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Introduction

Let D ⊂ R 2 be a bounded domain equipped with a potential given by a function v ∈ L ∞ (D). The corresponding Dirichlet-to-Neumann map is the operator Φ : H 1/2 (∂D) → H -1/2 (∂D), defined by (1.1) Φ(f ) = ∂u ∂ν ∂D ,

where f ∈ H 1/2 (∂D), ν is the outer normal of ∂D, and u is the H 1 (D)solution of the Dirichlet problem (1.2) (-∆ + v)u = 0 on D, u| ∂D = f.

Here we have assumed that (1.3) 0 is not a Dirichlet eigenvalue for the operator -∆ + v in D.

The following inverse boundary value problem arises from this construction:

Problem 1. Given Φ, find v on D.
This problem can be considered as the Gel'fand inverse boundary value problem for the Schrödinger equation at zero energy (see [START_REF]Gel'fand, Some aspects of functional analysis and algebra[END_REF], [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0, Funkt[END_REF]) as well as a generalization of the Calderón problem for the electrical impedance tomography (see [START_REF] Calderón | On an inverse boundary problem[END_REF], [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0, Funkt[END_REF]), in two dimensions.

It is convenient to recall how the above problem generalises the inverse conductivity problem proposed by Calderón. In the latter, D is a body equipped with an isotropic conductivity σ(x) ∈ L ∞ (D) (with σ ≥ σ min > 0),

v(x) = ∆σ 1/2 (x) σ 1/2 (x) , x ∈ D, (1.4) Φ = σ -1/2 Λσ -1/2 + ∂σ 1/2 ∂ν , (1.5) 
where σ -1/2 , ∂σ 1/2 /∂ν in (1.5) denote the multiplication operators by the functions σ -1/2 | ∂D , ∂σ 1/2 /∂ν| ∂D , respectively and Λ is the voltage-to-current map on ∂D, defined as (1.6) Λf = σ ∂u ∂ν ∂D ,

where f ∈ H 1/2 (∂D), ν is the outer normal of ∂D, and u is the H 1 (D)solution of the Dirichlet problem (1.7) div(σ∇u) = 0 on D, u| ∂D = f. Indeed, the substitution u = ũσ -1/2 in (1.7) yields (-∆ + v)ũ = 0 in D with v given by (1.4). The following problem is called the Calderón problem:

Problem 2. Given Λ, find σ on D.

We remark that Problems 1 and 2 are not overdetermined, in the sense that we consider the reconstruction of a real-valued function of two variables from real-valued inverse problem data dependent on two variables. In addition, the history of inverse problems for the two-dimensional Schrödinger equation at fixed energy goes back to [START_REF] Dubrovin | The Schrödinger equation in a periodic field and Riemann surfaces[END_REF].

There are several questions to be answered in these inverse problems: to prove the uniqueness of their solutions (e.g. the injectivity of the map v → Φ for Problem 1), the reconstruction and the stability of the inverse map.

In this paper we study interior stability estimates for the two problems. Let us consider, for instance, Problem 1 with a potential of conductivity type. We want to prove that given two Dirichlet-to-Neumann operators, respectively Φ 1 and Φ 2 , corresponding to potentials, respectively v 1 and v 2 on D, we have that

v 1 -v 2 L ∞ (D) ≤ ω ( Φ 1 -Φ 2 H 1/2 →H -1/2 ) ,
where the function ω(t) → 0 as fast as possible as t → 0. For Problem 2 similar estimates are considered.

There is a wide literature on the Gel'fand-Calderón inverse problem. In the case of complex-valued potentials the global injectivity of the map v → Φ was firstly proved in [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0, Funkt[END_REF] for D ⊂ R d with d ≥ 3 and in [START_REF] Bukhgeim | Recovering a potential from Cauchy data in the two-dimensional case[END_REF] for d = 2 with v ∈ L p : in particular, these results were obtained by the use of global reconstructions developed in the same papers. A global stability estimate for Problem 1 and 2 for d ≥ 3 was first found by Alessandrini in [START_REF] Alessandrini | Stable determination of conductivity by boundary measurements[END_REF]; this result was recently improved in [START_REF] Novikov | New global stability estimates for the Gel'fand-Calderon inverse problem[END_REF]. In the two-dimensional case the first global stability estimate for Problem 1 was given in [START_REF] Novikov | A global stability estimate for the Gel'fand-Calderón inverse problem in two dimensions[END_REF].

Global results for Problem 2 in the two dimensional case have been found much earlier than for Problem 1. In particular, global uniqueness was first proved in [START_REF] Nachman | Global uniqueness for a two-dimensional inverse boundary value problem[END_REF] for conductivities in the W 2,p (D) class (p > 1) and after in [START_REF] Astala | Calderón's inverse conductivity problem in the plane[END_REF] for L ∞ conductivities. The first global stability result was given in [START_REF] Liu | Stability Estimates for the Two-Dimensional Inverse Conductivity Problem[END_REF], where a logarithmic estimate is obtained for conductivities with two continuous derivatives. This result was improved in [START_REF] Barceló | Stability of Calderón inverse conductivity problem in the plane[END_REF], where the same kind of estimate is obtained for Hölder continuous conductivities.

