

0,k
∑

i=1

P
M
k

(∣

∣

1

M

M
∑

m=1

pi,m
0,k (Gm

k − G̃m
k )
∣

∣

2
>
εY

k,A

K0,k

)

≤
KM

0,k
∑

i=1

P
M
k

(

∃G ∈ Gk :
∣

∣

1

M

M
∑

m=1

pi,m
0,k (Gm − G̃m)

∣

∣

2
>
εY

k,A

K0,k

)

=

KM
0,k
∑

i=1

P
M
k

(

∃G ∈ Gk :
∣

∣

1

M

M
∑

m=1

pi,m
0,k U

m(Gm − G̃m)
∣

∣

2
>
εY

k,A

K0,k

)

where Um are independent random variables uniformly distributed on {−1,+1}
that are also independent of everything else. The last equality follows by an

invariance of the P
M
k -distribution of Gm − G̃m under multiplication by −1.

We now introduce a particular cover for the set Gk. For a function g : R
d 7→ R,

we define the squared L2 empirical norm

‖g‖2
i,M,M̃

:=
1

2M

M
∑

m=1

(

|g(Xm
i )|2 + |g(X̃k,m

i )|2
)

.

Then for ε > 0 (the value of which is chosen later), denote by [SY
i (ε)]y and

[SZ,l
i (ε)]z ε-covers for [SY

i ]y and [SZ,l
i ]z, respectively, w.r.t. the norm ‖ · ‖i,M,M̃ .

Take

Gk(ε) :=
{

(xk, . . . , xN ) 7→ Φ(xN ) +

N−1
∑

i=k

fi(xi, g
Y
i+1(xi+1), g

Z
i (xi))∆i

: gY
i ∈ [SY

i (ε)]y, g
Z
l,i ∈ [SZ,l

i (ε)]z
}

.
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Since elements of [SY
i (ε)]y and [SZ,l

i (ε)]z are bounded by Cy and Cz,i, elements

of Gk(ε) are bounded by CΨ.

For every G ∈ Gk, there exists a Gε ∈ Gk(ε) such that

1

2M

M
∑

m=1

{

|Gm −Gm
ε |2 + |G̃m − G̃m

ε |2
}

=
1

2M

M
∑

m=1

{∣

∣

N−1
∑

i=k

∆i

(

fi(X
m
i , ψi+1(X

m
i+1), ηi(X

m
i )) − fi(X

m
i , g

Y
i+1(X

m
i+1), g

Z
i (Xm

i ))
)∣

∣

2

+
∣

∣

N−1
∑

i=k

∆i

(

fi(X̃
k,m
i , ψi+1(X̃

k,m
i+1 ), ηi(X̃

k,m
i )) − fi(X̃

k,m
i , gY

i+1(X̃
k,m
i+1 ), gZ

i (X̃k,m
i ))

)∣

∣

2}

≤ 1

2M

M
∑

m=1

2T

N−1
∑

i=k

∆iL
2
f

(T − ti)1−θL

{

|ψi+1(X
m
i+1) − gY

i+1(X
m
i+1)|2 + |ηi(X

m
i ) − gZ

i (Xm
i )|2

+ |ψi+1(X̃
k,m
i+1 ) − gY

i+1(X̃
k,m
i+1 )|2 + |ηi(X̃

k,m
i ) − gZ

i (X̃k,m
i )|2

}

≤ 2
T 1+θL

θL
L2

f (q + 1)ε2

where we have used (AF) . Taking ε2 =
θLεY

k,A

18K0,kL2
f T 1+θL (q+1)

and Gε ∈ Gk(ε) as

above, we easily obtain

∣

∣

1

M

M
∑

m=1

pi,m
0,k U

m(Gm − G̃m)
∣

∣

2 ≤ 3
∣

∣

1

M

M
∑

m=1

pi,m
0,k U

m(Gm
ε − G̃m

ε )
∣

∣

2

+ 3
( 1

M

M
∑

m=1

|pi,m
0,k |2

)( 1

M

M
∑

m=1

{

|Gm −Gm
ε |2 + |G̃m

ε − G̃m|2
})

≤ 3
∣

∣

1

M

M
∑

m=1

pi,m
0,k U

m(Gm
ε − G̃m

ε )
∣

∣

2
+

2

3

εY
k,A

K0,k

where we take advantage of the orthonormality property of pi
0,k. Then it follows

