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WARPED BASES FOR CONDITIONAL DENSITY ESTIMATION

GAELLE CHAGNYA *

ABSTRACT. We consider the problem of estimating the conditional density 7 of a response
vector Y given the predictor X (which is assumed to be a continuous variable). We provide
an adaptive nonparametric strategy to estimate m, based on model selection. We start with a
collection of finite dimensional product spaces, spanned by orthonormal bases. But instead of
expanding directly the target function 7 on these bases, we prefer to consider the expansion of
h(z,y) = n(Fx'(x),y), where Fx is the cumulative distribution function of the variable X. This
'warping’ of the bases allows us to propose a family of projection estimators easier to compute
than estimators resulting from the minimization of a regression-type contrast. The data-driven
selection of the best estimator h for the function h, is done with a model selection device in
the spirit of Goldenshluger and Lepski (2011). The resulting estimator is 7 (x,y) = h(F(z),v)
otherwise, where F is the empirical distribution function. We prove that it realises a global
squared-bias/variance compromise, in a context of anisotropic function classes: we establish
non-asymptotic mean-squared integrated risk bounds and also provide risk convergence rates.
Simulation experiments illustrate the method.

Keywords: Adaptive estimator. Conditional density. Model selection. Nonparametric estima-
tion. Warped bases.

AMS Subject Classification 2010: 62G05; 62G07-62G08.

1. INTRODUCTION

1.1. Motivation. Assume that we observe pairs of real random variables (X,Y) with joint
unknown density f(xy). The relationship between the predictor X and the response Y is clas-
sically described by regression analysis. But this can also be achieved by estimating the entire
conditional density, that is

f(X,Y)(xay) i
7]3((96) , if fx(z) >0,

where fx is the marginal density of the variable X, and is assumed not to vanish on the interval
of estimation.

The aim of this paper is to provide a nonparametric strategy to estimate 7, which has to be both
adaptive, and simple to compute. Our main ideas are to use warped bases to build projection
estimators and to perform model selection in the spirit of Goldenshluger and Lepski [2011].

m(z,y) =

1.2. State of the art. Although nonparametric conditional density estimation has increasingly
become a subject of interest since the early 1970s’, adaptive estimators, which match the perfor-
mances of an oracle that knows the regularity of the true function, are still rather scarse. To our
knowledge, most of the methods to estimate 7w are based on the principle that it can be seen as
a nonparametric weighted regression. This leads mainly to two directions: kernel methods with
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2 GAELLE CHAGNYA *

well-chosen bandwidth(s), which have essentially been studied from an asymptotic point of view,
and projection estimators built on regression-type criteria minimised on a well-chosen model.

The literature about the asymptotic properties of kernel estimators is vast. Several adjusted
forms of the Nadaraya-Watson estimate have been proposed, for conditional distribution function
[Stute, 1986b, Hall et al., 1999] and for the conditional density: "double kernel" estimator [Hyn-
dman et al., 1996, Hyndman and Yao, 2002|, generalization using local polynomials [Fan et al.,
1996], and reweighted kernel estimate [De Gooijer and Zerom, 2003]. Accordingly, data-driven
selection rules for the bandwidth are proposed, using methods inspired by Fan and Gijbels [1995],
the bootstrap approach [Hall et al., 1999, Bashtannyk and Hyndman, 2001|, or cross-validation
[Sarda et al., 1994, Fan and Yim, 2004|. All these methods lead to asymptotic results: consis-
tency rates, asymptotic normality, study of the asymptotic variance for example, under various
assumptions (such as a— mixing design). A common feature of these estimators is their ratio
form. This can be seen as a theoretical difficulty (see Penskaya 1995 for a specific study), which
can be bypassed by using quantile regression or the copula function [Carroll et al., 1994, Takeuchi
et al., 2009, Faugeras, 2009]|: the corresponding estimates still satisfy classical asymptotic prop-
erties. Another way of avoiding ratio is to consider a transformation of the input data. This
strategy, early studied in Stute [1986a] will be detailed in the next section.

Moreover, projection estimators have been developed: the quality criterion which has thus
become classical is the mean integrated squared error, or empirical versions of it. Nonasymp-
totic results, such as oracle inequalities or lower-bounds for the risk are set for estimators based
on orthogonal series. For example, a Fourier basis can be used to build a blockwise-shrinkage
Efromovich-Pinsker estimator, using characteristic functions to rewrite m: the regression set-
ting is studied in Efromovich [2007|, the general case is the subject of Efromovich [2010a], and
multidimensionality is taken into account in Efromovich [2010b]. His estimators match the per-
formances of the oracle under the quadratic risk. The oracle-type inequalities stated permit to
establish sharp minimaxity over the bivariate anisotropic Sobolev classes. The problem of di-
mension reduction is also studied in Fan et al. [2009], in the spirit of single index results. Model
selection theory leads also to adaptation results: by minimizing a least-squares penalised contrast
introduced by Lacour [2007], Brunel et al. [2007] build an estimator which adapts to an unknown
underlying design and is minimax over anisotropic bivariate function classes. But the contrast,
considered also by Akakpo and Lacour [2011] to deal with dependent data and inhomogeneous
functional classes, does not provide explicit estimator without matrix invertibility requirements
(except when using a histogram basis). Moreover the penalty given in Brunel et al. [2007] depends
on the unknown infinite norm of w. It can be estimated but it then requires strong regularity
assumptions. Notice also that recent works by Cohen and Le Pennec [2011] focus on a penalised
maximum likelihood estimator leading to risk bounds for a Jensen-Kullblack-Leibler loss func-
tion. The maximisation of the likelihood seems to be difficult without additional assumptions
on the shape of the conditional density.

The present work is in the spirit of projection methods. We aim at providing an adaptive
estimator, which satisfies nonasymptotic risk bounds, but with a simpler expression, thus avoid-
ing matrix inversion and purifying the penalty function. This goal is achieved by using both
a "warping" of the data, like in the works of Stute [1986a] and Mehra et al. [2000] (no ratio,
no matrix inversion), and by applying in a new and original way the Goldenshluger and Lepski
method (the key to avoiding nuisance terms in the penalty).

1.3. Generality about the estimation method. The data are pairs of real random variables
(Xi,Yi)ieq1,...ny (With n a positive integer), independent and identically distributed (i.i.d.) with
joint density f(x y), supported by a subset A; x Az of R? (A3 a bounded interval). We assume
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that the marginal density fx of the X; does not vanish, and denote by Fx the cumulative
distribution function (c.d.f.) of these variables, which consequently admits an inverse.
The fundamental idea to provide a simple explicit estimator is that

(1) h(u,y) =7 (Fx'(u),y) . (u,y) € [0;1] x Ay,

is the joint density of the random pair (Fix (X1), Y1). We provide first an estimator of this function
h, and then an estimator for the target function m, by using the reverse formula: 7(x,y) =
h(Fx(z),y). This strategy has also been used by Stute [1986a] and Mehra et al. [2000] to
build kernel estimates of cumulative conditional distribution function and conditional density
respectively, which are shown to be asymptotically normal. More recently, Kerkyacharian and
Picard [2004]| employed similar ideas to provide wavelet thresholding estimators of a regression
function.

We adopt here a nonasymptotic point of view, by using model selection, and we aim at adaptive
results. Precisely, the assumption that h is squared integrable leads first to projection estimators
of the form

D1 Do

V(u,y) € [0;1] x Ag, th,D2 (w,y) = Z Z Qjy iy @ Vi (wy),

J1=1j2=1

with ¢, ® ¥y, (u,y) = ¢, (w)j,(y), for different couples (D1, D2) with (¢, ® 1j,);,,j, an or-
thonormal family of functions and a;, j, estimated coefficients. Then, we propose an estimator
of m given by:

V(l'7y) € Al X A27 7ATD1,D2(x7y) = iI’DLDQ <F”(x)7y> 5

with F, an empirical counterpart for F. To avoid dependency in the proofs, we assume that
there exists (X_;)ie(1,..n} @ sample of variables with the same distribution as the (X;) and
independent of them. Thus, we set

. 1
F,:z— EZlX”Sx'
i=1

However, it is an artefact of the theory: for the practical study, we assume to observe only the
pairs (X;,Y;); and compute successfully the estimator of Fy with the Xj.

To sum up, we get a development of 7p, p, in an orthonormal basis, whose first coordinate is
warped by E,:

Dy Do

V(x,y) € A1 X Ay, #p,py(2,y) = DY by jpbiy @ U (Fn(ﬂf)ay) :

Jj1=1j2=1

The procedure is particularly simple and fast to compute, since the coefficients a;, j, are just
empirical means (they do not involve any matrix inversion). The selection rule of the levels Dy
and Dj used in a second step is inspired by recent advances of Goldenshluger and Lepski [2011]
and is particularly well suited to the multidimensional framework.

Our main theorem is an adaptivity nonasymptotic result, an oracle-inequality and permits
to deduce asymptotic rates of convergence for the quadratic risk, if the function h belongs to
anisotropic functional spaces. We show that adaptation has no price and that the rate corre-
sponds exactly to the best bias-variance compromise, with assumptions stated on the function h
instead of m. Moreover, on the practical examples, the strategy we propose outperforms kernel
methods summed up in Fan and Yim [2004] and the penalization device of Brunel et al. [2007].
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1.4. Organisation of the paper. Section 2 presents the two warped bases estimators (the one
built assuming Fx is known, and the one built in the general case). The performances of each
estimator are studied in Section 3: the functional spaces are described and global risk bounds
and rates of convergence presented. Section 4 is devoted to numerical results. Finally, the proofs
are gathered in Section 5.

2. ESTIMATION STRATEGY

All the estimators defined in the sequel are projection estimators. Therefore, we begin with
the description of the approximation spaces (Section 2.1). We then proceed in three steps to
estimate the conditional density 7, on A; X Ag. First, we define a collection of estimators for the
function h (see definition (1)), by minimizing a contrast on the models (Section 2.2). The second
step consists in ensuring the automatic selection of the model, without any knowledge about the
regularity of h. This leads to a well defined estimator h (Section 2.3). Finally, we partially warp
h to estimate .

