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NEW GLOBAL STABILITY ESTIMATES FOR THE
CALDERÓN PROBLEM IN TWO DIMENSIONS

MATTEO SANTACESARIA

Abstract. We prove a new global stability estimate for the Gel’fand-

Calderón inverse problem on a two-dimensional bounded domain. Specif-

ically, the inverse boundary value problem for the equation −∆ψ+v ψ =

0 on D is analysed, where v is a smooth real-valued potential of conduc-

tivity type defined on a bounded planar domain D. The main feature of

this estimate is that it shows that the more a potential is smooth, the

more its reconstruction is stable. Furthermore, the stability is proven to

depend exponentially on the smoothness, in a sense to be made precise.

The same techniques yield a similar estimate for the Calderón problem

for the electrical impedance tomography.

1. Introduction

Let D ⊂ R
2 be a bounded domain equipped with a potential given by a

function v ∈ L∞(D). The corresponding Dirichlet-to-Neumann map is the

operator Φ : H1/2(∂D) → H−1/2(∂D), defined by

(1.1) Φ(f) =
∂u

∂ν

∣

∣

∣

∣

∂D

,

where f ∈ H1/2(∂D), ν is the outer normal of ∂D, and u is the H1(D)-

solution of the Dirichlet problem

(1.2) (−∆+ v)u = 0 on D, u|∂D = f.

Here we have assumed that

(1.3) 0 is not a Dirichlet eigenvalue for the operator −∆+ v in D.

The following inverse boundary value problem arises from this construc-

tion:

Problem 1. Given Φ, find v on D.

This problem can be considered as the Gel’fand inverse boundary value

problem for the Schrödinger equation at zero energy (see [10], [17]) as well
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2 MATTEO SANTACESARIA

as a generalization of the Calderón problem for the electrical impedance

tomography (see [7], [17]), in two dimensions.

It is convenient to recall how the above problem generalises the inverse

conductivity problem proposed by Calderón. In the latter, D is a body

equipped with an isotropic conductivity σ(x) ∈ L∞(D) (with σ ≥ σmin > 0),

v(x) =
∆σ1/2(x)

σ1/2(x)
, x ∈ D,(1.4)

Φ = σ−1/2

(

Λσ−1/2 +
∂σ1/2

∂ν

)

,(1.5)

where σ−1/2, ∂σ1/2/∂ν in (1.5) denote the multiplication operators by the

functions σ−1/2|∂D, ∂σ1/2/∂ν|∂D, respectively and Λ is the voltage-to-current

map on ∂D, defined as

(1.6) Λf = σ
∂u

∂ν

∣

∣

∣

∣

∂D

,

where f ∈ H1/2(∂D), ν is the outer normal of ∂D, and u is the H1(D)-

solution of the Dirichlet problem

(1.7) div(σ∇u) = 0 on D, u|∂D = f.

Indeed, the substitution u = ũσ−1/2 in (1.7) yields (−∆+v)ũ = 0 in D with

v given by (1.4). The following problem is called the Calderón problem:

Problem 2. Given Λ, find σ on D.

We remark that Problems 1 and 2 are not overdetermined, in the sense that

we consider the reconstruction of a real-valued function of two variables from

real-valued inverse problem data dependent on two variables. In addition,

the history of inverse problems for the two-dimensional Schrödinger equation

at fixed energy goes back to [8].

There are several questions to be answered in these inverse problems: to

prove the uniqueness of their solutions (e.g. the injectivity of the map v → Φ

for Problem 1), the reconstruction and the stability of the inverse map.

In this paper we study interior stability estimates for the two problems.

Let us consider, for instance, Problem 1 with a potential of conductivity

type. We want to prove that given two Dirichlet-to-Neumann operators,

respectively Φ1 and Φ2, corresponding to potentials, respectively v1 and v2

on D, we have that

‖v1 − v2‖L∞(D) ≤ ω (‖Φ1 − Φ2‖H1/2→H−1/2) ,
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where the function ω(t) → 0 as fast as possible as t → 0. For Problem 2

similar estimates are considered.

There is a wide literature on the Gel’fand-Calderón inverse problem. In the

case of complex-valued potentials the global injectivity of the map v → Φ

was firstly proved in [17] for D ⊂ R
d with d ≥ 3 and in [6] for d = 2

with v ∈ Lp: in particular, these results were obtained by the use of global

reconstructions developed in the same papers. A global stability estimate

for Problem 1 and 2 for d ≥ 3 was first found by Alessandrini in [1]; this

result was recently improved in [21]. In the two-dimensional case the first

global stability estimate for Problem 1 was given in [23].

Global results for Problem 2 in the two dimensional case have been found

much earlier than for Problem 1. In particular, global uniqueness was first

proved in [16] for conductivities in the W 2,p(D) class (p > 1) and after

in [2] for L∞ conductivities. The first global stability result was given in

[14], where a logarithmic estimate is obtained for conductivities with two

continuous derivatives. This result was improved in [4], where the same kind

of estimate is obtained for Hölder continuous conductivities.

The research line delineated above is devoted to prove stability estimates

for the least regular potentials/conductivities possible. Here, instead, we

focus on the opposite situation, i.e. smooth potentials/conductivities, and

try to answer another question: how the stability estimates vary with respect

to the smoothness of the potentials/conductivities.

The results, detailed below, also constitute a progress for the case of non-

smooth potentials: they indicate stability dependence of the smooth part of

a singular potential with respect to boundary value data.