The research line delineated above is devoted to prove stability estimates for the least regular potentials/conductivities possible. Here, instead, we focus on the opposite situation, i.e. smooth potentials/conductivities, and try to answer another question: how the stability estimates vary with respect to the smoothness of the potentials/conductivities.

The results, detailed below, also constitute a progress for the case of nonsmooth potentials: they indicate stability dependence of the smooth part of a singular potential with respect to boundary value data.

We will assume for simplicity that

D is an open bounded domain in R 2 , ∂D ∈ C 2 , v ∈ W m,1 (R 2 ) for some m > 2, supp v ⊂ D, (1.8) where W m,1 (R 2 ) = {v : ∂ J v ∈ L 1 (R 2 ), |J| ≤ m}, m ∈ N ∪ {0}, (1.9) J ∈ (N ∪ {0}) 2 , |J| = J 1 + J 2 , ∂ J v(x) = ∂ |J| v(x) ∂x J 1 1 ∂x J 2 2 . Let v m,1 = max |J|≤m ∂ J v L 1 (R 2 ) .
The last (strong) hypothesis is that we will consider only potentials of conductivity type, i.e.

(1.10) v = ∆σ 1/2 σ 1/2 , for some σ ∈ L ∞ (D), with σ ≥ σ min > 0.

The main results are the following. 

(1.11) v 2 -v 1 L ∞ (D) ≤ C(log(3 + Φ 2 -Φ 1 -1 )) -α , where α = m -2 and Φ 2 -Φ 1 = Φ 2 -Φ 1 H 1/2 →H -1/2 .
Theorem 1.2. Let σ 1 , σ 2 be two isotropic conductivities such that ∆(σ

1/2 j )/σ 1/2 j
satisfies conditions (1.8), where D is fixed and 0 < σ min ≤ σ j ≤ σ max < +∞ for j = 1, 2 and some constants σ min and σ max . Let Λ 1 , Λ 2 be the corresponding Dirichlet-to-Neumann operators and ∆(σ

1/2 j )/σ 1/2 j m,1 ≤ N , j = 1, 2,
for some N > 0. We suppose, for simplicity, that supp (σ j -1) ⊂ D for j = 1, 2. Then, for any α < m there exists a constant C = C(D, N, σ min , σ max , m, α) such that

(1.12) σ 2 -σ 1 L ∞ (D) ≤ C(log(3 + Λ 2 -Λ 1 -1 )) -α ,
where

Λ 2 -Λ 1 = Λ 2 -Λ 1 H 1/2 →H -1/2 .
The main feature of these estimates is that, as m → +∞, we have α → +∞. In addition we would like to mention that, under the assumptions of Theorems 1.1 and 1.2, according to instability estimates of Mandache [START_REF] Mandache | Exponential instability in an inverse problem of the Schrödinger equation[END_REF] and Isaev [START_REF] Isaev | Exponential instability in the Gel'fand inverse problem on the energy intervals[END_REF], our results are almost optimal. Note that, in the linear approximation near the zero potential, Theorem 1.1 (without condition (1.10)) was proved in [START_REF] Novikov | On stable determination of potential by boundary measurements[END_REF]. In dimension d ≥ 3 a global stability estimate similar to our result (with respect to dependence on smoothness) was proved in [START_REF] Novikov | New global stability estimates for the Gel'fand-Calderon inverse problem[END_REF].

The proof of Theorem 1.1 relies on the ∂-techniques introduced by Beals-Coifman [START_REF] Beals | Multidimensional inverse scatterings and nonlinear partial differential equations, Pseudodifferential operators and applications[END_REF], Henkin-R. Novikov [START_REF] Henkin | The ∂-equation in the multidimensional inverse scattering problem[END_REF], Grinevich-S. Novikov [START_REF] Grinevich | Two-dimensional "inverse scattering problem" for negative energies and generalized-analytic functions. I. Energies below the ground state[END_REF] and developed by R. Novikov [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0, Funkt[END_REF] and Nachman [START_REF] Nachman | Global uniqueness for a two-dimensional inverse boundary value problem[END_REF] for solving the Calderón problem in two dimensions.

The Novikov-Nachman method starts with the construction of a special family of solutions ψ(x, λ) of equation (1.2), which was originally introduced by Faddeev in [START_REF] Faddeev | Growing solutions of the Schrödinger equation[END_REF]. These solutions have an exponential behaviour depending on the complex parameter λ and they are constructed via some function µ(x, λ) (see (2.5)). One of the most important property of µ(x, λ) is that it satisfies a ∂-equation with respect to the variable λ (see equation (2.8)), in which appears the so-called Faddeev generalized scattering amplitude h(λ) (defined in (2.6)). On the contrary, if one knows h(λ) for every λ ∈ C, it is possible to recover µ(x, λ) via this ∂-equation. Starting from these arguments we will prove that the map h(λ) → µ(z, λ) satisfies an Hölder condition, uniformly in the space variable z. This is done in Section 4.