2.1. Approximation spaces. Our estimation procedure is based on the assumption that the
function h belongs to L?([0;1] x Ag), the set of square-integrable functions on [0; 1] x Ag, which
is equipped with its usual Hilbert structure: we denote by (.,.) the scalar-product and by ||.|| the
norm. Consequently, h can be developed in any orthonormal basis, and can be approximated by
its orthogonal projections onto the linear subspaces spanned by the first functions of the basis.
For the sake of simplicity, we assume Ay = [0; 1] in the theoretical part. The case of any segment
Ay can be easily obtained by making a scaling change, see Section 4. Following the example of
Efromovich [1999], we choose the Fourier basis (o5, @ ¢j,)j, jsem oy of L*([0;1] x Ag), defined
for u,y € [0;1] by

(2) o1(u) =1, Yk e N\{0}, por(u) = V2cos(2mku), pori1(u) = V2sin(2rku),
and @j, ® @j,(u,y) = @j, (u)ej,(y). For an index | = 1,2, we also denote by S,,, the space
spanned by {¢1,..., goDml}, for Dy, = 2my + 1, and m; an element of the set of indices I,(ll) =

{1,...,[v/n/2] — 1} ([.] is the integer part). The approximation spaces are then S;, = Sy, X Sy
for m = (my1,m2) € M, with M,, = I,(ll) X L(LQ). Thus, we have

Sm = Sm1 X Sm2 = Span{gpjl ®(pj2, ,jl = 1,...,Dm1, jg = 1,...,Dm2},

and the dimension of S, is Dy, = Dy, Dy,. Notice that for all m; € ¥ (1=1,2), Dy, < /n
and thus D, <n.

Remark 1. o The basis satisfies || 3271 32772 (9, ® ¢1,)lloc < Dim, where ||[loo is the
supremum of the function on [0;1] x Ay. This is equivalent to the following useful link

between the infinite norm and the L? norm (see Birgé and Massart 1998 for the proof):

(3) vt € L*([0:1] x A2), [ltlloe < v/Dimy Do [t = /D[]
e For each my, m; € 70 (1=1,2), we have
4) Dy < Dy = S, C Sm;-
Notice that other classical models, such as models spanned by regular wavelet basis, histogram
basis or dyadic piecewise polynomial basis satisfy similar properties. We refer to Barron et al.

[1999], and Brunel and Comte [2005] for a precise description. See also Remark 2 below about
the extension of our results to these models.
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2.2. Estimation on a fixed model. We start with the following criterion

n
Vi€ L2([051] x A) o alt, F) o= 7 — 234 (Bu(X0). ).

i=1
This contrast is new and quite far from the regression and conditional density least-squares
criterion. The novelty comes both from the L? norm which stands in place of the empirical norm
used in the classical contrasts (see for example the contrast 1) in Brunel et al. 2007), and from
the presence of the empirical ¢.d.f F,. To justify this choice, plug for a moment the true c.d.f
Fx instead of its empirical counterpart, and compute, for ¢t € L2([0;1] x Asz),

E [yn(t, Fx)] = El(h, Fx)] = tl1* = 2] = 2E[(t - ) (Fx(X1), Y1)],
= [|tl* —~[|Al* — 2/ (t = h)(Fx (x), y)m(z, y) fx (x)dxdy,
A1 x Az

— P P2 (e B )b y)dudy,
0‘1]><A2

— I = Al - 2{ht ~ B),

— eI,

This quantity is minimal when ¢ = h. This shows that v, (., Fx) (and v, (., F},) in practice) suits
well for the estimation of h. We thus set, for each model S,,,

iAsz = arg min 7, (¢, Fn), ﬁfnx = arg min v, (¢, Fx),
teS'VVL teSm

or equivalently,

Dml D77L2
- Z Z jy joPin @ Pjpy With aj, Z‘Ph (Fn(Xi))js (Yi),
J1=1j2=1
and a similar expression for estimator hF X with coefficients a a ,- Finally, we set

rbF(z,y) = hE (F(2),y) and #lxFx(z ,y>=ﬁ£X<Fx<x>,y>,

denoted with two super-indexes F (or Fx) to underline the double dependence of the estimator

on this function, through both the coefficients a!° ik and the composition of the first variable by
Fx. Notice the advantage of the contrast we deﬁne we get an explicit formula for the estimator.
The coeflicients are easily computable empirical means. They do not involve a matricial inversion
compared to the estimator obtained via the least-squares criterion (see for example Brunel et al.

2007). Moreover, in the toy case of known c.d.f. Fy, ﬁﬂx is an unbiased estimator of the
orthogonal projection of h onto S,,

2.3. Model selection.

2.3.1. Risk on a fized model. In order to explain which model S,,, we should choose, we first study

the quadratic risk of each estimator of the collection (W,I;LF)me M,,- The loss function naturally
associated to our context is the following L?—norm,

Yo € LA(Ay x As, fx), [ol3, = / v (x,y) fx (x)dzdy,
A1><A2
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with L?(A; x As, fx), the space of squared-integrable functions on A; x As with respect to
the Lebesgue measure weighted by the density fx. We denote (.,.), the corresponding scalar-
product. Notice besides that the following links hold between this norm and the classical norm
previously defined: for t,s € L?([0;1] x As), we compute, using Fy = fx,

[E(Fx (s e = Il EFx (), ), s(Fx (), D gy = (¢t 5)-

If we want to bound the classical quadratic risk of the estimator, we can assume that fx is
bounded from below by a strictly positive constant fp: this assumption, which is standard (see
for example Assumption Ay in Brunel et al. 2007, or Assumption (Hp,s) in Baraud 2002) leads
to the inequality [|v| s, > follvl|, for all v € L%(A; x Aa, fx). Thus, it is sufficient to bound the
weighted risk.

We can give a simple explanation for the choice of an estimator among the collection, considering
first the collection of theoretical estimators (7, rixoFx *)m. For the weighted L?—risk which is used
in the rest of the paper, and for each m € M,,, we get

B (e =] = e+t = ]

(5)

where

|h = B * + E [Hh — bty ] ,

i (2,y) = hyp(Fx (2),y) and hy, is the orthogonal projection of h onto S,,

We recover the usual squared-bias/variance decomposition of the risk. The key point is the
difference of behaviour of the two terms: they both depend on D,, but in opposite ways. The
first term in the right-hand side of (5) decreases when D, grows, since 7 is better approximated
by its projection when the approximation space grows, while the second term grows with D,,

IEU

Dy D,
~Fx Fx Fx 2 _ ~Fx
o — Ty fo = Var a;i, )
Jj1=1j2=1
| Doy Dy

(6) < O30S R [l (Fx(X0) en (V)] <

J1 1j2=1

Dml Dmg
n )

using Property (3). The best model among the collection is the one which minimises the right-
hand side in (5), making a trade-off between the squared-bias term and the variance term.
However, it is unknown since h and h,, are not observed. Therefore, an adaptive estimator of m
must make this compromise automatically.

2.3.2. Selection rule. We propose to use a scheme proposed by Goldenshluger and Lepski [2011]
for density estimation. The adaptive index is chosen as follows:
mt = (mf,mg) —arg min |A(m, F,) + 2VF(m) )
mE./\/ln
where VI has the order of the variance term:
2 Dy, Dy

(7) VF:m:(ml,mg) — CIT’

with ¢; a purely numerical constant. Its theoretical calibration is precised in the proofs (Section
5.3.1), and, in practice, we adjust it by simulations (see details in Section 4). The function
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A(., F,) is based on the comparison of the estimators built in the first stage:

[ =viemn)

+

hE, — iE

(s) A, F) = s (

where 2, = max(z,0), z € R and m A m/ = (m1 A m), mg A mb). We prove that A(m, F,) has
the order of the bias term (see Inequality (17)). Thus we get an estimator, explicitly expressed
in a warped basis,

(9) F(w,y) = hE (), ).

The L?—norm involved in the definition of A(.,7) is easy to compute, since the functions fzfl,,
m’ € M, are expressed with a development in an orthonormal basis (see Section 4 for details).
This advantage must be highlighted compared to other strategies of model selection using the
contrast function or to strategies involving bandwith choice for a kernel.

There are several novelties to underline First, the warping of the basis for the variable x leads to
explicit and simple coefficients af’ 1.2 for the estimator. The use of a selection device ingpired from
Goldenshluger and Lepski [2011] is original in the settmg of multidimensional model selection.

Note also that the specific factor 2 in the definition of /! plays an important (but technical) role
in the proofs. Once the constant c¢; is chosen (through simulation experiments), the "penalty"

term VI is entirely data driven, while the penalty in the regression-type contrast depends, in
addition, on the unknown infinite norm of 7 (see Brumnel et al. 2007, or Lacour 2007).
Finally, let us define an estimator in the theoretical case of known c.d.f. Fx:

(10) fo(z,y) = hi (Fx(z),y),

with mX selected as the argument-minimum of A(m, Fx) + VIX(m), where we denote by
VEx(m) = coDyy Dimy /1, co a numerical constant, which can be different of c;.

3. MAIN RESULTS

3.1. Anisotropic Sobolev spaces. Let us define the functional spaces we consider further for
the function h (even if its index of regularity needs not be known). The choice of the trigonometric
models leads us to consider spaces of periodic functions, that is Sobolev spaces. We define them
directly via Fourier coefficients, keeping in mind that they can also be characterised via weak
differentiability (see for example DeVore and Lorentz 1993 and Hérdle et al. 1998 for functions
of one variable, and Adams 1975 for functions of several variables). Precisely, our aim is to
extend the characterization of Tsybakov (Lemma A.3, p.162, Tsybakov 2004) to functions of two
variables.

