On the Extension of the Product Model in Polsar Processing for Unsupervised Classification Using Information Geometry of Covariance Matrices - Archive ouverte HAL
Communication Dans Un Congrès Année : 2011

On the Extension of the Product Model in Polsar Processing for Unsupervised Classification Using Information Geometry of Covariance Matrices

Résumé

We discuss in the paper the use of the Riemannian mean given by the differential geometric tools. This geometric mean is used in this paper for computing the centers of class in the polarimetric H/α unsupervised classification process. We can show that the centers of class will remain more stable during the iteration process, leading to a different interpretation of the H/α/A classification. This technique can be applied both on classical SCM and on Fixed Point covariance matrices. Used jointly with the Fixed Point CM estimate, this technique can give nice results when dealing with high resolution and highly textured polarimetric SAR images classification.
Fichier principal
Vignette du fichier
IGARSS2011_1.pdf (1.16 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-00640872 , version 1 (14-11-2011)

Identifiants

Citer

Pierre Formont, Jean-Philippe Ovarlez, Frédéric Pascal, Gabriel Vasile, Laurent Ferro-Famil. On the Extension of the Product Model in Polsar Processing for Unsupervised Classification Using Information Geometry of Covariance Matrices. IGARSS 2011 - IEEE International Geoscience and Remote Sensing Symposium, Jul 2011, Vancouver, Canada. pp.1361-1364, ⟨10.1109/IGARSS.2011.6049318⟩. ⟨hal-00640872⟩
793 Consultations
246 Téléchargements

Altmetric

Partager

More