P
M
k

(

∃G ∈ Gk :
∣

∣

1

M

M
∑

m=1

pi,m
0,k U

m(Gm − G̃m)
∣

∣

2
>
εY

k,A

K0,k

)

≤ P
M
k

(

∃Gε ∈ Gk(ε) :
∣

∣

1

M

M
∑

m=1

pi,m
0,k U

m(Gm
ε − G̃m

ε )
∣

∣ >
1

3

( εY
k,A

K0,k

)
1
2
)

≤ E
M
k |Gk(ε)| max

Gε∈Gk(ε)
P̃

M
(∣

∣

1

M

M
∑

m=1

pi,m
0,k U

m(Gm
ε − G̃m

ε )
∣

∣ >
1

3

( εY
k,A

K0,k

)
1
2
)

≤ 2E
M
k |Gk(ε)| exp

(

− 2M
1
M

∑M
m=1 |4CΨp

i,m
0,k |2

×
εY
k,A

9K0,k

)

= 2E
M
k |Gk(ε)| exp

(

−
MεY

k,A

72C2
ΨK0,k

)
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where |Gk(ε)| denotes the number of elements of Gk(ε), P̃
M is the conditional

probability with respect to FM
N ∨ σ(X̃k,m

i : i ≥ k,m = 1, . . . ,M), and the final

inequality follows from Hoeffding’s inequality [GKKW02, Lemma A.3].

It remains to bound |Gk(ε)|, which is equal to the product of the ε-covering

numbers of [SY
i (ε)]y (i = k + 1, . . . , N − 1) and [SZ,l

i (ε)]z (l = 1, . . . , q, i =

k, . . . , N − 1) w.r.t. ‖ · ‖i,M,M̃ . From [GKKW02, inequality (9.22) pp.153], we

have

N2(ε, [SY
i (ε)]y, [X

1:M
i , X̃k,1:M

i ]) ≤ 3
(

2e(
2Cy

ε
)2 log(3e(

2Cy

ε
)2)
)K0,i+1 ≤ 3

(16C2
y

3ε2
)2(K0,i+1)

for any ε ≤ Cy/2; the second inequality follows from the concavity of log(·):

∀x ≥ 16, 2e x log(3e x) ≤ 2e x[log(48e) +
3e x− 48e

48e
] ≤ e

1 + log(48)

8
x2 ≤ (

4

3
x)2.

A similar inequality holds for [SZ,l
i (ε)]z by replacing Cy by Cy/

√
∆i and K0,i

and Kl,i. Finally, we obtain

|Gk(ε)| ≤
N−1
∏

i=k

3(q+1)
(16C2

y

3ε2
)2(K0,i+1)( 16C2

y

3ε2∆i

)2
Pq

l=1(Kl,i+1)

=

N−1
∏

i=k

3(q+1)∆
2(K0,i+1)
i

(96K0,kL
2
fT

1+θL(q + 1)C2
y

θLεY
k,A∆i

)2
Pq

l=0(Kl,i+1)

provided that ε2 =
θLεY

k,A

18K0,kL2
f T 1+θL (q+1)

≤ C2
y

4 ∧ C2
y

4∆k
∧· · ·∧ C2

y

4∆N−1
. Gather different

inequalities and bound KM
0,k by K0,k to derive the announced result. �

Bounds on P(BY,M
k ) and P(BZ,M

k ). Again, we only detail the proof for BY,M
k .

We define the set of functions

G′
k :=

{

x ∈ R
d 7→

∫

(

Φ(xN ) +

N−1
∑

i=k

fi(xi, ψi+1(xi+1), ηi(xi))∆i

)

µx(dxk+1, . . . ,dxN )

− yR
k (x) : ψi ∈ [SY

i ]y, ηl,i ∈ [SZ,l
i ]z

}

where µx is the law of (Xk,x
k+1, . . . , X

k,x
N ), and [SY

k ]y and [SZ,l
k ]z are defined in

(4.54). Notice that all functions in G′
k are bounded by CΨ + Cy. In view of

the definition (4.40), ȳR,M
k − yR

k belongs to the set G′
k. Since the expectation

E
M
N [|ȳR,M

k (Xk)−yR
k (Xk)|2] integrates only w.r.t. the law of Xk, we clearly have

P(BY,M
k ) = P

(

εY
k,B + 2E

M
N [|ȳR,M

k (Xk) − yR
k (Xk)|2] < ‖ȳR,M

k − yR
k ‖2

k,M

)

