On Ruan's Cohomological Crepant Resolution Conjecture for the complexified Bianchi orbifolds - Archive ouverte HAL
Article Dans Une Revue Algebraic and Geometric Topology Année : 2019

On Ruan's Cohomological Crepant Resolution Conjecture for the complexified Bianchi orbifolds

Résumé

We give formulae for the Chen-Ruan orbifold cohomology for the orbifolds given by a Bianchi group acting on complex hyperbolic 3-space. The Bianchi groups are the arithmetic groups PSL_2(A), where A is the ring of integers in an imaginary quadratic number field. The underlying real orbifolds which help us in our study, given by the action of a Bianchi group on real hyperbolic 3-space (which is a model for its classifying space for proper actions), have applications in physics. We then prove that, for any such orbifold, its Chen-Ruan orbifold cohomology ring is isomorphic to the usual cohomology ring of any crepant resolution of its coarse moduli space. By vanishing of the quantum corrections, we show that this result fits in with Ruan's Cohomological Crepant Resolution Conjecture.
Fichier principal
Vignette du fichier
Revision1v5_Ruan_s_conjecture_on_the_complexified_Bianchi_orbifolds_preprint.pdf (495.14 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00627034 , version 1 (27-09-2011)
hal-00627034 , version 2 (11-09-2012)
hal-00627034 , version 3 (05-12-2016)
hal-00627034 , version 4 (24-08-2018)

Licence

Identifiants

Citer

Fabio Perroni, Alexander D. Rahm. On Ruan's Cohomological Crepant Resolution Conjecture for the complexified Bianchi orbifolds. Algebraic and Geometric Topology, 2019, 19, pp.2715-2762. ⟨10.2140/agt.2019.19.2715⟩. ⟨hal-00627034v4⟩

Collections

UPF 35430
382 Consultations
400 Téléchargements

Altmetric

Partager

More