We will assume for simplicity that

D is an open bounded domain in R
2, ∂D ∈ C2,

v ∈Wm,1(R2) for some m > 2, supp v ⊂ D,
(1.8)

where

Wm,1(R2) = {v : ∂Jv ∈ L1(R2), |J | ≤ m}, m ∈ N ∪ {0},(1.9)

J ∈ (N ∪ {0})2, |J | = J1 + J2, ∂Jv(x) =
∂|J |v(x)

∂xJ11 ∂x
J2
2

.

Let

‖v‖m,1 = max
|J |≤m

‖∂Jv‖L1(R2).
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The last (strong) hypothesis is that we will consider only potentials of con-

ductivity type, i.e.

(1.10) v =
∆σ1/2

σ1/2
, for some σ ∈ L∞(D), with σ ≥ σmin > 0.

The main results are the following.

Theorem 1.1. Let the conditions (1.3), (1.8), (1.10) hold for the potentials

v1, v2, where D is fixed, and let Φ1 , Φ2 be the corresponding Dirichlet-to-

Neumann operators. Let ‖vj‖m,1 ≤ N , j = 1, 2, for some N > 0. Then

there exists a constant C = C(D,N,m) such that

(1.11) ‖v2 − v1‖L∞(D) ≤ C(log(3 + ‖Φ2 − Φ1‖
−1))−α,

where α = m− 2 and ‖Φ2 − Φ1‖ = ‖Φ2 − Φ1‖H1/2→H−1/2.

Theorem 1.2. Let σ1, σ2 be two isotropic conductivities such that ∆(σ
1/2
j )/σ

1/2
j

satisfies conditions (1.8), where D is fixed and 0 < σmin ≤ σj ≤ σmax < +∞

for j = 1, 2 and some constants σmin and σmax. Let Λ1 , Λ2 be the cor-

responding Dirichlet-to-Neumann operators and ‖∆(σ
1/2
j )/σ

1/2
j ‖m,1 ≤ N ,

j = 1, 2, for some N > 0. We suppose, for simplicity, that supp (σj −

1) ⊂ D for j = 1, 2. Then, for any α < m there exists a constant C =

C(D,N, σmin, σmax,m, α) such that

(1.12) ‖σ2 − σ1‖L∞(D) ≤ C(log(3 + ‖Λ2 − Λ1‖
−1))−α,

where ‖Λ2 − Λ1‖ = ‖Λ2 − Λ1‖H1/2→H−1/2 .

The main feature of these estimates is that, as m → +∞, we have

α→ +∞. In addition we would like to mention that, under the assumptions

of Theorems 1.1 and 1.2, according to instability estimates of Mandache [15]

and Isaev [13], our results are almost optimal. Note that, in the linear ap-

proximation near the zero potential, Theorem 1.1 (without condition (1.10))

was proved in [22]. In dimension d ≥ 3 a global stability estimate similar to

our result (with respect to dependence on smoothness) was proved in [21].

The proof of Theorem 1.1 relies on the ∂̄-techniques introduced by Beals–

Coifman [5], Henkin–R. Novikov [12], Grinevich–S. Novikov [11] and devel-

oped by R. Novikov [17] and Nachman [16] for solving the Calderón problem

in two dimensions.

The Novikov–Nachman method starts with the construction of a special

family of solutions ψ(x, λ) of equation (1.2), which was originally introduced

by Faddeev in [9]. These solutions have an exponential behaviour depending

on the complex parameter λ and they are constructed via some function

µ(x, λ) (see (2.5)). One of the most important property of µ(x, λ) is that it
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satisfies a ∂̄-equation with respect to the variable λ (see equation (2.8)), in

which appears the so-called Faddeev generalized scattering amplitude h(λ)

(defined in (2.6)). On the contrary, if one knows h(λ) for every λ ∈ C,

it is possible to recover µ(x, λ) via this ∂̄-equation. Starting from these

arguments we will prove that the map h(λ) → µ(z, λ) satisfies an Hölder

condition, uniformly in the space variable z. This is done in Section 4.

Another part of the method relates the scattering amplitude h(λ) to the

Dirichlet-to-Neumann operator Φ. In the present paper this is done using

the Alessandrini identity (see [1]) and an estimate of h(λ) for high values of

|λ| given in [19]. We find that the map Φ → h has logarithmic stability in

some natural norm (Proposition 3.3). This is explained in Section 3.

The final part of the method for the two problems is quite different. For

Problem 2, in order to recover σ(x) from µ(x, λ), we use a limit found for the

first time in [16]. Instead, for Problem 1, we use an explicit formula for v(x)

which involves the scattering amplitude h(λ), µ(x, λ) and its first (complex)

derivative with respect to z = x1 + ix2 (see formula (5.3)). The two results

are presented in section 5 and yield the proofs of Theorems 1.1 and 1.2.

This work was fulfilled in the framework of researches under the direction

of R. G. Novikov.

2. Preliminaries

In this section we recall some definitions and properties of the Faddeev

functions, the above-mentioned family of solutions of equation (1.2), which

will be used throughout all the paper.

Following [16], we fix some 1 < p < 2 and define ψ(x, k) to be the solution

(when it exists unique) of

(2.1) (−∆+ v)ψ(x, k) = 0 in R
2,

with e−ixkψ(x, k) − 1 ∈ W 1,p̃(R2) = {u : ∂Ju ∈ Lp̃(R2), |J | ≤ 1}, where

x = (x1, x2) ∈ R
2, k = (k1, k2) ∈ V ⊂ C

2,

V = {k ∈ C
2 : k2 = k21 + k22 = 0}(2.2)

and

(2.3)
1

p̃
=

1

p
−

1

2
.