≤ P
(

∃G ∈ G′
k : εY

k,B + 2E[G(Xk)2] < ‖G‖2
k,M

)

. (4.55)
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The latter probability is equal to P
(

∃G ∈ G′
k :

‖G‖2
k,M−E[G(Xk)2]

2εY
k,B+‖G‖2

k,M+E[G(Xk)2]
> 1

3

)

which can be estimated by applying Lemma 1 in Appendix B: it gives

P(BY,M
k ) ≤ 4E

(

N1

(2εY
k,B

15
, [G′

k]2, X1:M
k

))

exp
(

−
MεY

k,B

60(CΨ + Cy)2
)

,

where we use the short notation [G′
k]2 := {g2 : g ∈ G′

k}. Thus, it remains

to upper bound the L1 ε-covering number of [G′
k]2 and, for this, we exhibit a

particular cover. Write µx
i (dxi) for the law of Xk,x

i ; then define the probability

measure

νM
i (dxi) :=

1

M

M
∑

m=1

µ
Xm

k
i (dxi)

and denote by [SY
i (ε′)]y (resp. [SZ,l

i (ε′)]z) a L1(ν
M
i ) ε′-cover of [SY

i ]y (resp

[SZ,l
i ]z) where ε′ = ε

4Lf T
1+θL

2 (q+1)(CΨ+Cy)
. We claim that

[G′
k(ε)]2 :=

{

x ∈ R
d 7→

[

∫

(

Φ(xN ) +

N−1
∑

i=k

fi(xi, g
Y
i+1(xi+1), g

Z
i (xi))∆i

)

µx(dxk+1, . . . ,dxN )

− yR
k (x)

]2
: gY

i ∈ [SY
i (ε′)]y, gZ

l,i ∈ [SZ,l
i (ε′)]z

}

ε-covers [G′
k]2 in the L1-norm w.r.t. the sample X1:M

k . Indeed, for any G ∈ G′
k

there exists Gε ∈ G′
k(ε) such that

1

M

M
∑

m=1

|G(Xm
k )2 −Gε(X

m
k )2|

≤ 1

M

M
∑

m=1

|G(Xm
k ) −Gε(X

m
k )|2(CΨ + Cy)

≤ 2

M

M
∑

m=1

N−1
∑

i=k

∆i
(CΨ + Cy)Lf

(T − ti)
1−θL

2

×
∫

{

|ψi+1(xi+1) − gY
i+1(xi+1)| + |ηi(xi) − gZ

i (xi)|
}

µXm
k (dxk+1, . . . ,dxN )

≤ 2

N−1
∑

i=k

∆i
(CΨ + Cy)Lf

(T − ti)
1−θL

2

(q + 1)ε′ ≤ 2Lf
T

1+θL
2

1+θL

2

(q + 1)(CΨ + Cy)ε′ ≤ ε,

where we have used (AF) . Furthermore, following the method for the bound

of P(AY,M
k ), we derive (for any ε′ ≤ Cy/2)

N1(ε
′, [SY

i ]y, ν
M
i ) ≤ 3

(

2e
2Cy

ε′
log(3e

2Cy

ε′
)
)K0,i+1 ≤ 3

(22Cy

5ε′
)2(K0,i+1)

(4.56)
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using 2e x log(3e x) ≤ ( 11x
5 )2 for x ≥ 4. Similarly, N1(ε

′, [SZ,l
i ]z, ν

M
i ) ≤ 3

( 22Cy

5ε′
√

∆i

)2(Kl,i+1)

for ε′ ≤ Cy/(2
√

∆i). Finally, we obtain

N1

(2εY
k,B

15
, [G′

k]2,X1:M
k

)

≤
N−1
∏

i=k

3(q+1)
(22Cy

5ε′
)2(K0,i+1)( 22Cy

5ε′
√

∆i

)2
Pq

l=1(Kl,i+1)

=

N−1
∏

i=k

3(q+1)∆
K0,i+1
i

(132LfT
1+θL

2 (q + 1)(CΨ + Cy)Cy

εY
k,B

√
∆i

)2
Pq

l=0(Kl,i+1)

if ε′ =
εY

k,B

30Lf T
1+θL

2 (q+1)(CΨ+Cy)
≤ Cy

2 ∧ Cy

2
√

∆k
∧ · · · ∧ Cy

2
√

∆N−1

. �

Bounds on P(CY,M
k ) and P(CZ,M

k ). We detail the estimate only for P(CY,M
k ).