Let ¢t € L*([0;1]?). Then there exists a real-valued family (6}, j,);, j,em o} such that

L= Z 01,52 051 @ P
J1,j2€N\{0}
Recall that the functions ¢; are defined by (2). We say that ¢ belongs to the partial ball with
radius L > 0 and regularity o = (a1, 2) (y € N, 1 =1,2, a # (0,0)), if

L2
2 2 2
(11) > Hhahha®hi < e
J1,J2€N\{0}
with 11,6, = j; for even ji, pj 0, = (ji — 1)* otherwise. We write t € W2,([0;1]*, L, a), in
the spirit of the definition of Tsybakov [2004]. These spaces are anisotropic. The function h can
thus have different smoothness properties with respect to different directions.
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Let us finally give a useful approximation property of this space. We denote by ¢, = (15, 1) the
orthogonal projection of the function ¢ onto the subspace Sy, = S, 1m,)- We have the following
rate:

It —tm]|* < Cla, L) (D3 + D32

where C(«, L) is a constant depending on v and L. This inequality is a particular case of Lemma
9 in Lacour [2007], based on papers by Hochmuth [2002] and Nikol’skii [1975].

3.2. Nonasymptotic risk bound and consequence. The first theorem provides a nonasymp-
totic bound for the risk of the estimator 7 (see its definition (9)). We recall that the trigonometric
models satisfy properties (3) and (4), and that the dimensions D,,, are bounded by y/n. Hereafter
we denote by [|.[[o0,[0;1) the infinite norm of a function over the interval [0; 1].

Theorem 1. We assume that the function h belongs to the anisotropic Sobolev ball denoted by
W2, ([0;1%, L, (1,0)), for some fived L > 0, is bounded on [0;1]?, and is C* with respect to its
first variable on [0;1]. We also assume that, for some constants Cq, Cy, C., the trigonometric
models satisfy

1/3
(12) Ym = (my,me) € My, Dp,, <C, (1272)> and CyIn®(n) < Dy, < Cey/n.
n“(n

Then, there exists numerical constants c and C depending on ||©5]| oo [0:1]5 1195 [ oo,f051]5 Hcpgg) ll o, [0:1]5
R, |O1h]|, and L, such that

Dy, D 2 C

~ 2 . m14/m F

(13) E {HW—WH]«X} < cmrgﬁn{%?ﬂ\wmx _WHfX}Jrn'

Remark 2. e There actually exists an integer ng, depending on the function h, such that

Inequality (13) holds for all n > ny with a purely numerical constant c¢. But the result
is nonasymptotic, since the inequality also holds for n < ng, taking a constant ¢ which
depends on quantities of the problem.

e Up to this result, the models S,,, and S,,, and their respective dimensions have played
the same role. But in the theorem, the dimension constraints (12) are not the same in

each direction. To be totally rigorous, we should denote by 57(7?1 the models and by Dﬁf)l
their dimension, for each [ = 1,2. For the sake of simplicity, we keep the first notations
as there is no possible confusion.

o If we focus on the simpler situation of known c.d.f., we can derive the same result as
Inequality (13) for the estimator 7y (defined by (10)), with few assumptions: we only
assume that the function h is bounded on the space [0; 1] X A2, and we have no additional
condition on the trigonometric model. In this case, the constant ¢ in (13) is purely
numerical, and the other constant C' depends only on ||h||s. This result holds in a more
general setting than trigonometric models. It is sufficient to assume that the models
satisfy properties (3) and (4), and have dimensions bounded by /n. These assumptions
are very weak. Since the proof of this result is both short and representative of the
method used to prove Theorem 1, we begin with it in the proof section (see Section 5.2).

The basic outline of model selection (with a method inspired by Goldenshluger and Lepski
2011) is to estimate the bias-variance sum and to select the model which minimises it. Theorem
1 shows that it is a good strategy: the right model (in the sense that it realises the trade-off)
has been chosen in a data-driven way and the selected estimator performs as well as the best

estimator in the family {wﬂ’F, m € My}, up to some multiplicative constants and to a negligible
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residual term of order 1/n. The constants are given in the proof, which is deferred to Section
5.2.

Brunel et al. [2007]| provide the same kind of oracle inequality for their estimator built by
penalization of a regression-type contrast. The assumptions seem first to be slightly less restric-
tive: it is only assumed that D,,, < n'/?/In(n). However, the term V! does not contain any
unknown term and is then entirely computable, contrary to the penalty used in Brunel et al.
[2007|, which depends on ||7||o. Moreover, replacing this quantity by an estimator requires
much more regularity constraints than the one we have, and leads to a semi-asymptotic result
(see the appendix of Lacour 2007 for an example of these conditions). Consequently, a model
selection strategy in the spirit of Goldenshluger-Lepski applied with warped bases has the ad-
vantage of providing an estimator easier to compute than a regression-type estimator and with
good theoretical properties under quite weak assumptions.

Theorem 1 also enables us to give a rate of convergence for the estimation of 7, under regularity
assumptions for function h. Recall that the bound of Inequality (13) is close to the order of the
sum of the variance term and the bias term. The minimization of the left-hand-side of the
inequality in the case of regular functions leads to the following corollary, which implies that the
obtained rate of convergence is likely to be minimax in most cases.

Corollary 1. We assume that the function h belongs to the anisotropic Sobolev ball denoted by
Wge,,([(); 1%, L,q), for some fived L > 0, and o = (a1,2) (oq € N, I = 1,2, a # (0,0)) with
a1 — 2a9 + 210 > 0, and as — a1 + 2a1as > 0. Then, under the assumptions of Theorem 1,

~ 2 __2a_
£ 17—l < o -3

with C(a, L) a numerical constant which depends on o and L, |95 |, 0:1]5 1192 lloc,[0;1]5 ”9053)”00,[0;1]7
kI, |01k, The quantity & is the harmonic mean of c; and aq.

The harmonic mean of o and «g is the real & such that 2/a = 1/ay + 1/a3. The corollary
signifies that without knowing o and L (depending on the unknown h), 7 does as well as the
best possible estimator which knows these quantities. It is thus an adaptive estimator.

4. SIMULATION STUDY

The aim of this section is to illustrate the behaviour of the estimator 7 and to compare it with
the regression-type estimator of Brunel et al. [2007] and with kernel estimators [Fan and Yim,
2004].

4.1. Implementation. The estimate 7 is computed by using simulated sample of data (X, Y;)i=1,... n-
The empirical c.d.f. function F, is the one of the sample (X;);: in practice, we do not use ad-
ditional observations. We actually experimented it, and a second sample does not improve the
results.

For each data sample (that is for each computation of the estimators), we calibrate the set
Aj x Ay for the estimation, over 90% of the variables (X;,Y;): we choose to eliminate the smallest
values, and the largest values of the data to avoid side effects.

To implement each estimator 7, we use warped trigonometric basis. Recall that our procedure
is based first on the estimation of the function h, which belongs to L?([0;1] x As). Accordingly,
the orthogonal Fourier basis is (¢, ® ©j,);, 4., With ¢;, defined by (2), and 1;, obtained by:

vyE[GQ;bQL Tr[)JQ(y): ! 2 (y_a2>a

\/bg — as Iz b2 — a9

where Ay = [ag; ba).
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We have to compute the sum A(m, F},) + QVF(m) for each m = (my, ma). Notice that the
quadratic norm in the definition of A(m,F,,) (see (8)) is simply equal to a sum of squared-
coefficients. For example, if m Am/ = (my,m}),

2 Dy Pt 2

j=Dm,+1 k=1

| = b

Finally, we calibrate the numerical constant c¢; involved in the definition of V¥ (see (7)). As in
most model selection results, the theoretical value obtained in the proof (Section 5.3.1) is very
pessimistic due to rough upper-bounds (for the sake of simplicity of the proof). Thus, specific
data-driven calibration has been developed: for example, the so-called "dimension jump" method
allows us to apply the slope heuristic (see Baudry et al. 2011) to choose the penalty constant of
a classical penalised contrast strategy [Barron et al., 1999]. But this cannot be applied to the
recent method of Goldenshluger and Lepski. Consequently, we adjust c¢; prior to the comparison
with the other estimates: we look at the quadratic risk with respect to the value of ¢1, and choose
one of the values leading to reasonable risk and complexity of the selected models (recall that in
penalty calibration, it is more secure to overpenalise): we set thus ¢; = 0.05.

4.2. Comparison with kernel estimates. Since kernel methods play a key role in nonpara-
metric conditional density estimation, we begin by comparing the adaptive warped-bases estimate
7 with double-kernel local linear regressions built with a data-driven selection of the bandwidths.
Fan and Yim [2004] recall the definition of this estimate. They numerically compare the band-
widths selection rule they propose (a cross-validation strategy based on minimization of the
integrated squared error, with three other selection strategies: an ad-hoc empirical bias method
[Fan et al., 1996], a bootstrap method (developed first by Hall et al. 1999, adapted by Bash-
tannyk and Hyndman 2001), and a simple rule, based on local parametric models [Hyndman
and Yao, 2002|. They show that in most cases, the cross-validation method outperforms the
other approaches substantially. Thus, we evaluate @ by comparison with the cross-validation
double-kernel estimate, denoted by 7ry.

We consider the examples corresponding to the independent random sample setting in Fan
and Yim [2004]:

e Examples 1”1 Y; = 0.23X,(16 — X;) + 0.4¢;, with the X; uniformly distributed on the
interval [0;16] and the ¢; are independent, (i) standard normal, (ii) from the Student
distribution t9, (iii) from the Student distribution ¢4 .

e Example 2”: Y; = 20 cos(7X;/10) + €;, with the X; uniformly distributed on the interval
[—20; 20] and the ¢; are standard normal, independent.

For sample size n = 1000, we compute the root mean squared error (RMSE) with the same
formula as in Section 4 of Fan and Yim [2004], for the estimator 7. Figure 1 presents an example
of estimate for Example 1’ and Table 1 summarises the results: we report the risk obteined here
for 7 and the risk of 7py obtained by Fan and Yim [2004] (see their Tables 1 and 2). We do
not mention the median of the RMSE since it is not significantly different from the mean for the
estimator .

The values are similar for both estimators in most cases, but slightly better for the warped-
bases estimator (in bold in Table 1). This result has to be put into perspective, since more
thorough numerical trials have to be conducted to confirm this. The aim was just here to show
that a warped-bases adaptive strategy can compete with kernel methods.
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(a) (c)

FIGURE 1. Plots of true function versus estimator 7, Example 1’ (ii) with n =
1000 observations. (a) true function 7, (b) estimator 7, (c) and (d) plots of
y — mw(z,y) (full line), y — 7(z,y) (dashed dotted line) for two different fixed .