Another part of the method relates the scattering amplitude h(λ) to the Dirichlet-to-Neumann operator Φ. In the present paper this is done using the Alessandrini identity (see [START_REF] Alessandrini | Stable determination of conductivity by boundary measurements[END_REF]) and an estimate of h(λ) for high values of |λ| given in [START_REF] Novikov | Approximate solution of the inverse problem of quantum scattering theory with fixed energy in dimension 2[END_REF]. We find that the map Φ → h has logarithmic stability in some natural norm (Proposition 3.3). This is explained in Section 3.

The final part of the method for the two problems is quite different. For Problem 2, in order to recover σ(x) from µ(x, λ), we use a limit found for the first time in [START_REF] Nachman | Global uniqueness for a two-dimensional inverse boundary value problem[END_REF]. Instead, for Problem 1, we use an explicit formula for v(x) which involves the scattering amplitude h(λ), µ(x, λ) and its first (complex) derivative with respect to z = x 1 + ix 2 (see formula (5.3)). The two results are presented in section 5 and yield the proofs of Theorems 1.1 and 1.2.

This work was fulfilled in the framework of researches under the direction of R. G. Novikov.

Preliminaries

In this section we recall some definitions and properties of the Faddeev functions, the above-mentioned family of solutions of equation (1.2), which will be used throughout all the paper.

Following [START_REF] Nachman | Global uniqueness for a two-dimensional inverse boundary value problem[END_REF], we fix some 1 < p < 2 and define ψ(x, k) to be the solution (when it exists unique) of (2.1)

(-∆ + v)ψ(x, k) = 0 in R 2 , with e -ixk ψ(x, k) -1 ∈ W 1,p (R 2 ) = {u : ∂ J u ∈ L p(R 2 ), |J| ≤ 1}, where x = (x 1 , x 2 ) ∈ R 2 , k = (k 1 , k 2 ) ∈ V ⊂ C 2 , V = {k ∈ C 2 : k 2 = k 2 1 + k 2 2 = 0} (2.2) and (2.3) 1 p = 1 p - 1 2 .
The variety V can be written as {(λ, iλ) : λ ∈ C} ∪ {(λ, -iλ) : λ ∈ C}. We henceforth denote ψ(x, (λ, iλ)) by ψ(x, λ) and observe that, since v is realvalued, uniqueness for (2.1) yields ψ(x, (-λ, i λ)) = ψ(x, (λ, iλ)) = ψ(x, λ) so that, for reconstruction and stability purpose, it is sufficient to work on the sheet k = (λ, iλ).

We now identify R 2 with C and use the coordinates

z = x 1 + ix 2 , z = x 1 -ix 2 , ∂ ∂z = 1 2 ∂ ∂x 1 -i ∂ ∂x 2 , ∂ ∂ z = 1 2 ∂ ∂x 1 + i ∂ ∂x 2 , where (x 1 , x 2 ) ∈ R 2 .
Then we define

ψ(z, λ) = ψ(x, λ), (2.4) µ(z, λ) = e -izλ ψ(z, λ), (2.5) h(λ) = D e iz λv(z)ψ(z, λ)dRez dImz, (2.6) for z, λ ∈ C.
Throughout all the paper c(α, β, . . .) is a positive constant depending on parameters α, β, . . . We now restate some fundamental results about Faddeev functions. In the following statement ψ 0 denotes σ 1/2 . Proposition 2.1 (see [START_REF] Nachman | Global uniqueness for a two-dimensional inverse boundary value problem[END_REF]).

Let D ⊂ R 2 be an open bounded domain with C 2 boundary, v ∈ L p (R 2 ), 1 < p < 2, supp v ⊂ D, v L p (R 2 )
≤ N , be such that there exists a real-valued ψ 0 ∈ L ∞ (R 2 ) with v = (∆ψ 0 )/ψ 0 , ψ 0 (x) ≥ c 0 > 0 and ψ 0 ≡ 1 outside D. Then, for any λ ∈ C there is a unique solution ψ(z, λ) of (2.1) with e -izλ ψ(•, λ) -

1 in L p ∩ L ∞ (p is defined in (2.3)). Furthermore, e -izλ ψ(•, λ) -1 ∈ W 1,p (R 2 ) and (2.7) e -izλ ψ(•, λ) -1 W s, p ≤ c(p, s)N |λ| s-1 ,
for 0 ≤ s ≤ 1 and λ sufficiently large.

The function µ(z, λ) defined in (2.5) satisfies the equation

(2.8) ∂µ(z, λ) ∂ λ = 1 4π λ h(λ)e -λ (z)µ(z, λ), z, λ ∈ C,
in the W 1,p topology, where h(λ) is defined in (2.6) and the function e -λ (z) is defined as follows:

(2.9) e λ (z) = e i(zλ+z λ) .