The variety V can be written as {(λ, iλ) : λ ∈ C} ∪ {(λ,−iλ) : λ ∈ C}. We

henceforth denote ψ(x, (λ, iλ)) by ψ(x, λ) and observe that, since v is real-

valued, uniqueness for (2.1) yields ψ(x, (−λ̄, iλ̄)) = ψ(x, (λ, iλ)) = ψ(x, λ)

so that, for reconstruction and stability purpose, it is sufficient to work on

the sheet k = (λ, iλ).
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We now identify R
2 with C and use the coordinates z = x1 + ix2, z̄ =

x1 − ix2,

∂

∂z
=

1

2

(

∂

∂x1
− i

∂

∂x2

)

,
∂

∂z̄
=

1

2

(

∂

∂x1
+ i

∂

∂x2

)

,

where (x1, x2) ∈ R
2.

Then we define

ψ(z, λ) = ψ(x, λ),(2.4)

µ(z, λ) = e−izλψ(z, λ),(2.5)

h(λ) =

∫

D
eiz̄λ̄v(z)ψ(z, λ)dRez dImz,(2.6)

for z, λ ∈ C.

Throughout all the paper c(α, β, . . .) is a positive constant depending on

parameters α, β, . . .

We now restate some fundamental results about Faddeev functions. In

the following statement ψ0 denotes σ1/2.

Proposition 2.1 (see [16]). Let D ⊂ R
2 be an open bounded domain with C2

boundary, v ∈ Lp(R2), 1 < p < 2, supp v ⊂ D, ‖v‖Lp(R2) ≤ N , be such that

there exists a real-valued ψ0 ∈ L∞(R2) with v = (∆ψ0)/ψ0, ψ0(x) ≥ c0 > 0

and ψ0 ≡ 1 outside D. Then, for any λ ∈ C there is a unique solution

ψ(z, λ) of (2.1) with e−izλψ(·, λ) − 1 in Lp̃ ∩ L∞ (p̃ is defined in (2.3)).

Furthermore, e−izλψ(·, λ) − 1 ∈W 1,p̃(R2) and

(2.7) ‖e−izλψ(·, λ) − 1‖W s,p̃ ≤ c(p, s)N |λ|s−1,

for 0 ≤ s ≤ 1 and λ sufficiently large.

The function µ(z, λ) defined in (2.5) satisfies the equation

(2.8)
∂µ(z, λ)

∂λ̄
=

1

4πλ̄
h(λ)e−λ(z)µ(z, λ), z, λ ∈ C,

in the W 1,p̃ topology, where h(λ) is defined in (2.6) and the function e−λ(z)

is defined as follows:

(2.9) eλ(z) = ei(zλ+z̄λ̄).

In addition, the functions h(λ) and µ(z, λ) satisfy
∥

∥

∥

∥

h(λ)

λ̄

∥

∥

∥

∥

Lr(R2)

≤ c(r,N), for all r ∈ (p̃′, p̃),
1

p̃
+

1

p̃′
= 1,(2.10)

sup
z∈C

‖µ(z, ·) − 1‖Lr(C) ≤ c(r,D,N), for all r ∈ (p′,∞](2.11)
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and

|h(λ)| ≤ c(p,D,N)|λ|ε,(2.12)

‖µ(·, λ) − ψ0‖W 1,p̃ ≤ c(p,D,N)|λ|ε,(2.13)

for λ ≤ λ0(p,D,N) and 0 < ε < 2
p′ , where 1

p + 1
p′ = 1.

Remark. Equation (2.8) means that µ is a generalised analytic function in

λ ∈ C (see [24]). In two-dimensional inverse scattering for the Schrödinger

equation, the theory of generalised analytic functions was used for the first

time in [11].

We recall that if v ∈Wm,1(R2) with supp v ⊂ D, then ‖v̂‖m < +∞, where

v̂(p) = (2π)−2

∫

R2

eipxv(x)dx, p ∈ C
2,(2.14)

‖u‖m = sup
p∈R2

|(1 + |p|2)m/2u(p)|,(2.15)

for a test function u.

In addition, if v ∈ Wm,1(R2) with supp v ⊂ D and m > 2, we have, by

Sobolev embedding, that

(2.16) ‖v‖L∞(D) ≤ c(D)‖v‖m,1,

so, in particular, the hypothesis v ∈ Lp(R2), supp v ⊂ D, in the statement

of Proposition 2.1 is satisfied for every 1 < p < 2 (since D is bounded).

The following lemma is a variation of a result in [19]:

Lemma 2.2. Under the assumption (1.8), there exists R = R(m, ‖v̂‖m) > 0

such that

(2.17) |h(λ)| ≤ 8π2‖v̂‖m(1 + 4|λ|2)−m/2, for |λ| > R.

Proof. We consider the function H(k, p) defined as

(2.18) H(k, p) =
1

(2π)2

∫

R2

ei(p−k)xv(x)ψ(x, k)dx,

for k ∈ V (where V is defined in (2.2)), p ∈ R
2 and ψ(x, k) as defined at the

beginning of this section.