Ex 1’ (i) Exl’ (i) Exl’ (iii) Ex2’

7 0.7801 0.6345 0.6891 1.0404
mry  1.0899 0.7641 1.0143 2.7404

TABLE 1. Values of RMSE x1000 averaged over 100 samples of size n = 1000
according to Fan and Yim Fan and Yim [2004], in Examples 1’ and 2’ for the
estimators 7 and Tgy.

4.3. Comparison with regression-type estimator. We also compare 7 with another adap-
tive estimator: the one of Brumel et al. [2007] denoted by 7pcr. The estimator 7pcor of
Brunel et al. [2007] is defined as a penalised least-squares contrast estimator. The penalty
is pen(m) = Kol|7||co Dy Dim, /n. We implement the method with Ky = 0.5 like in Brunel et al.
[2007| but we do not replace ||7||c by its theoretical value. To have a real data-driven procedure,
we estimate it by taking the supremum of the values of a least-squares estimator on a fixed model
Sm on a rough grid, with m = [(In(n) — 1)/2].

The aim is to investigate at the same time the difference between the classical bases and the
warped bases, and the difference between the Goldenshluger-Lepski method and the penalization
device.

We propose to base the simulation study on the following examples: we generate samples
(Xi,Yi)ieq1,....n) such that

e Example 1: Y; = b(X;) + &;, with the following possibilities. The X; follow a uniform
distribution on the interval [0; 1] (denoted by Ujg.1)), or on the interval [—1;1] (U_1,1)), &
standard Gaussian distribution (AM(0,1)). The ¢;’s are generated following the standard
Gaussian distribution, the Gaussian distribution with variance 4 (NV(0,4)), or the Gamma
distribution (I'(4,1)) with parameters 4 and 1 (the 1 is the scale parameter). We denote
by fe their density. The sample (g;) is independent of the (X;). Finally, the regression
function b is b(x) = 22 + 5 or b(x) = z2. The conditional density 7 is thus given by

m(@,y) = fe(y — b(x)).
e Example 2: Y; = b(X;)+0(X;)e;, with a uniform distribution on [0; 1] for X;, the previous
Gamma distribution for €; (which is independent of X;) and o(x) = /1.3 — |z|. Similarly
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Ficure 2. Plots of true function versus estimators, Example 1, with X; i.i.d.
Upo,1y, i ii.d. N(0,1), and b(x) = 22 + 5 with n = 2000 observations. First line:
(a) true function =, (b) estimator 7, (c) estimator Tpcr. Second line, (d) and
(f): plots of y — 7(z,y) (full line) and y — 7(z,y) (dashed dotted line) for two
different fixed z. Second line, (e) and (g): for two fixed x, plots of y — 7w (x,y)
(full line) and y — 7per(x,y) (dashed dotted line) .

to Example 1, the conditional density is

m(x,y) = fe(y — b(x)/o(x))/o().

e Example 3: X; follows a uniform distribution Uy}, and given X; = z, ¥; follows the
Gaussian mixture 0.5\ (8 —4z,1) +0.5N (8 4+ 4x, 1). The function 7 is the density of the
mixture.

e Example 4: X; follows a uniform distribution Uy, and given X; = z, Y; follows a
Gamma distribution with parameters 3 and 22 + 1. The function 7 is the corresponding
Gamma density.

Examples 2 and 3, and some cases of Example 1 have also been studied by Brunel et al. [2007],
and Example 5 by Fan and Yim [2004] (but no risks for this model are given for the last two
examples).

Figures 2 and 3 illustrate the visual quality of the reconstruction, for a case of Example 1, and
for Example 3. We do not observe significant differences between the two estimators, which both
behave quite well. However, the computation of Tpcy requires much more time than the one
of 7, probably because of the presence of a matricial inversion, consequence of the least-squares
contrast. The warped-bases estimator can thus advantageously be used for estimation problems
with large data samples (data deriving from domain such as physics, fluorescence, finance...).

For sample sizes n = 60,500 and 2000, we give in Tables 2 and 3 the estimated values of the
risk E[||# — 7||3], with ||.]|2 the quadratic norm on L?(A; x Ag), and ## = (7pcr)+ or (7)4. It
is not difficult to see that the choice of the positive part of both estimators can only make their
risks decrease. The MISE is computed over N = 100 replicated samples, and the quadratic norm
is approximated using subdivisions of A; and As (see Brunel et al. 2007, Section 5.1, for details
about the formula).

The risk of our estimator 7 is often better than the one of the penalised least-squares estimator
7pcor (in bold in the tables). Precisely, it is always smaller for the sample sizes n = 500 and
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FiGure 3. Plots of true function versus estimators, Example 3 with n = 2000
observations. First line: (a) true function 7, (b) estimator 7, (¢) estimator Tpcr.
Second line, (d) and (f): plots of y — m(z,y) (full line) and y — 7(z,y) (dashed
dotted line) for two different fixed x. Second line, (e) and (g): for two fixed =z,
plots of y +— m(x,y) (full line) and y — 7oL (x,y) (dashed dotted line) .

n = 2000, which confirms that one can easily use the warped-bases estimator for estimation
problems with large samples of data, in spite of its bad performances for very small sample sizes.

5. PROOFS

In all the proofs, the letter C' denotes a nonnegative real that may change from line to line.
We recall that we denote by ||t|/s,4 the infinite norm of a function ¢ over a set A, by ||t||4 its
Hilbert norm, and by (., )4 the associated scalar product.

5.1. Preliminary results. Let us start by setting a result which is the key argument in the
proof of the main theorem. We consider the centred empirical process defined by

(14) Vi € L2([0;1] x As), va(t) = %Zt(FX(XZ-),}Q) ~E[t (Fx(X)),Y))].
i=1

The aim of the following proposition is to control the deviations of the supremum of this process
on the unit sphere of S,,

S(m) = {t € Spy, [It]| = 1}.
Proposition 2. If the function h is bounded on [0;1] x Aa, for all 6 > 0, there exists a constant
C > 0, depending on ||h| o, such that,

E <

51Q

D_,D._,
max sup v2(t) — 2(1 + 20) —2—""2
m/'EMn, tGS(m’) n n

Proof of Proposition 2. We first bound the maximum by a sum:

E| max | sup 02(t) — (o)l | < S E|[ sw V2(8) — ofg) 2 Oms
m EMp " n . - " . ’

teS(m') m/'EMy, teS(m’) n

with the abbreviation ¢(§) = 2(1 + 2§) and we apply the following concentration inequality.
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b(x) € X n=60 500 2000 Method
2+5 N(0,1)  Ugpy 1981 2879 1327 7
7.446  2.536 1.409 TBCL
U 1y 20871 4.811 2971 7

9.443  6.384 5.501 TBCL
N(0,1) 38.255 14.833 11.038 T
37.374 40.295  38.993 TBCL

[(4,1)  Ugy 5628 0.969 0.479 7
2.361 1417  0.715  #pcr

U 1y 9224 2.255 1.376 7

6.666 3.569 2314  Fpcr

N(0,1) 20.094 8.641 6.093 7

24.749 20.201 22571 TBCL

2 N(0,2)  Ugy 506  0.288  0.258 T
2.986 0527  0.548  d@pcr

U_11) 10381 0.546  0.428 T

4277 0.846  1.033  @pcr

N(0,1) 20.113 2.658 2.379 T
14442 2754 2395  Fpcor

I'(4,1)  Upy 5845 0.811 0.351 T
2505 0.894 0547  Tpcr

Uy, 10.828 0.664  0.599 T

4672 1144 0950  7pcr

N(0,1) 22337 6.277 3.551 7

18.723 7.367  3.792 TBCL

TABLE 2. Values of MISE x100 averaged over 100 samples, in Examples 1 (re-
gression models) for the estimators 7 and Tpcr.

Lemma 3. Let &, ..., &, be ii.d. random variables, and define v,(r) = 2 3% (&) — E[r(&)],
for r belonging to a countable class R of real-valued measurable functions. Then, for § > 0, there
exist three constants ¢;, | = 1,2,3, such that

(15) E[<sup<un<r>>2—c<5>ﬂ2>+] < m{Z@XP(“f”?ﬂfZ)

reR
M? nH
+W exXp <—630(5)\/3M> } y
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Example n =60 500 2000  Method

Ex2 7621 1.163 0.498 T
2.739  1.178 0.657 TBCL

Ex3 14451 12.264 12.87 T
13.163 12.764 13.175 T7pcr

Ex4 3.617 0.907 0.557 T
2407  1.142 0.611 TBCL

TABLE 3. Values of MISE x100 averaged over 100 samples, in Example 2,3,4,5
for the estimators 7 and Tgcr.

with, C(0) = (V1+0—1)A1, ¢(§) =2(1 +20) and

sup [|1]|eo < M1, E [sup ’I/n(T‘)|:| < H, and sup Var(r(&)) <w
reER reER reR
Inequality (15) is a classical consequence of Talagrand’s Inequality given in Klein and Rio
[2005]: see for example Lemma 5 (page 812) in Lacour [2008]. Using density arguments, we can
apply it to the unit sphere of a finite dimensional linear space, that is S(m'), for our problem.
We replace also the functions r by r; : (x,y) — t(Fx(x),y), and compute the constants My, H
and v. Notice first that ||r¢]jcc < [|t]|co, We deduce from Property (3) that we can set M; =

\/ Dy Dy 1t € S(m), it (::aunbevvrlttent—z,1 Zk 2 bj ks ® pp, with 37, b7 k—l So,

using the linearity of the process, and Cauchy-Schwarz’s Inequality, we get sup;cg(m) vn(t)? <

Z Zk o v2(p; @ pr). We use anew Property (3) to define H:

sup v2(t
teS(m/)

[ 0] <35 Dui P

< Z

k=
Finally, Var(t(Fx(X1),Y1)) < E[t?(Fx(X1),Y1)] < [[tI*|2llco = [|h]|oo := v. We just replace the
quantities My, H and v by the values derived above in Inequality (15):