In addition, the functions h(λ) and µ(z, λ) satisfy

h(λ) λ L r (R 2 ) ≤ c(r, N ), for all r ∈ (p ′ , p), 1 p + 1 p′ = 1, (2.10) sup z∈C µ(z, •) -1 L r (C) ≤ c(r, D, N ), for all r ∈ (p ′ , ∞] (2.11) and |h(λ)| ≤ c(p, D, N )|λ| ε , (2.12) µ(•, λ) -ψ 0 W 1, p ≤ c(p, D, N )|λ| ε , (2.13) for λ ≤ λ 0 (p, D, N ) and 0 < ε < 2 p ′ , where 1 p + 1 p ′ = 1.
Remark. Equation (2.8) means that µ is a generalised analytic function in λ ∈ C (see [START_REF] Vekua | Generalized Analytic Functions[END_REF]). In two-dimensional inverse scattering for the Schrödinger equation, the theory of generalised analytic functions was used for the first time in [START_REF] Grinevich | Two-dimensional "inverse scattering problem" for negative energies and generalized-analytic functions. I. Energies below the ground state[END_REF].

We recall that if v ∈ W m,1 (R 2 ) with supp v ⊂ D, then v m < +∞, where v(p) = (2π) -2 R 2 e ipx v(x)dx, p ∈ C 2 , (2.14) u m = sup p∈R 2 |(1 + |p| 2 ) m/2 u(p)|, (2.15)
for a test function u.

In addition, if v ∈ W m,1 (R 2 ) with supp v ⊂ D and m > 2, we have, by Sobolev embedding, that

(2.16) v L ∞ (D) ≤ c(D) v m,1 ,
so, in particular, the hypothesis v ∈ L p (R 2 ), supp v ⊂ D, in the statement of Proposition 2.1 is satisfied for every 1 < p < 2 (since D is bounded).

The following lemma is a variation of a result in [START_REF] Novikov | Approximate solution of the inverse problem of quantum scattering theory with fixed energy in dimension 2[END_REF]:

Lemma 2.2. Under the assumption (1.8), there exists R = R(m, v m ) > 0 such that (2.17) |h(λ)| ≤ 8π 2 v m (1 + 4|λ| 2 ) -m/2 , for |λ| > R.
Proof. We consider the function H(k, p) defined as

(2.18) H(k, p) = 1 (2π) 2 R 2 e i(p-k)x v(x)ψ(x, k)dx,
for k ∈ V (where V is defined in (2.2)), p ∈ R 2 and ψ(x, k) as defined at the beginning of this section. We deduce that h

(λ) = (2π) 2 H(k(λ), k(λ) + k(λ)), for k(λ) = (λ, iλ). By [19, Corollary 1.1] we have (2.19) |H(k, p)| ≤ 2 v m (1 + p 2 ) -m/2 for |λ| > R,
for R = R(m, v m ) > 0 and then the proof follows.

We restate [3, Lemma 2.6], which will be useful in section 4.

Lemma 2.3 ([3]). Let a ∈ L s 1 (R 2 ) ∩ L s 2 (R 2 ), 1 < s 1 < 2 < s 2 < ∞ and b ∈ L s (R 2 ), 1 < s < 2. Assume u is a function in L s(R 2 )
, with s defined as in (2.3), which satisfies

(2.20) ∂u(λ) ∂ λ = a(λ)ū(λ) + b(λ), λ ∈ C.
Then there exists c > 0 such that

(2.21) u L s ≤ c b L s exp(c( a L s 1 + a L s 2 )).
We will make also use of the well-known Hölder's inequality, which we recall in a special case: 

for f ∈ L p (C), g ∈ L q (C) such that 1 ≤ p, q ≤ ∞, 1 ≤ r < ∞, 1/p + 1/q = 1/r, we have f g L r (C) ≤ f L p (C) g L q (C) .
h(λ) λ L p (|λ|>R) ≤ c(p, m) v m 1 R m+1-2/p , (3.1) 
h L p (|λ|>R) ≤ c(p, m) v m 1 R m-2/p , (3.2)
where R is as in Lemma 2.2.

Proof. It's a corollary of Lemma 2.2. Indeed we have 

h(λ) λ p L p (|λ|>R) ≤ c v p m r>R r 1-mp-p dr = c(p, m) v p m R (m+1)p-2 , (3.
(3.4) |h 2 (λ) -h 1 (λ)| ≤ c(D, N )e 2l|λ| Φ 2 -Φ 1 H 1/2 →H -1/2 , λ ∈ C.
Proof. We have the following identity:

(3.5) h 2 (λ) -h 1 (λ) = ∂D ψ 1 (z, λ)(Φ 2 -Φ 1 )ψ 2 (z, λ)|dz|,
where ψ j (z, λ) are the Faddeev functions associated to the potential v j , j = 1, 2. This identity is a particular case of the one in [20, Theorem 1]: we refer to that paper for a proof.