We deduce that h(λ) = (2π)2H(k(λ), k(λ) + k(λ)), for k(λ) = (λ, iλ). By

[19, Corollary 1.1] we have

(2.19) |H(k, p)| ≤ 2‖v̂‖m(1 + p2)−m/2 for |λ| > R,

for R = R(m, ‖v̂‖m) > 0 and then the proof follows. �

We restate [3, Lemma 2.6], which will be useful in section 4.
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Lemma 2.3 ([3]). Let a ∈ Ls1(R2) ∩ Ls2(R2), 1 < s1 < 2 < s2 < ∞ and

b ∈ Ls(R2), 1 < s < 2. Assume u is a function in Ls̃(R2), with s̃ defined as

in (2.3), which satisfies

(2.20)
∂u(λ)

∂λ̄
= a(λ)ū(λ) + b(λ), λ ∈ C.

Then there exists c > 0 such that

(2.21) ‖u‖Ls̃ ≤ c‖b‖Ls exp(c(‖a‖Ls1 + ‖a‖Ls2 )).

We will make also use of the well-known Hölder’s inequality, which we

recall in a special case: for f ∈ Lp(C), g ∈ Lq(C) such that 1 ≤ p, q ≤ ∞,

1 ≤ r <∞, 1/p+ 1/q = 1/r, we have

‖fg‖Lr(C) ≤ ‖f‖Lp(C)‖g‖Lq(C).

3. From Φ to h(λ)

Lemma 3.1. Let the condition (1.8) holds. Then we have, for p ≥ 1,
∥

∥

∥

∥

h(λ)

λ̄

∥

∥

∥

∥

Lp(|λ|>R)

≤ c(p,m)‖v̂‖m
1

Rm+1−2/p
,(3.1)

‖h‖Lp(|λ|>R) ≤ c(p,m)‖v̂‖m
1

Rm−2/p
,(3.2)

where R is as in Lemma 2.2.

Proof. It’s a corollary of Lemma 2.2. Indeed we have
∥

∥

∥

∥

h(λ)

λ̄

∥

∥

∥

∥

p

Lp(|λ|>R)

≤ c‖v̂‖pm

∫

r>R
r1−mp−pdr =

c(p,m)‖v̂‖pm

R(m+1)p−2
,(3.3)

which gives (3.1). The proof of (3.2) is analogous. �

Lemma 3.2. Let D ⊂ {x ∈ R
2 : |x| ≤ l}, v1, v2 be two potentials satisfy-

ing (1.3), (1.8), (1.10), let Φ1,Φ2 the corresponding Dirichlet-to-Neumann

operator and h1, h2 the corresponding generalised scattering amplitude. Let

‖vj‖m,1 ≤ N , j = 1, 2. Then we have

(3.4) |h2(λ)− h1(λ)| ≤ c(D,N)e2l|λ|‖Φ2 − Φ1‖H1/2→H−1/2 , λ ∈ C.

Proof. We have the following identity:

(3.5) h2(λ)− h1(λ) =

∫

∂D
ψ1(z, λ)(Φ2 − Φ1)ψ2(z, λ)|dz|,

where ψj(z, λ) are the Faddeev functions associated to the potential vj , j =

1, 2. This identity is a particular case of the one in [20, Theorem 1]: we refer

to that paper for a proof.
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From this identity we have:

|h2(λ)− h1(λ)| ≤ ‖ψ1(·, λ)‖H1/2(∂D)‖Φ2 − Φ1‖H1/2→H−1/2‖ψ2(·, λ)‖H1/2(∂D).

(3.6)

Now take p̃ > 2 and use the trace theorem to get

‖ψj(·, λ)‖H1/2(∂D) ≤ C‖ψj(·, λ)‖W 1,p̃(D) ≤ Cel|λ|‖e−izλψj(·, λ)‖W 1,p̃(D)

≤ Cel|λ|
(

‖e−izλψj(·, λ) − 1‖W 1,p̃(D) + ‖1‖W 1,p̃(D)

)

, j = 1, 2,

which from (2.7) and (2.11) is bounded by C(D,N)el|λ|. These estimates

together with (3.6) give (3.4). �

The main results of this section are the following propositions:

Proposition 3.3. Let v1, v2 be two potentials satisfying (1.3), (1.8), (1.10),

let Φ1,Φ2 the corresponding Dirichlet-to-Neumann operator and h1, h2 the

corresponding generalised scattering amplitude. Let 0 < ε < 1, 1 < p < 2
1−ε

and ‖vj‖m,1 ≤ N , j = 1, 2. Then there exists a constant c = c(D,N,m, p)

such that

(3.7)

∥

∥

∥

∥

h2(λ)− h1(λ)

λ̄

∥

∥

∥

∥

Lp(C)

≤ c log(3 + ‖Φ2 − Φ1‖
−1
H1/2→H−1/2)

−(m+1−2/p).

Proposition 3.4. Let v1, v2,Φ1,Φ2, h1, h2 be as in Proposition 3.3. Let p ≥

1 and ‖vj‖m,1 ≤ N , j = 1, 2. Then there exists a constant c = c(D,N,m, p)

such that

(3.8) ‖h2 − h1‖Lp(C) ≤ c log(3 + ‖Φ2 −Φ1‖
−1
H1/2→H−1/2)

−(m−2/p).

Proof of Proposition 3.3. Let choose a, b > 0, a close to 0 and b big to be

determined and let

(3.9) δ = ‖Φ2 −Φ1‖H1/2→H−1/2 .