D, /D, .
Z E ( sup vy (t)? —c(6)mlm2>
m'EM,, teS(m’) n T
1 Dy Dy
<c Z —exp <—CQDmI1Dm/2) + Z %exp (—c3v/n)
m'eMn, m/'eEMy,

It remains to remark that the first sum is a constant and that ), M, Dmi Dm’2 < n? to conclude
the proof.
O

We also set the following useful lemma.
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Proposition 4. Let v : L?([0;1] x As) — R be a linear functional. Let also m = (mq, msa) be an
index of the collection M,,. Then,

Dy Drmy
sup v3(t) = Z V(0 ® @)
teS(m) J=1 k=1

Proof of Proposition 4.
If ¢ belongs to S(m), it can be written t = ZDml ZDW bjkpj @ g, with Z ZDm2 b2k =1

Thus, by the linearity of v and the Cauchy- Schwarz Inequality,
2

Diny Diny Din, Dm2

SN brr(eier) | <D ?(05 ® ©x)-

j=1 k=1 J=1 k=1
This leads to suptes (m) V 2(t) < ED"” ZkDmf v%(p; @ ). The equality is obtained by choosing
=Y YR bires ® r € LA([0:1]), with by = vy @ 01) (S5t o2 v 0y @ ).

d

5.2. Proof of Inequality (13) in the theoretical case of known c.d.f Fx. We deal first
with the estimator 7y (defined by (10)): it satisfies the following inequality:

N . Dy, D 2 C
B [I70 -7l < e mip {mPeey afx -y L4 2

and its proof is a simple example of the scheme we will use to prove the main result, Theorem
1. For the sake of simplicity, in this section, we denote by 7 the selected index mfX, by V the
penalty VX and by A the quantity A(., Fx). Let S,, be a fixed model in the collectlon indexed
by M,,.

5.2.1. Main part of the proof of Inequality (13). We decompose the loss of the estimator as
follows:

~ 2 ~ N 2 N 2 N 2
ot = ol <3 il o[+ il

mAm
By definition of A,
. 2 .
Hhﬁif . hH < 3(A(m) + V(i) + 3 (A() + V(m)) + 3 th;gf _
Moreover, by definition of 7, A(m) + V(m) < A(m) + V(m), which leads to

Hﬁf;} - hH2 < 6(A(m) + V(m)) +3 Hﬁﬁf - hHQ.

We have already bounded the risk of the estimator on a fixed model (see Section 2.3.1, Inequalities
(5) and (6)), therefore, by definition of V', we get

R 2 Dy, Dy
(16) E [th;;f - hH ] < 6E [A(m)] + (6c0 +3) T2 43 [, — .
To pursue the proof, we have to control the expectation of A(m). By splitting the norm Hﬁfjf —
hi’f\m |? for m, m’ € M,,, and using the definition of A, we get
A 2 / ) /
A(m) < 3 max [HhF’f —hm/H — V(m)] + 3 max {HhmAm pEx T — V(m)}
m'EMn m 6 " m'EMn 6 "

2
+3 max 1 — B || -
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The three terms of the above decomposition are studied in the following lemmas, proved just
below.

Lemma 5. If the function h is bounded on [0;1] x Asg, there exists a constant C > 0 such that,

form e M,
. 2 /
(a) E [ max <Hhiﬁ< — hm/H — V(m)) } < Q’
m'eEM,, 6 i n
. 2 !
(b) E [ max <HhmAm/ — hF?j\ = V(m )) } < g
m/EM,, mAm 6 " n

Lemma 6. If the function h is bounded on [0;1] x Ag, there exists a constant C' > 0 such that,

hyor —hoeo oo l12 < 4k, — 2.
mr,ré%\\m mam'||” < 4[hm — |

These inequalities imply that
C
(17) E[A(m)] < . + 12||hm — A2
Gathering this with Inequality (16) ends the proof of the Theorem.

d

5.2.2. Proof of Lemma 5. To simplify the notations, we denote by T}, = Hﬁgx — hpl|? for p = m/
or p=mAm, and by U, = (T, — V(m/)).

Inequality (a). Using Proposition 4, we first compute,
D,/ D,, D

1 2 2
A F
2.2 (aj,f - aj,k) = va(s ® o) = sup wy(t),
=1 k=1 j

J J

»—AS\
3
S~

2
T F
Hhm)’( _hm/ =

i
1L
Eonl
i
L
-
m
)
Bl
N

with v, the empirical process defined by (14). Thus,

/
max sup v2(t) — vim) ,
m'eMn \ teS(m/) 6 N

and Inequality (a) of the lemma is proved by applying Proposition 2.
Inequality (b). We have to distinguish several cases, depending on the value of m A m/:
maX/ e M,, Umam/

E { max Um/} =E
m/EMnp,

< max Umam! + max Uprm' + max Uprm' + max Unrm!-
m/'eMy, m/'eEMy, m/'eEMy, m/'eEMy,
mj <my,mbH<ma my<mf,ma<m/, mj <my,ma<m/, my <mf,mbH<ma

o First term: m) < mq and mf < mq. In this case, m Am’ = m/. Thus, we bound roughly

E max Unrm' | <E| max Upyy|,
m'eEMy m'eMn,
m) <mi,mH<ma

and use Inequality (a) to conclude that this term is bounded by C/n.
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e Second term: my < m} et mg < mb. Here, m Am' =m. Using V(m) < V(m') (because
Dy < Dy, U= 1,2), we have

E max Um/\m/ S E max <Tm — ‘/(Tn)> —F |:<Tm _ V(m)> :| ,
m' €My, m'eMy, 6 /. 6 /.

m1<m/,ma<m} m1<m/|,ma<m}

and it can be seen as a consequence of Proposition 2 and of the beginning of the proof
of Inequality (a) that this last term is bounded by C/n.

o Third term: m} < my et mo < mi. Here, we have m A m’ = (m),ma). We use
V(i ma)) < V(i mh) to get

V((m},m2))
E Unpm | < E Ty — :
mem, LS mIEM, (“”1”"2) 6 .
m/lgm17m2gm/2 m'lﬁml,mggmé
V((m}, ms
< X E[(T<ma,m2>—((g))> ]
m’leIle) +

The last term is also bounded by C/n, using a slightly different version of Proposition
2 (take the maximum only over m} € Z}(Ll) instead of over m € M,,, and replace m by
mAm').

o Fourth term: my < mj et m} < my. We deal with this case by using the same arguments
as for the previous case.

We conclude that E[max,, e pm1,, Umname] is upper-bounded by C/n.

5.2.3. Proof of Lemma 6. Following the same lines as in the proof of Lemma 5, we distinguish
four cases:

e m) < my and m} < my. For such couples (my,ms) and (m}, mb), ||hm — Pmame||* = 0.

e my < mj et my < mh. We notice first that ||h,y — R |2 = |Ponr — Bunll? < 2| Ao —
h||> + 2||hm — h|/?. Since the models are nested in each direction (see Property (4)),
we have Sp, = Sy X Smy C Spy X Sy, = Sp. Consequently, by, € Sy, and by the
definition of the orthogonal projection onto S,,/, we get ||hy — h|| < ||hm — h||. This
leads t0 ||Ams — Puame |2 < 4l|hm — B2

e m) < my et my < mi. To deal with this case, we use first the following remark: if
t belongs to L2([0;1] x Asg), then for all u € [0;1], y — t(u,y) belongs to L?(A) and
y € Ag, u > t(u,y) belongs to L%([0;1]). Moreover, by denoting by Gy (respectively Gs)
a closed linear subspace of L?([0;1]) (respectively of L?(A5)), and by Ilg the projection
operator onto a subspace G, the following equality holds:

ey xGat = Hayxr2(a,) (Mrzo))xGat) -
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In our setting, we thus compute

2
s = B || = HHSmlleQ(Az) [HL2([0;1])><Sm/2h — Hr2(0;1)) % Som, h] H ;

2
< HHLQ([O;I])xSméh_HLQ([O;I])XS,”Q}LH :

IN

2 2
QHHLZ([0;1])xsm,2h—hH +2HHL2([0;1})x5m2h—hH :
2

< 4HHL2([O;1])><Sm2h_hH < 4 |hm — h|)?,

where the inequalities of the last line are obtained by noticing that S,,, C Sm/2 and that
Sm, C L%([0;1]), and by using the definition of orthogonal projections.

e m; < m) et mh < my. By symmetry, this case can be handled similarly to the latter.

Gathering the bounds of the four cases and taking the maximum of the four upper-bounds lead
to the conclusion:

s e — e [2 < max {0, 41y — B2} = 4 — B

m/e

5.3. Proof of Theorem 1. To simplify the notations, we write in this section A(m) to replace
A(m, Fy,), V for VF, and i instead of M. The main idea of the proof is to recover the
framework of the proof of Section 5.2. The computations are more technical, since the estimator
T = ﬁf;(ﬁ’ (.),.) depends in two ways on F. We denote it by ﬁg’F, and coherently, we denote by

ﬁgf X the estimator previously studied, that is 5. We also introduce the following intermediate:

(18) V(z,y) € Ay x Ag, 77X (2,) = hE (Fx (x), ).