From this identity we have:

|h 2 (λ) -h 1 (λ)| ≤ ψ 1 (•, λ) H 1/2 (∂D) Φ 2 -Φ 1 H 1/2 →H -1/2 ψ 2 (•, λ) H 1/2 (∂D) . (3.6) 
Now take p > 2 and use the trace theorem to get 

ψ j (•, λ) H 1/2 (∂D) ≤ C ψ j (•, λ) W 1, p (D) ≤ Ce l|λ| e -izλ ψ j (•, λ) W 1, p (D) ≤ Ce l|λ| e -izλ ψ j (•, λ) -1 W 1, p(D) + 1 W 1, p (D) , j = 1,
< ε < 1, 1 < p < 2 1-ε and v j m,1 ≤ N , j = 1, 2.
Then there exists a constant c = c(D, N, m, p) such that 

(3.7) h 2 (λ) -h 1 (λ) λ L p (C) ≤ c log(3 + Φ 2 -Φ 1 -1 H 1/2 →H -1/2 ) -(m+1-2/p) . Proposition 3.4. Let v 1 , v 2 , Φ 1 , Φ 2 ,
(3.8) h 2 -h 1 L p (C) ≤ c log(3 + Φ 2 -Φ 1 -1 H 1/2 →H -1/2 ) -(m-2/p) .
Proof of Proposition 3.3. Let choose a, b > 0, a close to 0 and b big to be determined and let

(3.9) δ = Φ 2 -Φ 1 H 1/2 →H -1/2 .
We split down the left term of (3.7) as follows:

h 2 (λ) -h 1 (λ) λ L p (C) ≤ h 2 (λ) -h 1 (λ) λ L p (|λ|<a) + h 2 (λ) -h 1 (λ) λ L p (a<|λ|<b) + h 2 (λ) -h 1 (λ) λ L p (|λ|>b)
.

From (2.12) we obtain

h 2 (λ) -h 1 (λ) λ L p (|λ|<a) ≤ c(D, N, p) |λ|<a |λ| (ε-1)p dReλ dImλ 1 p (3.10) = c(D, N, p)a ε-1+2/p .
From Lemma 3.2 and (3.9) we get

(3.11) h 2 (λ) -h 1 (λ) λ L p (a<|λ|<b) ≤ c(D, N ) δ a 1-2/p + δe 2lb . From Lemma 3.1 (3.12) h 2 (λ) -h 1 (λ) λ L p (|λ|>b) ≤ c(N ) b m+1-2/p . We now define (3.13) a = log(3 + δ -1 ) -m+1-2/p ε-1+2/p , b = β log(3 + δ -1 ),
for 0 < β < 1/(2l), in order to have (3.10) and (3.12) of the order log(3 + δ -1 ) -(m+1-2/p) . We also choose δ < 1 such that for every δ ≤ δ, a is sufficiently small in order to have (2.12) (which yields (3.10)), b ≥ R (with R as in Lemma 2.2) and also

(3.14) δ a 1-2/p = δ log(3 + δ -1 ) m+1-2/p ε-1+2/p (1-2/p) < log(3 + δ -1 ) -(m+1-2/p) .
Thus we obtain

h 2 (λ) -h 1 (λ) λ L p (C) ≤ c(D, N, p) log(3 + δ -1 ) m+1-2/p (3.15) + c(D, N )δ(3 + δ -1 ) 2lβ ,
for δ ≤ δ, 0 < β < 1/(2l). As δ(3 + δ -1 ) 2lβ → 0 for δ → 0 more rapidly than the other term, we obtain that

(3.16) h 2 (λ) -h 1 (λ) λ L p (C) ≤ c(D, N, m, p, β) log(3 + δ -1 ) m+1-2/p , for δ ≤ δ, 0 < β < 1/(2l).
Estimate (3.16) for general δ (with modified constant) follows from (3.16) for δ ≤ δ and the property (2.10) of the scattering amplitude. This completes the proof of Proposition 3.3.

Proof of Proposition 3.4. We follow almost the same scheme as in the proof of Proposition 3.3. Let choose b > 0 big to be determined and let

(3.17) δ = Φ 2 -Φ 1 H 1/2 →H -1/2 .
We split down the left term of (3.8) as follows:

h 2 -h 1 L p (C) ≤ h 2 -h 1 L p (|λ|<b) + h 2 -h 1 L p (|λ|≥b) .
From Lemma 3.2 we obtain

(3.18) h 2 -h 1 L p (|λ|<b) ≤ c(D, N, p)δb 1/p e 2lb ,
and from (3.2)

(3.19) h 2 -h 1 L p (|λ|≥b) ≤ c(N, p, m) 1 b m-2/p . Define b = β log(3 + δ -1 ) for 0 < β < 1/(2l). Let δ < 1 such that for δ ≤ δ
we have that b > R, where R is defined in Lemma 2.2. Then we have, for δ ≤ δ,

h 2 -h 1 L p (C) ≤ c(D, N, m, p)δ(1 + δ -1 ) 2lβ (β log(3 + δ -1 )) 1/p + c(N, m, p)(log(3 + δ -1 )) -(m-2/p) .
Since 2lβ < 1, we have that

δ(1 + δ -1 ) 2lβ (β log(3 + δ -1
)) 1/p → 0 for δ → 0 more rapidly than the other term. Thus

(3.20) h 2 -h 1 L p (C) ≤ c(D, N, m, p, β)(log(3 + δ -1 )) -(m-2/p) , for δ ≤ δ, 0 < β < 1/(2l).
Estimate (3.20) for general δ (with modified constant) follows from (3.20) for δ ≤ δ and the L p -boundedness of the scattering amplitude (this because it is continuous and decays at infinity like in Lemma 3.1). This completes the proof of Proposition 3.4.