We split down the left term of (3.7) as follows:
∥

∥

∥

∥

h2(λ)− h1(λ)

λ̄

∥

∥

∥

∥

Lp(C)

≤

∥

∥

∥

∥

h2(λ)− h1(λ)

λ̄

∥

∥

∥

∥

Lp(|λ|<a)

+

∥

∥

∥

∥

h2(λ)− h1(λ)

λ̄

∥

∥

∥

∥

Lp(a<|λ|<b)

+

∥

∥

∥

∥

h2(λ)− h1(λ)

λ̄

∥

∥

∥

∥

Lp(|λ|>b)

.

From (2.12) we obtain

∥

∥

∥

∥

h2(λ)− h1(λ)

λ̄

∥

∥

∥

∥

Lp(|λ|<a)

≤ c(D,N, p)

(

∫

|λ|<a
|λ|(ε−1)pdReλdImλ

)
1

p

(3.10)

= c(D,N, p)aε−1+2/p.
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From Lemma 3.2 and (3.9) we get

(3.11)

∥

∥

∥

∥

h2(λ)− h1(λ)

λ̄

∥

∥

∥

∥

Lp(a<|λ|<b)

≤ c(D,N)

(

δ

a1−2/p
+ δe2lb

)

.

From Lemma 3.1

(3.12)

∥

∥

∥

∥

h2(λ)− h1(λ)

λ̄

∥

∥

∥

∥

Lp(|λ|>b)

≤
c(N)

bm+1−2/p
.

We now define

(3.13) a = log(3 + δ−1)
−m+1−2/p

ε−1+2/p , b = β log(3 + δ−1),

for 0 < β < 1/(2l), in order to have (3.10) and (3.12) of the order log(3 +

δ−1)−(m+1−2/p). We also choose δ̄ < 1 such that for every δ ≤ δ̄, a is

sufficiently small in order to have (2.12) (which yields (3.10)), b ≥ R (with

R as in Lemma 2.2) and also

(3.14)
δ

a1−2/p
= δ log(3 + δ−1)

(

m+1−2/p
ε−1+2/p

)

(1−2/p)
< log(3 + δ−1)−(m+1−2/p).

Thus we obtain
∥

∥

∥

∥

h2(λ)− h1(λ)

λ̄

∥

∥

∥

∥

Lp(C)

≤
c(D,N, p)

log(3 + δ−1)m+1−2/p
(3.15)

+ c(D,N)δ(3 + δ−1)2lβ,

for δ ≤ δ̄, 0 < β < 1/(2l). As δ(3+ δ−1)2lβ → 0 for δ → 0 more rapidly than

the other term, we obtain that

(3.16)

∥

∥

∥

∥

h2(λ)− h1(λ)

λ̄

∥

∥

∥

∥

Lp(C)

≤
c(D,N,m, p, β)

log(3 + δ−1)m+1−2/p
,

for δ ≤ δ̄, 0 < β < 1/(2l).

Estimate (3.16) for general δ (with modified constant) follows from (3.16)

for δ ≤ δ̄ and the property (2.10) of the scattering amplitude. This completes

the proof of Proposition 3.3. �

Proof of Proposition 3.4. We follow almost the same scheme as in the proof

of Proposition 3.3. Let choose b > 0 big to be determined and let

(3.17) δ = ‖Φ2 −Φ1‖H1/2→H−1/2 .

We split down the left term of (3.8) as follows:

‖h2 − h1‖Lp(C) ≤ ‖h2 − h1‖Lp(|λ|<b) + ‖h2 − h1‖Lp(|λ|≥b).

From Lemma 3.2 we obtain

(3.18) ‖h2 − h1‖Lp(|λ|<b) ≤ c(D,N, p)δb1/pe2lb,
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and from (3.2)

(3.19) ‖h2 − h1‖Lp(|λ|≥b) ≤ c(N, p,m)
1

bm−2/p
.

Define b = β log(3 + δ−1) for 0 < β < 1/(2l). Let δ̄ < 1 such that for δ ≤ δ̄

we have that b > R, where R is defined in Lemma 2.2.

Then we have, for δ ≤ δ̄,

‖h2 − h1‖Lp(C) ≤ c(D,N,m, p)δ(1 + δ−1)2lβ(β log(3 + δ−1))1/p

+ c(N,m, p)(log(3 + δ−1))−(m−2/p).

Since 2lβ < 1, we have that

δ(1 + δ−1)2lβ(β log(3 + δ−1))1/p → 0 for δ → 0

more rapidly than the other term. Thus

(3.20) ‖h2 − h1‖Lp(C) ≤ c(D,N,m, p, β)(log(3 + δ−1))−(m−2/p),

for δ ≤ δ̄, 0 < β < 1/(2l).

Estimate (3.20) for general δ (with modified constant) follows from (3.20)

for δ ≤ δ̄ and the Lp-boundedness of the scattering amplitude (this because

it is continuous and decays at infinity like in Lemma 3.1). This completes

the proof of Proposition 3.4. �

4. Estimates on the Faddeev functions

Lemma 4.1. Let v1, v2 be two potentials satisfying (1.3), (1.8), (1.10), with

‖vj‖m,1 ≤ N , h1, h2 the corresponding scattering amplitude and µ1(z, λ), µ2(z, λ)

the corresponding Faddeev functions. Let 1 < s < 2, and s̃ be as in (2.3).