These notations also suit well for a fixed index m € M,,. We denote by E[.|(X_;)] the conditional
expectation given the sample (X_;);=1 ., (the conditional variance will be coherently denoted
by Var(.|(X_;))). A key point is the following decomposition which holds for any index m:

lim" = |2 <630 I, with

Fx 12 F ~Fx ,Fx (12
T5" = |lm — 7S 7 + Imn — T X ,
T = ) aFxFx _zFFx g |:7§-5LX,FX _RF FX (X_0); }H
(19) T27n _ ﬁfz’FX o ﬁ_fl,ﬁ —F |:7¢[_T}27FX AFF’ :|H
N PN 2
1 = | [l sk x| T = HE [w,ﬁifx — b Fc] |-
fx fx

Let us remark that 77" is the bias-variance decomposition for the risk of an estimator 7TFX ’FX

and has already been studied (see Section 2.3.1). The sketch of the proof is now to decompose
the loss function, using these intermediates and the definition of A and V, and then to bound
each of the terms by CD,,, Dy, /n or to centre them (so as to show they are negligible).
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5.3.1. Main part of the proof. We begin by introducing the intermediate estimator defined by
(18) in the loss of our estimator:

2

57 - 2 2
+3||E [45 7 - 5" r<X_l>l] H +3 HAFFX —wa ,
X

. R . 2
= 3T+ 3T + 3 Hh,i - hH .
The last term itself can be decomposed, by construction of A, V', and m:

2 s ~ 112 g
S ] o ] e e U

IN

IN

3(A(m) +V (1)) +3(A () + V (m) + 3 |Bf, -

— 3(A(m) + 2V (m)) + 3 (A (1) + 2V (1) +3‘\h§_h‘(2_3V(m)—3V(m),
< 6(A(m) +2V(m)) — 2V (i +3HhF hH

Furthermore, ||iLF h|? = ||7rF Fx TercX < 3T 4 3T3" 4 61". Consequently,

(20) HWFF - WHQ < 3T 4 3T — 3 % 2V (1) + 3 x 6 (A(m) + 2V (m))

m fx

+3 % 3 x (3T]" + 313" + 6TF")

where the terms 7}, [ =0, ..., 4 are defined by (19). We split the term A, first in a similar way
as in Section 5.2. Let (m,m’) € M2,

PN ~ 2 P 2 P 2
Hhﬁ, —h <3 th; |+ 3 1 = B |2+ 3 Hhmm' _GF

But we immediatly try to recover the splitting terms defined by (19). By applying Proposition
4, we get, forp=morp=mAm,

o= 0" = sup 5200, 5t) = £ S (B %) - Bl (P ),

teS(p) n-=

for a function t € L?([0;1] x A2). We recover the previous empirical process by the decomposition
D2(t) < 202(t) + 2R2(t), with R, (t) = (1/n) 0, t(Fn(X:),Y:) — t(FX(XZ-),Y) Moreover, if t
belongs to S(p), we have already written ¢ = ZJDQ Z,?:p?l 0, 1p; @ @r, with Z Zk 2 92

Using this expression, Cauchy-Schwarz Inequality, and the definition of the coefficients afk or

~Fx

D D . L . .
PP INA( F Ex)2 The conditional expectation of aj K= i

al’ i Yield supyes, R2(t) = ajp — %
is introduced to get SUPyes(p) R ( ) <277 4+ 277 . Consequently,

~ A2
th - h}jH <2 sup (vn(t))? + 4P + 4T
teS(p)

By substracting V(m'), taking the maximum over m’ € M,, and integrating give an upper-bound
for E[A(m)]. We introduce it into (20) to obtain:
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(21) E{ fr?’F—WHjX]

36V (m) + 27E [2T3" + T} + T3"] + 18 {3 masc | — B |12
’IT'L/E n

IN

+3E (Té" - V(m))J + 3B [(Tfn - V(ﬁﬂ)J

+6E | max ( sup  (vp(t))? — V(m')) ]
i

m/'eM, tES(m’) 18 x 36
[ V(m')
6F L (1) —
ORI R, (tesﬁiﬁm,) ()" = 7575 36) J

o V(m) Am V(M)
19E y 12E Ty
* [mr%%(n ( T 72)J * [mnéaﬁ ( 3 18x72),

/ /
212 | max (17 = LN | 410w | max (e — Y0 .
MM 18x72), M, 18x72),

We bound each of these terms. Some of them have already been studied: recall first that

(22)

Dy, D,

E[T§"] < || — "+ =

using (5) and (6). Moreover, applying twice Proposition 2 shows that

E | max sup (yn(t))2 — Vo(m') < g;
m'eEMn \ teS(m/) L+ n
2 / c
E | max sup  (vp(t))” — Vo(m') < —,
m/eMn teS(mAm') + n

with Vo(m') = 2(1 + 20) Dy D,y /. Choosing c¢; (see the definition (7)) larger than 2(1 +
20), these inequalities hold with V' in place of Vj. Finally, we have proved in Lemma 6 that
max, e, |hm — P ||* < 4|/ — h||?. Taking into account the previous inequality (21) for
the risk, we get

“|

i3 C
m

2 D
—7rH ] < 36V(m)+ 27 x 27 + (12 X 18 427 X 2)||hn — A% +
(23) +3E [(Tg” — V(i } [ ] TR + T
m’ ( m/\m’ V(ml)
18 {12E [mné%(n (T3 18 x 72 12 ex T 18x 72

!/ /!
+12E | max (717" — V(m) +12E | max (T — V(m) .
mEMn 18x72), mEM, 18x72),
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It remains to bound the terms 7)™, [ = 1,2, 3,4 or their centred versions, by quantities of order
at most Dy, Dy, /n. Let us first notice that, for | = 2,4,

E [(Tlm _ v(m))J <E [ max (Tlm - V(m'))J ,

m'eEMn,

and then use the lemmas just below, whose proofs are deferred to the following sections.

Lemma 7. Assuming that the models are trigonometric, there exists a constant C depending
only on |5l j0;1) such that, for m € My,
D3 D
E[T{"] < =2
[ 1 ] —= 77,2

Moreover, the following inequality holds, if Dy,, = O(v/n/1n(n)), for ppy =m’ or ppr = mAmM/,
and for a constant C' > 0
C
E | max (TP —Vi(m/ <=,

mI’ré/\}/[(n( 1 1(m ))+ - n

with Vi(m') = k1 Dy Dyy /1, and k1 a constant depending only on [|©5||oo,jo;1]-

If D,,, = O(n'/?) in particular, the first inequality of Lemma 7 leads to E[T]*] < CD,,, Dy, /7.

Lemma 8. Assuming that the models are trigonometric, there exists a constant C, which depends
on (|94l oo, [0:1], such that
] < Cln(n)’

n

E [mné%cn (T;”’ - VQ(m’)) X

with Va(m') = K/QD;Ln/l Dy, In?(n)/n?, and kg a constant depending also on 125 Il oo, [0:1] -

Assuming that D,,, = O(n'/3/1n?3(n)), we have Va(m') < VE(m') := 15Dyt Doy 10 (K @
constant independent of h). The inequality of Lemma 8 still holds by replacing V5 by VQI’.

Lemma 9. Assuming that the models are trigonometric, and that h is C' with respect to its first

variable on [0;1], there exists a constant C' depending on ngg’)Hoo’[o;l], \\h|| and ||O1h|| (01 is the
derivation operator with respect to the first variable) such that, for m € M,

Do, Dy Dh),

1
E[T3"]| <C |-
157 = (n L n? n3
Moreover, the following inequality holds, for py, = m' or p,y = m Am', for n > ng(h), and
assuming Dy, = O(n'/3) and D,,, > cIn*(n) (for a constant ¢ > 0) for each m,

C
E T — Va(m! <z
|:mr’réia/\)/l(n ( 3 3(m ))+:| ~—n’

D, D,
with V3(m') = Hg%, k3 a constant independent of h, and no(h) a nonnegative integer

depending on the function h.
If D,,, = O(n'/3) in particular, the first inequality of Lemma 7 leads to E[T{"] < CD,y,, Dy, /7.

Lemma 10. Assuming that the models are trigonometric, that h is C' with respect to its first
variable on [0;1] and belongs to the anisotropic Sobolev ball denoted by W2,,.([0;1]%, L, (1,0)), and

per

that for allm € My, Dp,, = O(n3/In'3(n)) and D,,, > c¢In®(n) (for a constant ¢ > 0), there
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. : 3
exists a constant C, which depends on | ¢hllaojony, |40y 1 ]oe o, Il [81A]], and L
such that, for n > ny(h),

] < Cln(n),

n

E (Tm’ —Vi(m! )
|:mr’ré%\)/l{n 4 4(m) +

with Vy(m') = K4 Dy Dmé/n, and k4 independent of h, and ni(h) a nonnegative integer depend-
ing on the function h.

To conclude the proof, we choose the constant ¢; larger than k; (I = 1,...,4), to have V(m') >
Vi(m') (or V;*(m/) for I = 2): this enables to apply the inequalities of the lemmas with V and to
use it in Inequality (23). We then obtain the result of Theorem 1.

d

5.3.2. Technical tools for the proof of Lemmas 7 to 10. Key arguments for the proof of the
lemmas are the properties of the empirical cumulative distribution function F, of the sample
(X_1);. First, let U_; = Fx(X_;) (i =1,...,n). Recall that it is a uniform variable on [0; 1]. We
denote by U, the empirical c.d.f. associated to the sample (U_;);=1,... . Let us also keep in mind
that for all u € [0;1], Fn(F)zl(u)) — U, (u) and that the random variable ||F}, — Fx||so.4, has
the same distribution as || U, — id|| oo j0;1) (With id the function such that w ~— u). In particular,
we get

E [&j,k‘(X—l)l} 2/[0 s ©; © Un(w) ok (y)h(u, y)dudy.
31X A2

We also recall some inequalities to control the deviations of the empirical ¢.d.f U,. Dvoretzky
et al. [1956] established the first one.