Estimates on the Faddeev functions

Lemma 4.1. Let v 1 , v 2 be two potentials satisfying (1.3), (1.8), (1.10), with v j m,1 ≤ N , h 1 , h 2 the corresponding scattering amplitude and µ 1 (z, λ), µ 2 (z, λ) the corresponding Faddeev functions. Let 1 < s < 2, and s be as in (2.3). Then

sup z∈C µ 2 (z, •) -µ 1 (z, •) L s (C) ≤ c(D, N, s) h 2 (λ) -h 1 (λ) λ L s (C) , (4.1) sup z∈C ∂µ 2 (z, •) ∂z - ∂µ 1 (z, •) ∂z L s(C) ≤ c(D, N, s) h 2 (λ) -h 1 (λ) λ L s (C) (4.2) 
+ h 2 -h 1 L s (C)
Proof. We begin with the proof of (4.1). Let

ν(z, λ) = µ 2 (z, λ) -µ 1 (z, λ). (4.3)
From the ∂-equation (2.8) we deduce that ν satisfies the following nonhomogeneous ∂-equation:

∂ ∂ λ ν(z, λ) = e -λ (z) 4π h 1 (λ) λ ν(z, λ) + h 2 (λ) -h 1 (λ) λ µ 2 (z, λ) , (4.4) 
for λ ∈ C, where e -λ (z) is defined in (2.9). Note that since, by Sobolev embedding, v ∈ L ∞ (D) ⊂ L s (D), we have that ν(z, •) ∈ L s(C) for every s > 2 (see (2.11)). In addition, from Proposition 2.1 (see (2.10)) we have that h(λ)/ λ ∈ L p (C), for 1 < p < ∞. Then it is possible to use Lemma 2.3 in order to obtain

ν(z, •) L s ≤ c(D, N, s) µ 2 (z, λ) h 2 (λ) -h 1 (λ) λ L s (C) ≤ c(D, N, s) sup z∈C µ 2 (z, •) L ∞ h 2 (λ) -h 1 (λ) λ L s (C) ≤ c(D, N, s) h 2 (λ) -h 1 (λ) λ L s (C)
, where we used again the property (2.11) of µ 2 (z, λ). Now we pass to (4.2). To simplify notations we write, for z, λ ∈ C,

µ j z (z, λ) = ∂µ j (z, λ) ∂z , µ j z (z, λ) = ∂µ j (z, λ) ∂ z , j = 1, 2.
From the ∂-equation (2.8) we have that µ j z and µ j z satisfy the following system of non-homogeneous ∂-equations, for j = 1, 2:

∂ ∂ λ µ j z (z, λ) = e -λ (z) 4π h j (λ) λ µ j z(z, λ) -iλµ j (z, λ) , ∂ ∂ λ µ j z (z, λ) = e -λ (z) 4π h j (λ) λ µ j z (z, λ) -i λµ j (z, λ) .
Define now µ j ± (z, λ) = µ j z (z, λ) ± µ j z (z, λ), for j = 1, 2. Then they satisfy the following two non-homogeneous ∂-equations:

∂ ∂ λ µ j ± (z, λ) = ± e -λ (z) 4π h j (λ) λ µ j ± (z, λ) ∓ i(λ ± λ)µ j (z, λ) .
Finally define τ ± (z, λ) = µ 2 ± (z, λ) -µ 1 ± (z, λ). They satisfy the two nonhomogeneous ∂-equations below:

∂ ∂ λ τ ± (z, λ) = ± e -λ (z) 4π h 1 (λ) λ τ ± (z, λ) + h 2 (λ) -h 1 (λ) λ µ 2 ± (z, λ) ∓ i λ ± λ λ (h 2 (λ) -h 1 (λ)) µ 2 (z, λ) + h 1 (λ)ν(z, λ) ,
where ν(z, λ) was defined in (4.3). Now remark that by [START_REF] Novikov | Approximate solution of the inverse problem of quantum scattering theory with fixed energy in dimension 2[END_REF]Lemma 2.1] and regularity assumptions on the potentials we have that µ j z (z, •), µ j z (z, •) ∈ L s(C) ∩ L ∞ (C) for any s > 2, j = 1, 2. This, in particular, yields τ ± (z, •) ∈ L s(C). These arguments, along with the above remarks on the L p boundedness of h j (λ)/ λ, make possible to use Lemma 2.3, which gives

τ ± (z, •) L s (C) ≤ c(D, N, s) h 2 (λ) -h 1 (λ) λ µ 2 ± (z, •) L s (C) + (h 2 (•) -h 1 (•))µ 2 (z, •) L s (C) + h 1 (•)ν(z, •) L s (C) ≤ c(D, N, s) h 2 (λ) -h 1 (λ) λ L s (C) + h 2 -h 1 L s (C) + h 1 L 2 (C) ν(z, •) L s (C) ≤ c(D, N, s) h 2 (λ) -h 1 (λ) λ L s (C) + h 2 -h 1 L s (C) ,
where we used Hölder's inequality (since 1/s = 1/2 + 1/s) and estimate (4.1). The proof of (4.2) now follows from this last inequality and the fact that µ 2 z -µ 1 z = 1 2 (τ + -τ -). Remark. We also have proved that

sup z∈C ∂µ 2 (z, •) ∂ z - ∂µ 1 (z, •) ∂ z L s(C) ≤ c(D, N, s) h 2 (λ) -h 1 (λ) λ L s (C) + h 2 -h 1 L s (C) .
We will need the following consequence of Lemma 4.1.