Then

sup
z∈C

‖µ2(z, ·) − µ1(z, ·)‖Ls̃(C) ≤ c(D,N, s)

∥

∥

∥

∥

h2(λ)− h1(λ)

λ̄

∥

∥

∥

∥

Ls(C)

,(4.1)

sup
z∈C

∥

∥

∥

∥

∂µ2(z, ·)

∂z
−
∂µ1(z, ·)

∂z

∥

∥

∥

∥

Ls̃(C)

≤ c(D,N, s)

[

∥

∥

∥

∥

h2(λ)− h1(λ)

λ̄

∥

∥

∥

∥

Ls(C)

(4.2)

+ ‖h2 − h1‖Ls(C)

]

Proof. We begin with the proof of (4.1). Let

ν(z, λ) = µ2(z, λ)− µ1(z, λ).(4.3)
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From the ∂̄-equation (2.8) we deduce that ν satisfies the following non-

homogeneous ∂̄-equation:

∂

∂λ̄
ν(z, λ) =

e−λ(z)

4π

(

h1(λ)

λ̄
ν(z, λ) +

h2(λ)− h1(λ)

λ̄
µ2(z, λ)

)

,(4.4)

for λ ∈ C, where e−λ(z) is defined in (2.9). Note that since, by Sobolev

embedding, v ∈ L∞(D) ⊂ Ls(D), we have that ν(z, ·) ∈ Ls̃(C) for every

s̃ > 2 (see (2.11)). In addition, from Proposition 2.1 (see (2.10)) we have

that h(λ)/λ̄ ∈ Lp(C), for 1 < p < ∞. Then it is possible to use Lemma 2.3

in order to obtain

‖ν(z, ·)‖Ls̃ ≤ c(D,N, s)

∥

∥

∥

∥

µ2(z, λ)
h2(λ)− h1(λ)

λ̄

∥

∥

∥

∥

Ls(C)

≤ c(D,N, s) sup
z∈C

‖µ2(z, ·)‖L∞

∥

∥

∥

∥

h2(λ)− h1(λ)

λ̄

∥

∥

∥

∥

Ls(C)

≤ c(D,N, s)

∥

∥

∥

∥

h2(λ)− h1(λ)

λ̄

∥

∥

∥

∥

Ls(C)

,

where we used again the property (2.11) of µ2(z, λ).

Now we pass to (4.2). To simplify notations we write, for z, λ ∈ C,

µjz(z, λ) =
∂µj(z, λ)

∂z
, µjz̄(z, λ) =

∂µj(z, λ)

∂z̄
, j = 1, 2.

From the ∂̄-equation (2.8) we have that µjz and µjz̄ satisfy the following

system of non-homogeneous ∂̄-equations, for j = 1, 2:

∂

∂λ̄
µjz(z, λ) =

e−λ(z)

4π

hj(λ)

λ̄

(

µjz̄(z, λ) − iλµj(z, λ)
)

,

∂

∂λ̄
µjz̄(z, λ) =

e−λ(z)

4π

hj(λ)

λ̄

(

µjz(z, λ) − iλ̄µj(z, λ)
)

.

Define now µj±(z, λ) = µjz(z, λ)±µ
j
z̄(z, λ), for j = 1, 2. Then they satisfy the

following two non-homogeneous ∂̄-equations:

∂

∂λ̄
µj±(z, λ) = ±

e−λ(z)

4π

hj(λ)

λ̄

(

µj±(z, λ)∓ i(λ± λ̄)µj(z, λ)
)

.

Finally define τ±(z, λ) = µ2±(z, λ) − µ1±(z, λ). They satisfy the two non-

homogeneous ∂̄-equations below:

∂

∂λ̄
τ±(z, λ) = ±

e−λ(z)

4π

[

h1(λ)

λ̄
τ±(z, λ) +

h2(λ)− h1(λ)

λ̄
µ2±(z, λ)

∓ i
λ± λ̄

λ̄

(

(h2(λ)− h1(λ))µ2(z, λ) + h1(λ)ν(z, λ)
)

]

,

where ν(z, λ) was defined in (4.3).
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Now remark that by [19, Lemma 2.1] and regularity assumptions on the

potentials we have that µjz(z, ·), µ
j
z̄(z, ·) ∈ Ls̃(C) ∩ L∞(C) for any s̃ > 2,

j = 1, 2. This, in particular, yields τ±(z, ·) ∈ Ls̃(C). These arguments, along

with the above remarks on the Lp boundedness of hj(λ)/λ̄, make possible to

use Lemma 2.3, which gives

‖τ±(z, ·)‖Ls̃(C) ≤ c(D,N, s)

[

∥

∥

∥

∥

h2(λ)− h1(λ)

λ̄
µ2±(z, ·)

∥

∥

∥

∥

Ls(C)

+ ‖(h2(·)− h1(·))µ2(z, ·)‖Ls(C) + ‖h1(·)ν(z, ·)‖Ls(C)

]

≤ c(D,N, s)

[

∥

∥

∥

∥

h2(λ)− h1(λ)

λ̄

∥

∥

∥

∥

Ls(C)

+ ‖h2 − h1‖Ls(C)

+ ‖h1‖L2(C)‖ν(z, ·)‖Ls̃(C)

]

≤ c(D,N, s)

[

∥

∥

∥

∥

h2(λ)− h1(λ)

λ̄

∥

∥

∥

∥

Ls(C)

+ ‖h2 − h1‖Ls(C)

]

,

where we used Hölder’s inequality (since 1/s = 1/2 + 1/s̃) and estimate

(4.1). The proof of (4.2) now follows from this last inequality and the fact

that µ2z − µ1z =
1
2(τ+ − τ−). �

Remark. We also have proved that

sup
z∈C

∥

∥

∥

∥

∂µ2(z, ·)

∂z̄
−
∂µ1(z, ·)

∂z̄

∥

∥

∥

∥

Ls̃(C)

≤ c(D,N, s)

[

∥

∥

∥

∥

h2(λ)− h1(λ)

λ̄

∥

∥

∥

∥

Ls(C)

+ ‖h2 − h1‖Ls(C)

]

.