Proposition 11. For any A > 0, there exists a constant K such that
P(“ﬁn—zd“ 2/\) < Kexp (—Zn)\Q) .
00,[0;1]

By integration, we then deduce other bounds:
Proposition 12. For any integer p > 0, there exists a constant C, > 0 such that

R P C
0, — 'dH < v
! oo,[O;l]:| - np/2

For any k > 0, for any integer p > 2, there exists also a constant C' such that

(24) E “

. p/2 _
(25) £ ( Un —id [o o1 Hlnn}?/gn)> < Cn=®) with c(p, k) = 27 K.
Moreover,
3 2 In(n) 2 2-2
(26) E (HUn —z’d” . H) < COn~2%,
00,[0;1] n

Inequality (26) is a slightly more precise version of Inequality (25) in the case p = 2.
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5.3.3. Proof of Lemma 7. The first part of the lemma is to bound E[T7"]. Using the definition
of #I%:Ix and #°Fx leads to

N A N P 2
Ty = ||k - Rl — B b = R 1] |

The decompositions of the estimators in the orthonormal basis (¢; @) yield T7" = Zﬁk{(&fﬁ -
N3 ~F ~F
afk) —Ela; 3 — aj7k|(X_l)]}2. Thus,

E [Ty (X)) = Y Var (@]} = afi [(Xa) ).
j.k
We work out the conditional variance for any couple (j, k):
Var (af —af 1) = Var (i (Fx(X0) @) = 5 (BaX0)) k() [(X 10 )
< [k {3 (Pe () - o5 (Fux) | I

We apply the mean value theorem, sum over the indices j and k, and remark H%‘Hoo,[o;l} <
Doy |05 00,[0:1] (Property of the trigonometric basis):

D D.
1|2 ~ Ak
GG Dol I S AE R TS A
3 D 2
N .
< "@/2”207[0,1} - : FX B Fn ‘oo Ay '

It remains to use Inequality (24) of Proposition 12 with p = 2 to bound the expectation:

D3 D
E[I7] < Clobli 27"

This completes the proof of the first inequality. For the second, let us begin with Vi(p,) <
Vi(m'). Therefore E[max, e, (TE™ — Vi(m')) 4] < Elmaxenm, (TP — Vi(py))+]- In the
sequel, we simplify the notations by setting p = p,v. We apply Proposition 4, which leads to
TY = sup;es(p) (Vi (1)? with

1 o . .
V) = = 3 (HFx (X)), ) = HFu(X0), ) ) = E [ (H(Fx (X)), Y2) = #(Ful(X0),Y0) ) | (X0
i=1
a process which is centred conditionally to the sample (X_;);. Thus we apply Talagrand’s
inequality (15), as in the proof of Proposition 2, but conditionally to (X_;);. In this setting the

key quantities are such that

sup HrtHOO < M17av E
teS(p)

sup |vy;(t)| !(X—z)z] < Hap,
teS(p)

1 n
and sup — E Var (r4(X;, Y3) |(X21)1) < vg.

teS(p) "
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We compute
3/2 ~1/2
Mo = (|65l [0; 1]D / Dy /

ooA1

£, FXH vy = nH?2

Hg,p =1 ”SOQH [051] D3 Dpz a,p’

and thus obtain for § > 0, E

( sup (va(t))? —2(1+ 25)1{3@)

teS(p)

|(Xl)l]

+

2
< (Cy {Hmpexp(—Cé) C2(6)

exp( C\[f)}
Here, Cy is a random constant, which depends on [|[Fx — FnHoo A,, and C' is purely numer-
ical. But Cp can be also bounded by a fixed quantity, since the infinite norm is smaller
than 1. Thus we write anew C in the sequel. We choose § = kln(n) (k > 0), so that
C(6) = 1. We now put p = m’ (The case p = m A m/ can be handled similarly). We thus
have E [ max (Tlml —2(1+ 2Hln(n))H3m,) \(Xl)l]

VS

m'eMn,

> E[(T¢’2(1+2nln<n>>ﬂsm/) |<X_l>l},
4+
m'eMy,

. D3, Dy D3, D,,
< C{n ™" —r = — Ty my
< n Z - +exp( C\/ﬁ) Z 2

m/'eMnp m'eMn

Moreover, we use D,,, = O(y/n) (I = 1,2), and remark that the cardinal of M,, is smaller than n,
to get > enm, D2 Diy /0 <3 em Cn®/?n'/2 /n < Cn?. Thus, if we choose x large enough,
n 1 n

E [ max (Tlm/ —2(1+ 2/<;ln(n))H3m,) ](X_l)l] < C{HQ—C*@ +nexp (—Cy/n)} < Cn™?
m'eM, ’ +

We then notice that, for any o, > 0

) D3, Dy In(n)
2(1+2kIn(n))Hy < 6/£Hg02H 01]%) oty
D3, D, In(n)
m my 2
< Onleblon = (08 it )
Choosing ay, = +/31n(n)/n, and using D,y = O(y/n/ In(n)),
D _,D._.
2 2 m m n
2142k ln(n))Ha’m/ < 18k HQOIQHOO,[O;I] {n =+ Cln2(n) 1||Fn*FX||oo,A12an’

/
g ‘/Yl(m)—I_Cl”Fn*FXHio, L )

A, 20n
Besides,
m’ / m’ 2 n R
E [(T1 Vl(m))J < E [(T1 2(1+2ﬁln(n))Ha7m/)J +E [CW1FRFX%A1>% ,

E [(T{”/ —2(1+ 2nln(n))H37m,>J +Cn?In"'(n),

IN

with the inequality of Proposition 11. To conclude, > /c . E[(T™ — Vi(m))4] < C/n.
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O

5.3.4. Proof of Lemma 8. For convenience, the constant ko in the definition of V5 is split
into two parts, that is xg = rs’. The first step is to write E[max,caq, (15" — Va(m/))4] <
D omieM, E[(T3" — Va(m'))4]. Then it is enough to bound this quantity for each index m’. We

D,
write in a shortened form the sum "> j=1 " ">_2;" (and the analogous for Z o1 ) We compute

/

"

A~

= /AIXA2 <ﬁ£/ (Fx(x),y) — ili/ ( n(x)7y>

B B (Px(@),9) — iy (Fa(a),w) 1001 )” Py,
(X-1)i 5

- /AIZZ afy — B |af (X1 ] ) (afp —E [ 1(X-0 )

Ji.g" kK
x (w o Fx(z) 90 (o) (410 Fx(@) ~ 50 Ful@) | onydow(widufx(o)da

B / Z (&fk —E [&fk |(sz)lD (cpj(u) — ;o0 Un(u)> du,
o1 = | 4

J=1

By the Cauchy-Schwarz Inequality, and the mean value theorem,
/ D l

_ZdH [0:1] ZZ(J’“ {f’“KX_Z)lDQ'

Thus, E[(T5" — Va(m/))4] < T3 + T3, with

T < |leb]% o) Do

oz P 2 In(n)
Ty, = D3 H o] B ]zk: (aik —E [afk |(X—l)l]> < B de [0:1] H/n)Jr ’
m’ _ 13 e /ln(n) A ~F 2 K Dm’ Dm’
T2,b - Dmll S02“0@,[0;1] k TE o (aj,k —E [aj,k |<Xfl)l:|> - H(tOQHQ 01 171 ? ln(n)

Bounding roughly ijk(dfk — IE[&ﬂ(X,l)l])2 leads to

’ ~ 2
7% < 2D Do ||| o B | (|00 —id _ i) ,
2,a ™ 2 ,[051] 00,[0;1] n n
| 97\ 1/2
< COn*nl/? (E ( U, — dH o) /{,nfgz)) ]) using D, < v/n(l=1,2),

< On®Pp 1 = on 732 (Inequality (26))
Thus, choosing &' > 7/2, 37 1crq T2ma/ < C/n. For the second term T3%  we notice first that
5@l — B8 (X )0)? = supyesn (v)2(t) (Proposition 4) with
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We now bound the deviations of this empirical process, centred conditonally to (X_;), exactly as
we bound v? in the proof of Lemma 7: they are controled by the Talagrand Inequality (15). We

finally obtain v, % < Cln(n)/n, which ends the proof, by gathering this bound with
the one of Y /c v Tz";;/.
O

5.3.5. Proof of Lemma 9. To compute a bound for E[T3"], let us begin with the definition of

the estimators and their coefficients, to get 73" = ZDml ZD’"Q {(or Ay () 4,12 with Aj(y) =
. D,

Ja, (@i (Fa(@)) = @j(Fx (2))) fx,y)(z, y)dz. Thus we can write 75" = 37, [Ig,,, Aj[1%, <

Z]-D:mll ||Aj\|?42, which can be developed as

D, 2
T < ; /A 2 ( /[0;1](90J(Un(U))—%(U))h(u,y)dU> dy = /A T W)y

We apply Taylor’s formula with the Lagrange form for the remainder: there exists a random
number depending on j, &;p 4, such that the following splitting holds:

E |T5"(4)] < 3E [T31(y)] + 3E [Ty4(y)] + 3E [T3(y)]

with notations

Dy 1 R 2
i = 3 { ] h) (800 - ) gy
D,y 1 R 2
i) = (/) 3 { [ #w) (B0 ) ywpanf.
D,y 1 3 2
i = U Tn(u) — u (3) Qinw)du s .
T3 = 11303 L ) (000 = 1) o asna }
Writing the definition of U, (u), and noting that u = E[1y,<,] (i = 1,...,n), we get for the first
term
Diny 2 .
E[T{(y)] =E | ) < ZA i m(y)]> , with A;;(y) = / h(u, y)@(u)du.
7j=1 i=1 U;

We integrate by parts in 4; ; (h is assumed to be C! with respect to its first variable). This leads
to another splitting, for each y € As:

E[T3%(y)] < 2B [T (y)] + 2B [T3]1 2(y)]

where

w
S
1
]
2
—N—
S|
3
=
=
s
AS)
RN
=
=
=
=
S
<o
-
——
)

(27) b
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In the spirit of the bound given for 77", the first term is controlled as follows:

1

1
BITf.00] < 5 SB[ )] < 22 [ byl
i=1

Thus, fAz E[T3 1(y)]dy < |R||? Dyny /0. Then, by definition and properties of the orthogonal
projection on S,,,

Dy

E[T3 )] = E|) ((81h(.,y)(0n —id),¢j>[o;1])2 <E |:Halh(-,y)(0” _id)H[Qqu '
=1 |

Finally, T3" 5(y) < C|01A(., y)H[20-1]/” by Inequality (24), and thus, by gathering the bounds for
Tﬁ,l(y) and T:’Tm(y),

AQE[Tﬁ(y)]dySCGjLDm)

n

As regards T3 (y), we remark first that for j > 2, ¢ = —(mpj)?pj, with p; = j for even j, and
p; = j — 1 otherwise, so that u; is bounded by D,,,. Hence

[ Doy 1 5 2
B[] < oD E| Y { [ Hw) (G - o) e |
=2
. A . .
< (r*/4)DLE ‘h(.,y) (Un—id> <C [ h(uy)dum,
L [0:1] [0;1] n

by proceeding with the previous arguments (properties of orthogonal projection and Inequality
(24)). So we prove ng E[T3%(y)ldy < CDj, /n*. The computations for the last term are less
technical:

. 6
2 .
G ) o, E U Un — Zd”oo,[();l]:| ’
thus [, E[T3%(y)ldy < CD],, /n®. This completes the proof of the first inequality of Lemma 9.