Lemma 4.2. Let v 1 , v 2 be two potentials satisfying (1.3), (1.8), (1.10), with v j m,1 ≤ N . Let h 1 , h 2 be the corresponding scattering amplitude and µ 1 (z, λ), µ 2 (z, λ) the corresponding Faddeev functions. Let p, p ′ such that

1 < p < 2 < p ′ < ∞, 1/p + 1/p ′ = 1. Then (4.5) µ 2 (•, 0) -µ 1 (•, 0) L ∞ (D) ≤ c(D, N, p) h 2 (λ) -h 1 (λ) λ L p (C)∩L p ′ (C) . Proof. We recall again that if v ∈ W m,1 (R 2 ), m > 2, with supp v ⊂ D then v ∈ L p (D) for p ∈ [1, ∞]; in particular, from Proposition 2.1, this yields h(λ)/ λ ∈ L p (C), for 1 < p < ∞.
We write, as in the preceding proof, ν(z, λ) = µ 2 (z, λ) -µ 1 (z, λ), (4.6) which satisfy the non-homogeneous ∂-equations (4.4). From this equation we obtain

|ν(z, 0)| = 1 π C e -λ (z) 4πλ h 1 (λ) λ ν(z, λ)dReλ dImλ (4.7) + C e -λ (z) 4πλ h 2 (λ) -h 1 (λ) λ µ 2 (z, λ)dReλ dImλ ≤ 1 4π 2 sup z∈C ν(z, •) L r h 1 (λ) λ λ L r ′ + 1 4π 2 sup z∈C µ 2 (z, •) L ∞ h 2 (λ) -h 1 (λ) λ λ L 1 where 1/r + 1/r ′ = 1, 1 < r ′ < 2 < r < ∞.
The number s = 2r/(r + 2) can be chosen s < 2 and as close to 2 as wanted, by taking r big enough. Then

h 1 (λ) λ λ L r ′ (|λ|<R) ≤ h 1 (λ) λ L p 1 λ L q (|λ|<R) ≤ c(N, r), (4.8) 
where we have chosen p > 2 such that h 1 (λ)/ λ L p ≤ c(N, p) from (2.10) and also, since 1/q = 1/r ′ -1/p = 1 -1/r -1/p, q can be chosen less than 2 by taking r big enough depending on p. With the same choice of p, q we also obtain

h 1 (λ) λ λ L r ′ (|λ|>R) ≤ h 1 (λ) λ L q 1 λ L p (|λ|>R)
≤ c(N, r). (4.9) From Lemma 4.1 with r = s we get 

sup z∈C ν(z, •) L r ≤ c(D, N, r) h 2 (λ) -h 1 (λ) λ L s (C) , ( 4 
|µ 2 (z, λ)| ≤ c(D, N ). Finally h 2 (λ) -h 1 (λ) λ λ L 1 ≤ 1 λ L p (|λ|>R) h 2 (λ) -h 1 (λ) λ L p ′ (4.12) + 1 λ L p ′ (|λ|<R) h 2 (λ) -h 1 (λ) λ L p
, by taking p ′ = s and p such that 1/p + 1/p ′ = 1. Now (4.5) follow from (4.6)-(4.12); this finishes the proof of Lemma 4.2.

Proof of Theorems 1.1 and 1.2

Proof of Theorem 1.1. We begin with a remark, which take inspiration from Problem 1 at non-zero energy (see, for instance, [START_REF] Novikov | The inverse scattering problem on a fixed energy level for the twodimensional Schrödinger operator[END_REF]). Let v(z) be a potential which satisfies the hypothesis of Theorem 1.1 and µ(z, λ) the corresponding Faddeev functions. Since µ(z, λ) satisfies (2.11), the ∂-equation (2.8) and h(λ) decreases at infinity like in Lemma 2.2, it is possible to write the following development:

(5.1) µ(z, λ) = 1 + µ -1 (z) λ + O 1 |λ| 2 , λ → ∞,
for some function µ -1 (z). If we insert (5.1) into equation (2.1), for ψ(z, λ) = e izλ µ(z, λ), we obtain, letting λ → ∞,

(5.2) v(z) = 4i ∂µ -1 (z) ∂ z , z ∈ C.
We can write this in a more explicit form, using the following integral equation (a consequence of (2.8)):

µ(z, λ) -1 = 1 8π 2 i C h(λ ′ ) (λ ′ -λ) λ′ e -λ ′ (z)µ(z, λ ′ )dλ ′ d λ′ .
By Lebesgue's dominated convergence (using (2.12)) we obtain Then, using several times Hölder's inequality, we find This finishes the proof of Theorem 1.1.