We will need the following consequence of Lemma 4.1.

Lemma 4.2. Let v1, v2 be two potentials satisfying (1.3), (1.8), (1.10), with

‖vj‖m,1 ≤ N . Let h1, h2 be the corresponding scattering amplitude and

µ1(z, λ), µ2(z, λ) the corresponding Faddeev functions. Let p, p′ such that

1 < p < 2 < p′ <∞, 1/p + 1/p′ = 1. Then

(4.5) ‖µ2(·, 0) − µ1(·, 0)‖L∞(D) ≤ c(D,N, p)

∥

∥

∥

∥

h2(λ)− h1(λ)

λ̄

∥

∥

∥

∥

Lp(C)∩Lp′ (C)

.

Proof. We recall again that if v ∈ Wm,1(R2), m > 2, with supp v ⊂ D then

v ∈ Lp(D) for p ∈ [1,∞]; in particular, from Proposition 2.1, this yields

h(λ)/λ̄ ∈ Lp(C), for 1 < p <∞.

We write, as in the preceding proof,

ν(z, λ) = µ2(z, λ)− µ1(z, λ),(4.6)
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which satisfy the non-homogeneous ∂̄-equations (4.4). From this equation

we obtain

|ν(z, 0)| =
1

π

∣

∣

∣

∣

∫

C

e−λ(z)

4πλ

h1(λ)

λ̄
ν(z, λ)dReλdImλ(4.7)

+

∫

C

e−λ(z)

4πλ

h2(λ)− h1(λ)

λ̄
µ2(z, λ)dReλdImλ

∣

∣

∣

∣

≤
1

4π2
sup
z∈C

‖ν(z, ·)‖Lr

∥

∥

∥

∥

h1(λ)

λλ̄

∥

∥

∥

∥

Lr′

+
1

4π2
sup
z∈C

‖µ2(z, ·)‖L∞

∥

∥

∥

∥

h2(λ)− h1(λ)

λλ̄

∥

∥

∥

∥

L1

where 1/r + 1/r′ = 1, 1 < r′ < 2 < r <∞. The number s = 2r/(r + 2) can

be chosen s < 2 and as close to 2 as wanted, by taking r big enough.

Then
∥

∥

∥

∥

h1(λ)

λλ̄

∥

∥

∥

∥

Lr′(|λ|<R)

≤

∥

∥

∥

∥

h1(λ)

λ̄

∥

∥

∥

∥

Lp

∥

∥

∥

∥

1

λ

∥

∥

∥

∥

Lq(|λ|<R)

≤ c(N, r),(4.8)

where we have chosen p > 2 such that
∥

∥h1(λ)/λ̄
∥

∥

Lp ≤ c(N, p) from (2.10)

and also, since 1/q = 1/r′ − 1/p = 1− 1/r − 1/p, q can be chosen less than

2 by taking r big enough depending on p. With the same choice of p, q we

also obtain
∥

∥

∥

∥

h1(λ)

λλ̄

∥

∥

∥

∥

Lr′(|λ|>R)

≤

∥

∥

∥

∥

h1(λ)

λ̄

∥

∥

∥

∥

Lq

∥

∥

∥

∥

1

λ

∥

∥

∥

∥

Lp(|λ|>R)

≤ c(N, r).(4.9)

From Lemma 4.1 with r = s̃ we get

sup
z∈C

‖ν(z, ·)‖Lr ≤ c(D,N, r)

∥

∥

∥

∥

h2(λ)− h1(λ)

λ̄

∥

∥

∥

∥

Ls(C)

,(4.10)

and from (2.11)

(4.11) sup
z,λ∈C

|µ2(z, λ)| ≤ c(D,N).

Finally

∥

∥

∥

∥

h2(λ)− h1(λ)

λλ̄

∥

∥

∥

∥

L1

≤

∥

∥

∥

∥

1

λ

∥

∥

∥

∥

Lp(|λ|>R)

∥

∥

∥

∥

h2(λ)− h1(λ)

λ̄

∥

∥

∥

∥

Lp′
(4.12)

+

∥

∥

∥

∥

1

λ

∥

∥

∥

∥

Lp′(|λ|<R)

∥

∥

∥

∥

h2(λ)− h1(λ)

λ̄

∥

∥

∥

∥

Lp

,

by taking p′ = s and p such that 1/p + 1/p′ = 1. Now (4.5) follow from

(4.6)–(4.12); this finishes the proof of Lemma 4.2. �
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5. Proof of Theorems 1.1 and 1.2

Proof of Theorem 1.1. We begin with a remark, which take inspiration from

Problem 1 at non-zero energy (see, for instance, [18]).