Define G′′
k := {x 7→ g(x)−yR

k (x) : g ∈ [SY
k ]y}. The elements of G′′

k are absolutely

bounded by 2Cy. Similarly to (4.55), observe that

P(CY,M
k ) ≤ P

(

∃G ∈ G′′
k : E[G(Xk)2] >

2

M

M
∑

m=1

G(Xm
k )2 + εY

k,C

)

= P
(

∃G ∈ G′′
k :

E[G(Xk)2] − ‖G‖2
k,M

2εY
k,C + ‖G‖2

k,M + E[G(Xk)2]
>

1

3

)

≤ 4E
(

N1

(εY
k,C

12
, [G′′

k ]2, X1:M
k

))

exp
(

−
MεY

k,C

507C2
y

)

where the second inequality follows from the second relation of Lemma 1 in Ap-

pendix B. Observe that N1

( εY
k,C

12 , [G′′
k ]2, X1:M

k

)

≤ N1

( εY
k,C

48Cy
, [SY

k ]y, X
1:M
k

)

. (4.56)

is valid also for the empirical measure associated to X1:M
k and we obtain

P(CY,M
k ) ≤ 12

(1056C2
y

5εY
k,C

)2(K0,k+1)
exp

(

−
MεY

k,C

507C2
y

)

for
εY

k,C

48Cy
≤ Cy

2 .

Appendix A. SVD-optimal coefficients

Let us study the set of coefficients α ∈ R
Kl,k minimizing ‖α·pl,k−S‖2

k,M using

the Singular Value Decomposition (see [GL96, Theorem 2.5.2 and Theorem

5.5.1]). The SVD of the M × Kl,k-matrix Pl,k = (pi,m
l,k )m,i (with M ≥ Kl,k)

writes

Pl,k = UP ′
l,kV

⊤ with P ′
l,k =







σ1 0
. . .0 σKl,k

0 · · · 0
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where U and V are two unitary matrices respectively of size M ×M and Kl,k ×
Kl,k, and σ1 ≥ · · · ≥ σKl,k

≥ 0. If Pl,k is a full rank matrix (σKl,k
> 0), the set

of minimizers of ‖α · pl,k −S‖2
k,M reduces to a single element, whereas there are

infinitely many minimizers for rank(Pl,k) < Kl,k. Our choice of SVD-optimal

solution consists of taking the element with minimal Euclidean norm which is

given by

α⋆ = V

( · · ·
1σi>0

(U⊤S)i

σi

· · ·

)

. (A.1)

Proof. (of Proposition 4.1) The linearity property is clear from (A.1). The
Pythagoras decomposition yields, for any α ∈ R

M , that ‖α · pl,k − S‖2
k,M =

‖α⋆ · pl,k − S‖2
k,M + ‖(α⋆ − α) · pl,k‖2

k,M . Taking α = 0 gives statement ii).
To prove iii), it is enough to use the linear relation (A.1) and to observe that
U, V, (σi)i are Q-measurable. �

Appendix B. Upper bound of a deviation probability, uniform over a

class of functions

For the definition of the covering number N1(. . . ) used below, we refer to

the notation of Subsection 4.5.2.

Lemma 1. Let G be a countable set of functions g : R
d 7→ [0, B] with B > 0.

Let X,X1, . . . , XM (M ≥ 1) be i.i.d. R
d valued random variables. For any

α > 0 and ε ∈ (0, 1) one has

P
(

sup
g∈G

1
M

∑M
m=1 g(X

m) − E[g(X)]

α+ 1
M

∑M
m=1 g(X

m) + E[g(X)]
> ε
)

≤ 4E
(

N1

(αε

5
,G, X1:M

))

exp
(

− 3ε2αM

40B

)

,

P
(

sup
g∈G

E[g(X)] − 1
M

∑M
m=1 g(X

m)

α+ 1
M

∑M
m=1 g(X

m) + E[g(X)]
> ε
)

≤ 4E
(

N1

(αε

8
,G, X1:M

))

exp
(

− 6ε2αM

169B

)

.

For the proof, see [GT11].
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