µ -1 (z) = - 1 8π 2 i C h(λ) λ e -λ ( 
|v 2 (z) -v 1 (z)| ≤ 1 2π 2 µ 2 (z, •) L ∞ h 2 -h 1 L 1 + h 1 L p′ µ 2 (
Proof of Theorem 1.2. We first extend σ on the whole plane by putting σ(x) = 1 for x ∈ R 2 \ D (this extension is smooth by our hypothesis on σ). Now since σ j | ∂D = 1 and ∂σ j ∂ν | ∂D = 0 for j = 1, 2, from (1.5) we deduce that (5.4) Φ j = Λ j , j = 1, 2.

In addition, from (2.13) we get (5.5) lim λ→0 µ j (z, λ) = σ 1/2 j (z), j = 1, 2;

thus we obtain, using the fact that σ j is bounded from above and below, for j = 1, 2, 

σ 2 -σ 1 L ∞ (D) ≤ c(N ) σ 1/2 2 -σ 1/2 1 L ∞ (D)

Theorem 1 . 1 .

 11 Let the conditions (1.3), (1.8), (1.10) hold for the potentials v 1 , v 2 , where D is fixed, and let Φ 1 , Φ 2 be the corresponding Dirichlet-to-Neumann operators. Let v j m,1 ≤ N , j = 1, 2, for some N > 0. Then there exists a constant C = C(D, N, m) such that

3 .Lemma 3 . 1 .

 331 From Φ to h(λ) Let the condition (1.8) holds. Then we have, for p ≥ 1,

  [START_REF] Barceló | Stability of the inverse conductivity problem in the plane for less regular conductivities[END_REF] which gives(3.1). The proof of (3.2) is analogous.Lemma 3.2. Let D ⊂ {x ∈ R 2 : |x| ≤ l}, v 1 , v 2 betwo potentials satisfying (1.3), (1.8), (1.10), let Φ 1 , Φ 2 the corresponding Dirichlet-to-Neumann operator and h 1 , h 2 the corresponding generalised scattering amplitude. Let v j m,1 ≤ N , j = 1, 2. Then we have

h 1 , h 2

 12 be as in Proposition 3.3. Let p ≥ 1 and v j m,1 ≤ N , j = 1, 2. Then there exists a constant c = c(D, N, m, p) such that

Formula ( 5 . 3 ) for v 1 and v 2 yields v 2 2 Ce

 5322 z)µ(z, λ)dλ d λ, and the explicit formula(5.3) v(z) = 1 2π 2 C e -λ (z) ih(λ)µ(z, λ) -h(λ) λ ∂µ(z, λ) ∂z dλ d λ. (z) -v 1 (z) = 1 2π -λ (z) i(h 2 (λ) -h 1 (λ))µ 2 (z, λ) + ih 1 (λ)(µ 2 (z, λ) -µ 1 (z, λ)) -h 2 (λ) -h 1 (λ) λ ∂µ 2 (z, λ) ∂z -h 1 (λ) λ ∂µ 2 (z, λ) ∂z -∂µ 1 (z, λ) ∂z dλ d λ.

v 2 - 1 - 1 H 1 / 2 1 - 1 H 1 / 2 1 - 1 H 1 / 2 1 - 1 H 1 / 2

 21112111211121112 v 1 L ∞ (D) ≤ c(D, N, m, p) log(3 + Φ 2 -Φ →H -1/2 ) -(m-2) + log(3 + Φ 2 -Φ →H -1/2 ) -(m+1-2/p) + log(3 + Φ 2 -Φ →H -1/2 ) -(m-2/p) ≤ c(D, N, m, p) log(3 + Φ 2 -Φ →H -1/2 ) -(m-2) .

(5. 6 ) 3 h 2 1 - 1 H 1 / 2 1 - 1 H 1 / 2 1 - 1 H 1 / 2

 632111211121112 = c(N ) µ 2 (•, 0) -µ 1 (•, 0) L ∞ (D) . Now fix α < m and take p such that max 1, 2 m -α + 1 < p < 2.From Lemma 4.2 we have(5.7) µ 2 (•, 0) -µ 1 (•, 0) L ∞ (D) ≤ c(D, N, p) h 2 (λ) -h 1 (λ) λ L p (C)∩L p ′ (C),where 1/p + 1/p ′ = 1. From Proposition 3.(λ) -h 1 (λ) λ L p (C)∩L p ′ (C) ≤ c(D, N, p) log(3 + Φ 2 -Φ →H -1/2 ) -(m+1-2/p) ≤ c(D, N, p) log(3 + Φ 2 -Φ →H -1/2 ) -α = c(D, N, p) log(3 + Λ 2 -Λ →H -1/2 ) -α ,from (5.4) and since α < m + 1 -2 p . Theorem 1.2 is thus proved.

  z, •) -µ 1 (z, •) L < p <2, p defined as in (2.3) and 1/p + 1/p ′ = 1/p + 1/p ′ = 1. From (2.11), (2.10), the continuity of h j and Lemma 2.2, [19, Lemma 2.1] (see the end of the proof of Lemma 4.1 for more details), Lemma 4.1, Propositions 3.4 and 3.3 we finally obtain

								p
	+	h 2 (λ) -h 1 (λ) λ	L p	∂µ 2 (z, •) ∂z	L p ′
	+	h 1 (λ) λ	L p′	∂µ 2 (z, •) ∂z	-	∂µ 1 (z, •) ∂z	L p	,
	for 1