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ABSTRACT
We discuss in the paper the use of the Riemannian mean given
by the differential geometric tools. This geometric mean is
used in this paper for computing the centers of class in the
polarimetric H/α unsupervised classification process. We can
show that the centers of class will remain more stable dur-
ing the iteration process, leading to a different interpretation
of the H/α/A classification. This technique can be applied
both on classical SCM and on Fixed Point covariance matri-
ces. Used jointly with the Fixed Point CM estimate, this tech-
nique can give nice results when dealing with high resolution
and highly textured polarimetric SAR images classification.

Index Terms— SAR, Polarimetry, Classification, Estima-
tion, Differential Geometry.

1. INTRODUCTION

The recently launched POLSAR systems are now capable of
producing high quality polarimetric SAR images of the Earth
surface under meter resolution. The additional polarimet-
ric information allows the discrimination of different scatter-
ing mechanisms. In [1] was introduced the entropy-alpha-
anisotropy (H/α/A) classification based on the eigenvalues
of the polarimetric (or coherency) Covariance Matrix (CM).
This CM is usually estimated, under homogeneous and Gaus-
sian assumptions, with the well known Sample Covariance
Matrix (SCM) which is Wishart distributed. Based on this de-
composition, unsupervised classification of SAR images can
be performed by an iterative algorithm based on a complex
Wishart density function. It uses the H/α decomposition re-
sults to get an initial segmentation into clusters, then the K-
means clustering is implemented by considering the polari-
metric CM as the feature vectors. This technique needs how-
ever to derive by a Euclidian mean operation the averaged CM
of each class and to compute by Wishart distance the mininal
distance between each pixel CM and with all the class centers.

The decrease of the resolution cell leads however to more
complicated effects like spatial heterogeneity or non Gaus-

sianity. Hence, some areas (grass, trees, ...) usually con-
sidered as random backscattering mechanisms can become
punctual deterministic backscattering mechanisms. The usual
techniques of classification, detection, speckle filtering, used
for decametric resolution have to be adapted to these new
challenging problems. Recent studies have shown that the
spatial heterogeneity of the observed scene allows for non-
Gaussian clutter modelling. One commonly used fully po-
larimetric non-Gaussian clutter model is the compound Gaus-
sian model: the polarimetric clutter information m-vector k
is modeled as a SIRV (Spherically Invariant Random Vector),
i.e. the product between the square root of a scalar random
variable τ (called the texture) and an independent, zero mean,
complex circular Gaussian random vector z (called the polari-
metric speckle) and characterized by an unknown zero-mean
and circular CM M:

k =
√
τ z, (1)

In this model, τ can represent the spatial variation of the
intensity of the wave vector k from pixel to pixel. All the po-
larimetric information (phase relationships within the wave
vector) is then contained only in the normalized CM M
(Tr(M) = m where Tr(.) is the trace operator). Condition-
ally to a given pixel (equivalently to a given τ ), the wave
vector is then fully Gaussian distributed.

The aim of this proposed paper is twofold. Firstly, we
propose in this paper to briefly recall original results obtained
recently in [2] for the joint Maximum Likelihood estimation
of the texture and the polarimetric CM. These results, based
on the above Fixed Point CM estimate, allowed to derive a
new distance for SIRV CM and to propose a new technique
of speckle filtering in heterogeneous environment. Secondly,
we introduce a metric-based mean for the space of positive-
definite Hermitian CM. An emerging theory [3, 4, 5] allows to
take into account the fact that Euclidian representation cannot
describe the space of positive-definite Hermitian CM.
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2. ESTIMATION OF THE COHERENCY
COVARIANCE MATRIX

2.1. Gaussian homogeneous case

In homogeneous and Gaussian clutter assumption, the texture
τ is assumed to be constant and the same for all pixels. In that
case, the statistic of the secondary data is Gaussian and the
CM can be estimated by Maximum Likelihood (ML) theory
with a set of N secondary data kn, n ∈ [1, N ] as:

M̂SCM =
1

N

N∑
n=1

kn k
H
n . (2)

This unbiased CM estimate is Hermitian, Wishart-distributed
with N degrees of freedom. Another well known POL-
SAR parameter maximizing the mean-to-variance ratio is
the Polarimetric Whitening Filter (PWF) as PWFSCM =

kH
n M̂−1SCM kn. For supervised and unsupervised POLSAR

data clustering in the Gaussian case, a LR distance DW be-
tween a given pixel i characterized by its SCM M̂ i and a
class center characterized by the SCM M̂ω has been derived
[6], [7] :

DW

(
M̂i, M̂ω

)
= ln

|M̂ω|
|M̂i|

+ Tr
(
M̂−1ω M̂i

)
. (3)

When dealing with heterogeneous and/or non-Gaussian clut-
ter, the SCM is no longer robust. Under SIRV assumption,
the SCM takes the form:

M̂SCM =
1

N

N∑
n=1

τn zn z
H
n . (4)

The presence of all textures τn of the N secondary wave vec-
tors kn makes this estimate strongly polluted.

Figure 1 presents the dataset used for the discussion
(polarimetric SAR images of ONERA SETHI system in
Bretigny in France) and the conventional H/α classification
using SCM. We can see clearly that the conventional clas-
sification is strongly connected to the intensity variation of
the RGB Pauli representation. It can be explained by the
fact that the SCM (and so, the Wishart distance, the centers
of class) is dependent on the intensity (or texture) present in
the reference cells. Figure 2 shows, after 10 iterations, the
locations of all the pixels in the H-α plan (for height classes).
The distribution of pixels belonging to a given class seems
very unordered.