Let v(z) be a potential which satisfies the hypothesis of Theorem 1.1 and

µ(z, λ) the corresponding Faddeev functions. Since µ(z, λ) satisfies (2.11),

the ∂̄-equation (2.8) and h(λ) decreases at infinity like in Lemma 2.2, it is

possible to write the following development:

(5.1) µ(z, λ) = 1 +
µ−1(z)

λ
+O

(

1

|λ|2

)

, λ→ ∞,

for some function µ−1(z). If we insert (5.1) into equation (2.1), for ψ(z, λ) =

eizλµ(z, λ), we obtain, letting λ→ ∞,

(5.2) v(z) = 4i
∂µ−1(z)

∂z̄
, z ∈ C.

We can write this in a more explicit form, using the following integral equa-

tion (a consequence of (2.8)):

µ(z, λ)− 1 =
1

8π2i

∫

C

h(λ′)

(λ′ − λ)λ̄′
e−λ′(z)µ(z, λ′)dλ′ dλ̄′.

By Lebesgue’s dominated convergence (using (2.12)) we obtain

µ−1(z) = −
1

8π2i

∫

C

h(λ)

λ̄
e−λ(z)µ(z, λ)dλ dλ̄,

and the explicit formula

(5.3) v(z) =
1

2π2

∫

C

e−λ(z)

(

ih(λ)µ(z, λ) −
h(λ)

λ̄

(

∂µ(z, λ)

∂z

)

)

dλ dλ̄.

Formula (5.3) for v1 and v2 yields

v2(z)− v1(z) =
1

2π2

∫

C

e−λ(z)

[

i(h2(λ)− h1(λ))µ2(z, λ)

+ ih1(λ)(µ2(z, λ) − µ1(z, λ))

−
h2(λ)− h1(λ)

λ̄

(

∂µ2(z, λ)

∂z

)

−
h1(λ)

λ̄

(

∂µ2(z, λ)

∂z
−
∂µ1(z, λ)

∂z

)

]

dλ dλ̄.
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Then, using several times Hölder’s inequality, we find

|v2(z) − v1(z)| ≤
1

2π2

(

‖µ2(z, ·)‖L∞‖h2 − h1‖L1

+ ‖h1‖Lp̃′‖µ2(z, ·) − µ1(z, ·)‖Lp̃

+

∥

∥

∥

∥

h2(λ)− h1(λ)

λ̄

∥

∥

∥

∥

Lp

∥

∥

∥

∥

∂µ2(z, ·)

∂z

∥

∥

∥

∥

Lp′

+

∥

∥

∥

∥

h1(λ)

λ̄

∥

∥

∥

∥

Lp̃′

∥

∥

∥

∥

∂µ2(z, ·)

∂z
−
∂µ1(z, ·)

∂z

∥

∥

∥

∥

Lp̃

)

,

for 1 < p < 2, p̃ defined as in (2.3) and 1/p + 1/p′ = 1/p̃ + 1/p̃′ = 1. From

(2.11), (2.10), the continuity of hj and Lemma 2.2, [19, Lemma 2.1] (see the

end of the proof of Lemma 4.1 for more details), Lemma 4.1, Propositions

3.4 and 3.3 we finally obtain

‖v2 − v1‖L∞(D) ≤ c(D,N,m, p)

(

log(3 + ‖Φ2 − Φ1‖
−1
H1/2→H−1/2)

−(m−2)

+ log(3 + ‖Φ2 − Φ1‖
−1
H1/2→H−1/2)

−(m+1−2/p)

+ log(3 + ‖Φ2 − Φ1‖
−1
H1/2→H−1/2)

−(m−2/p)

)

≤ c(D,N,m, p) log(3 + ‖Φ2 − Φ1‖
−1
H1/2→H−1/2)

−(m−2).

This finishes the proof of Theorem 1.1. �

Proof of Theorem 1.2. We first extend σ on the whole plane by putting

σ(x) = 1 for x ∈ R
2 \ D (this extension is smooth by our hypothesis on

σ). Now since σj|∂D = 1 and
∂σj

∂ν |∂D = 0 for j = 1, 2, from (1.5) we deduce

that

(5.4) Φj = Λj , j = 1, 2.

In addition, from (2.13) we get

(5.5) lim
λ→0

µj(z, λ) = σ
1/2
j (z), j = 1, 2;

thus we obtain, using the fact that σj is bounded from above and below, for

j = 1, 2,

‖σ2 − σ1‖L∞(D) ≤ c(N)‖σ
1/2
2 − σ

1/2
1 ‖L∞(D)(5.6)

= c(N)‖µ2(·, 0) − µ1(·, 0)‖L∞(D).

Now fix α < m and take p such that

max

(

1,
2

m− α+ 1

)

< p < 2.
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From Lemma 4.2 we have

(5.7) ‖µ2(·, 0) − µ1(·, 0)‖L∞(D) ≤ c(D,N, p)

∥

∥

∥

∥

h2(λ)− h1(λ)

λ̄

∥

∥

∥

∥

Lp(C)∩Lp′ (C)

,

where 1/p + 1/p′ = 1. From Proposition 3.3

∥

∥

∥

∥

h2(λ)− h1(λ)

λ̄

∥

∥

∥

∥

Lp(C)∩Lp′ (C)

≤ c(D,N, p) log(3 + ‖Φ2 −Φ1‖
−1
H1/2→H−1/2)

−(m+1−2/p)

≤ c(D,N, p) log(3 + ‖Φ2 −Φ1‖
−1
H1/2→H−1/2)

−α

= c(D,N, p) log(3 + ‖Λ2 − Λ1‖
−1
H1/2→H−1/2)

−α,

from (5.4) and since α < m+ 1− 2
p . Theorem 1.2 is thus proved. �
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