New global stability estimates for the Calderón problem in two dimensions - Archive ouverte HAL
Article Dans Une Revue Journal of the Institute of Mathematics of Jussieu Année : 2013

New global stability estimates for the Calderón problem in two dimensions

Résumé

We prove a new global stability estimate for the Gel'fand-Calderón inverse problem on a two-dimensional bounded domain or, more precisely, the inverse boundary value problem for the equation $-\Delta \psi + v\, \psi = 0$ on $D$, where $v$ is a smooth real-valued potential of conductivity type defined on a bounded planar domain $D$. The principal feature of this estimate is that it shows that the more a potential is smooth, the more its reconstruction is stable, and the stability varies exponentially with respect to the smoothness (in a sense to be made precise). As a corollary we obtain a similar estimate for the Calderón problem for the electrical impedance tomography.
Fichier principal
Vignette du fichier
articleV2.pdf (204.74 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00628403 , version 1 (03-10-2011)
hal-00628403 , version 2 (11-03-2012)

Identifiants

Citer

Matteo Santacesaria. New global stability estimates for the Calderón problem in two dimensions. Journal of the Institute of Mathematics of Jussieu, 2013, 12 (3), pp.553-569. ⟨10.1017/S147474801200076X⟩. ⟨hal-00628403v2⟩
138 Consultations
106 Téléchargements

Altmetric

Partager

More