2.2. Non-Gaussian and Heterogeneous Case

In the SIRV model, the CM is generally an unknown parame-
ter which can be estimated from Maximum Likelihood (ML)
Theory. In [8], Gini et al. derived the ML estimate M̂FP of
the covariance matrix M for deterministic texture, which is
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(a) ONERA SETHI polarimetric SAR Image in RGB
Pauli basis
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(b) Conventional H/α classification after 10 iterations

Fig. 1. Comparison between Pauli representation and conven-
tional unsupervised H/α classification after 10 iterations.

the solution of the following equation:

M̂FP = f(M) =
m

N

N∑
i=1

ki k
H
i

kH
i M̂−1FP ki

. (5)

This approach has been used in [9] by Conte et al. to derive a
recursive algorithm for estimating the solution matrix MFP

called the Fixed Point Covariance matrix. It has been shown
in [8] and [9] that the estimation scheme from (5), developed
under the deterministic texture case, yields also an Approx-
imate ML (AML) estimator under stochastic texture hypoth-
esis. This study has been completed by the work of Pascal
et al. [10], which recently established the existence and the
uniqueness of the Fixed Point estimate, as well as the conver-
gence of the recursive algorithm whatever the initialization.
This matrix estimate is shown to be robust, unbiased, con-
sistent and asymptotically distributed as Gaussian PDF [11].
One could suppose legitimately that it has the same behavior
as a Wishart distributed matrix with mN/(m+1) degrees of
freedom. The generalized ML estimator for the τn texture for



Fig. 2. Location of the pixels in the H/α plan after 10 itera-
tions in the Gaussian case.

the primary data kn is given by:

τ̂n =
kH
n M̂−1FP kn

m
, (6)

which is proportional to the SIRV Polarimetric Whitening Fil-
ter PWFSIRV = kH

n M̂−1FP kn. The role of the matrix M̂FP is
here to whiten the possible correlation existing within the po-
larimetric channels without being polluted by the power of
the secondary data used to estimate this matrix. A new LR
SIRV distance DS between two FP CM M̂i and M̂ω has also
been derived in [2]:

DS

(
M̂i, M̂ω

)
= ln

|M̂ω|
|M̂i|

+
m

N

N∑
n=1

kH
n M̂−1ω kn

kH
n M̂−1i kn

. (7)

This equation depends on the secondary data (kn)n=1,N but
can nicely be simplified as:

DS

(
M̂i, M̂ω

)
= DW

(
M̂i, M̂ω

)
. (8)

This result shows that, again, the FP CM could be considered
as a Wishart CM. Figure 3 shows, after 10 iterations, the loca-
tions of all the pixels in the H-α plane (for eight classes). The
distribution of pixels belonging to a given class seems much
better ordered.

3. RIEMANNIAN DISTANCE

Rigorously, the averaged CM Mωl
(SCM or Fixed Point) of a

H/α/A cluster l cannot be computed with the Euclidean met-
ric, i.e. usual arithmetic mean as Mωl

= 1/K
∑K

k=1 M
l
k

where Ml
k, k ∈ [1,K] are the K CM of all pixels belonging

to the class ωl in the H/α plan. It is well known that after a
few iterations of the unsupervised classification, all the class
centers move significantly within the H/α plane, leading to
a more difficult physical interpretation of the final classifica-

Fig. 3. Location of the pixel in the H/α plan after 10 iterations
in the SIRV case for the classical mean.

tion. The mean associated with the Riemannian metric corre-
sponds to the geometric mean:

Mωl
= arg min

Mω∈P(m)

K∑
k=1

∣∣∣∣∣∣log (Ml
k

−1
Mω

)∣∣∣∣∣∣2
F
, (9)

where ||.||F stands for the Frobenius norm and P(m) is the set
of the Hermitian definite-positive CM of sizem. The solution
Mωl

can easily be found using a simple gradient algorithm
given by the following iterative procedure:

Mk = M
H/2
k−1 exp

(
ε

K∑
i=1

log
(
M
−H/2
k−1 Ml

i M
−1/2
k−1

))
M

1/2
k−1 ,

where k ∈ N∗, where ε controls the speed of the gradient de-

scent and where M0 = Ml
1

(
Ml

1
−1

Ml
2

)1/2
is, for example,

the geometrical mean of the first two matrices.

Fig. 4. Location of the pixels in the H/α plan after 10 itera-
tions in the SIRV case for the geometrical mean.

Figure 4 shows, after 10 iterations, the locations of all the
pixels in the H-α plan (for eight classes). Figure 5 repre-



sents a comparison between the unsupervised H/α classifica-
tion results obtained with classical Arithmetical mean and the
Riemannian mean (after 10 iterations) with the Fixed Point
Covariance matrices.
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(a) Fixed Point and Arithmetical Mean
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(b) Fixed Point and Geometrical Mean

Fig. 5. Comparison of unsupervised H/α classifications after
10 iterations for arithmetical and geometrical mean

4. CONCLUSION

After recalling some recent techniques useful for modeling
the heterogeneity and/or the non-Gaussian behavior of the
polarimetric SAR images, this paper1 has presented the use
of a new technique, based on the differential geometry, for
computing the barycenter of K Hermitian CM. This mean
is used in the H/α unsupervised process and allows, jointly
with the Fixed Point Covariance Matrix estimate, to propose a
new classification scheme. The latter seems promising (much
more stable location in the H/α plan) but needs however to be
validated with ground truth.

1The authors would like to thank the DGA for supporting this research.
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