With regard to the second inequality, it is enough to bound E[max,eca, (1T — Vi(p))+], like for
the second part of Lemma 7 (p =m' or p = m Am'). As previously, we get the splitting

(28) Ty < G/A T§1,1(y)dy+6A Té’,l,z(y)dy+3/ Ts’f,z(y)dy+3/ T3 5(y)dy,
2 2

A2 A2

Dy,
Blmw)] < a0 [
=1 o

and

p7b _ <
£ [ml}éa/\}/t{n (T3 %(p))J sk

max 6/ T2 (y)dy — Vs(p 3>
s (6, Taaa - viwss)

E 6 T3 d
+ [m?é%‘n /A Taa2(0)dy|

+E | max (3/ T??Q(y)dy—Vs(p)/?))
m/'eEMy Ao ’ +

e (3] T —i0)/3) J .

+E
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The term which is not centred is direcly negligible : denoting by mmax the largest couple of
index (maximum is taken term by term) in the collection My, we remark that T3, , < T35

(by (27)). Hence, E[max,sem, 6 [, T312(y)dy] < C/n. Let us briefly study each of the other
terms: first 73, ,(y) = SUPses,, [Isllo1y=1 vp ,(s) (Proposition 4), with

Uiy () = % S w(Xi,y)s 0 Fx(X:) — E[r(X;, y)s 0 Fx (X:)].

i=1

Using once more time Talagrand’s Inequality (15) leads to

(29) E <

)

C
max <6/ T§1,1(y)dy - ‘/35,1,1(19)) .
As n

m’GMn +

with V31.1(p) = 6 x 2(1 + 26)||h||%, Dy, /n, (§ > 0). Besides, for n > ng = exp(||h||%,),

D D, D
Va11(p) < 12(1 4 26) In(n) = < C==22 = V3 4 (p),

since D, > cln(n) (¢ > 0). Inequality (29) holds with 1/31”171. The last two terms, involving
T3%(y) and T35 (y) can be computed with the same strategy: use the proof of the first inequality

of Lemma 9 to bound [, T3j(y)dy (I = 2,3) by quantity of the form C||\U,, — id|%,, and then

o

apply Inequality (25). The conclusion is that

< Cln(n)’
n

(30) P [ e (3 [ 2 Tgﬁl(y)dy—%,z(p)>+

m’EMn

for | = 2,3, with V32(p) = C’Df;1 In?(n)/n?, and V33(p) = C’D}Z1 In3(n)/n3. Assuming both
n > ny = exp(||h||?), and D,, = O(n'/3), D,, > cIn3(n), we have

D, D
V3a(p) < C% = 3?2(]7)'

With the more restrictive low bound D, > c¢In(n), we also get V3 3(p) < CD,, Dp,/n = V3b’3 (p).
As usual, Inequalities (30) still hold with ‘/E%)l),z instead of V3 ;. The proof is complete if we gather all
these bounds and if we choose the constant k3, such that V3 > 3V3b7171, Vs > 3V3b72, et V3 > 3V§’73.

O

5.3.6. Proof of Lemma 10. Let us first split the term Tf‘/ in several parts. Similarly to the bound
obtained for T3, we use the definitions of the estimators and their coefficients, and the fact that
the basis (¢k)x is orthonormal: hence
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We write it T4m <27 1 + 2T42, with

Dy (D, 2
RHZ/IE (ﬁ#ﬂm)@ﬂFﬂ@—%Oﬂ@D (X_o)i | fx(x)de,
A =1\ j=1
D, /D, 2
, ™3 m1 R
1y~ [ = ayi (50 Fx(@) gy 0 Ful@)) | 1001 | ()i
A k=1 \ j=1

where we denote by a;, = (h, ¢; ® @), the Fourier coefficients of the function h. Then we have
also Tﬁ' < 2T4T’”1/71 + 2Tﬂ:2 with the notations

'Dm,2 D, Dy i
’ N R 2 ~ 2
17, = | E (af ~ B[ lX-]) " § 4 S (o) — 050 Tl b 1K)
[051] k=1 j=1 J=1
-D7YL/ DTTLI D77L/ ’
, 2 1 ) 9 1 A 9
o= [ E (E [l (X ] = aju) (5w) = 950 Un(w))” ¢ 1(X )
01 | k=1 | j=1 =
As
D_, D_,
Mo M 1 R R
E [Tg] = E Z Z a; ka]’,k/ (cpj(u) —pjo Un(u)) (gpj/(u) @jr o Un(u)) du| ,
k=1 j,j'=1 0
a Taylor formula yields E[T}", V] = E[T4 51+ 11 2 o+ 11 3} where
Dm’ Dm/
’ 2 1 ~
7, =3 Y / (u — U ()2 (1) (),
k=1 j.j'=1 0
Dyt Dy .
Ti5o = (/1) Y Y anage [ (0= Onl0) 6 (@) (@7 )
k=1 j,j'=1 0
Dm/ Dm/
, 2 1 1 .
Ths =30 3 ausayn [ (0= 0u)*(Gs00)00 (u)d
k=1 jj'=

Hence, the decomposition of the studied term is TJ* < 4T} 1 1 —1—4T4[:”‘1/72 + 2T4[f12/71 —|—2T£12'72 +2Ti?2/73,
and consequently

E [ max <Tf‘/ - VZ;(m’))J < E [ max <4Tﬁl71 - V4(m’)/3>J

m/eMpy m/eMpy,

+E m{%%(ﬂ <4T4 12— Va(m')/ 3) ]

+E | max <2T47”2,3—V4(m')/3) ]
[mieM, N2 +

E 2T E 2™ | .
+ Ué%( 421] + { T,fé%(n 4,2,2]
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The methods use to bound each of these terms have already been detailed for other terms: with
regard to the two quantities which are not centred, we bound it to show that they are negligible
(that is of order at most C/n). For the others, we first bound each Tﬂ/ by a quantity of the
form C’HUn — id|| oo [0;1), and we finally apply Inequality (25), as we have already done for T3,

for example. That is why we only give the bounds for each Tl”l,. To begin, the term T[il can
be written

D ml, D,
/ ~ 2
(31) -y Y var (af (X / gy 0 Un(u)) du
k=1 j=1 (0:1]

The conditional variance is

Var (&ﬁk|(X,l)l) = Var {:L Z or(Yi)pj o Fn(Xi)KXl)l} ;
i=1
%E [@k(yl)2 (903' o Fn(Xl))2 ’(X—l)l] :

IN

By Property (3) applied to the sum over j,k of the last quantity, >, Var(&£k|(X_l)l) <
Dy Dy, /0. Besides, we use the mean value theorem to bound the integral of (31) so that

o Dy Dy,

411 S X Dfn;H‘PéHgo,[

—de
Jos1)

which allows us to control E[max,, ¢ Mn(4T4ZLI,,1 — Vi(m')/3)+] as explained previously. Further-
more,

Tﬂ:z = T?’,n, /[0'1] Z (cpj(u) —@jo Un(u))2 du,

which leads to Tj" o < T3" Dfn;H‘PIQHzo,[m]HU deQ 01] The term T4" is replaced by its
detailed upper-bound (28), and as a result, T471’2 < lel ﬁlm. Roughly speaking, we get
TZLI,,ZI < |0, — id|| oo [0;1) and apply the previous strategy for each [ = 1,...,4. Let us consider

now the terms Tfé’l and TZTQI’Z which do not require to be centred. It is usefull to remark that
the Fourier coefficients of h can be written

ajr = &k, 0j) 00 = /[0.1] Ek(u)pj(u)du, with §g(u) :/ h(u, y)er(y)dy.

Az

Since the term T, 1’:‘2/71 involves the derivative of the projection of & onto Sm/, we use a specific

D,
property of the trigonometric basis: Zj:f aj7kcp; = (HS , (fk)) =g , (fk)
1

!
Ti5, < )

_ZdH Z kaH[ou‘

Let us compute then the derivative of £ to bound roughly

D_,
ml, 2
2
> 1€kl = E /01] < Orh(u, y)er(y )dy> du < /[0 , |Ovh(u, )%, du = [[01h]>.
k=1

)
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We thus have E[max;, e, Ti’le’l] < |1 R PE[|| U, —id|?, 0 1]] < C'/n with Inequality (24). Recall

now that

D 2

/
mo 1

1
Ty, = (1/4) / (w=Ou (@) | 3 a5 (G50) | .
k=1 =

We introduce p; = j for even j and p; = j—1 for odd j. Since h belongs to W2,,.([0;1]%, L, (1,0))
and according to (11)

D, D, 2 D, D, 2
2 1 9 2 1 9
Z Z ajyk%@;'/(ajm,u) < ”80/2/“007[0;1} Z Z ‘aj,k‘ 15 )

k=1 \ j=1 k=1 \ j=1
1 D_ ’
m m ml
< "y Z Z it
k=1 j=1 =1
1|2 3 3
S HSO2 Hc)o7 O; D / < CDml ,max "

Dy e < 0173 (We denote by Dml,max the largest 1ndex on the collectlon (Dp,))- Following the
same sketch for the last term, we write

m2 ml '"Ll
/ kgl A
1o = [ =0 Y | X aef@ina) Y. w0
[0;1] k=1 \ j=1
and compute like the term TATQ/Q:
D, . D, 2 D, D, . 2
2 . (A 2 L2 3 < \ / /112 L2
Do D it @ina) | <1650 3 Dy Do | D0 aindi (@) | < 112b11% o) 5 Doy
k=1 \ j=1 k=1 \ j=1

This leads to

L? N TE
7223<’wamw1H¢\kﬂou 5 Dy Uﬁ_ldt&@ﬂ7
and we apply tools already used to complete the proof.
O
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