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On Ruan’s Cohomological Crepant Resolution Conjecture
for the complexified Bianchi orbifolds

FABIO PERRONI AND ALEXANDER D. RAHM

We give formulae for the Chen–Ruan orbifold cohomology for the orbifolds given by a Bianchi group
acting on complex hyperbolic 3-space.
The Bianchi groups are the arithmetic groups PSL2(O), where O is the ring of integers in an imaginary
quadratic number field. The underlying real orbifolds which help us in our study, given by the action
of a Bianchi group on real hyperbolic 3-space (which is a model for its classifying space for proper
actions), have applications in physics.

We then prove that, for any such orbifold, its Chen–Ruan orbifold cohomology ring is isomorphic to
the usual cohomology ring of any crepant resolution of its coarse moduli space. By vanishing of the
quantum corrections, we show that this result fits in with Ruan’s Cohomological Crepant Resolution
Conjecture.

55N32, Orbifold cohomology

1 Introduction

Recently motivated by string theory in theoretical physics, a stringy topology of orbifolds has been
introduced in mathematics [1]. Its essential innovations consist of Chen–Ruan orbifold cohomology [11],
[12] and orbifold K –theory. They are of interest as topological quantum field theories [22]. Ruan’s
cohomological crepant resolution conjecture [45] associates Chen–Ruan orbifold cohomology with the
ordinary cohomology of a resolution of the singularities of the coarse moduli space of the given orbifold.
We place ourselves where the conjecture is still open: in three complex dimensions and outside the global
quotient case. There, we are going to calculate the Chen–Ruan cohomology of an infinite family of
orbifolds in this article; and prove in Section 6 that it is isomorphic as a ring to the cohomology of their
crepant resolution of singularities.

Denote by Q(
√−m), with m a square-free positive integer, an imaginary quadratic number field, and

by O−m its ring of integers. The Bianchi groups are the projective special linear groups PSL2(O−m),
throughout the paper we denote them by Γ. The Bianchi groups may be considered as a key to the study
of a larger class of groups, the Kleinian groups, which date back to work of Henri Poincaré [35]. In fact,
each non-co-compact arithmetic Kleinian group is commensurable with some Bianchi group [28]. A
wealth of information on the Bianchi groups can be found in the monographs [15, 17, 28]. These groups
act in a natural way on real hyperbolic three-space H3

R , which is isomorphic to the symmetric space
associated to them. This yields orbifolds [H3

R/Γ] that are studied in cosmology [4].

The orbifold structure obtained in this way is determined by a fundamental domain and its stabilizers and
identifications. The computation of this information has been implemented for all Bianchi groups [39].

http://www.ams.org/mathscinet/search/mscdoc.html?code=55N32, Orbifold cohomology
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In order to obtain complex orbifolds, we consider the complex hyperbolic three-space H3
C . Then H3

R is
naturally embedded into H3

C as the fixed points set of the complex conjugation (Construction 6). The
action of a Bianchi group Γ on H3

R extends to an action on H3
C , in a natural way. Since this action is

properly discontinuous (Lemma 7), we obtain a complex orbifold [H3
C/Γ], which we call a complexified

Bianchi orbifold.

The vector space structure of Chen–Ruan orbifold cohomology

Let Γ be a discrete group acting properly discontinuously, hence with finite stabilizers, by bi-holo-
morphisms on a complex manifold Y . For any element g ∈ Γ, denote by CΓ(g) the centralizer of g in Γ.
Denote by Yg the subspace of Y consisting of the fixed points of g.

Definition 1 ([11]) Let T ⊂ Γ be a set of representatives of the conjugacy classes of elements of finite
order in Γ. Then the Chen–Ruan orbifold cohomology vector space of [Y/Γ] is:

H∗CR([Y/Γ]) :=
⊕

g∈T

H∗
(
Yg/CΓ(g); Q

)
.

The grading on this vector space is reviewed in Equation (1) below.

This definition is slightly different from, but equivalent to, the original one in [11]. We can verify this fact
using arguments analogous to those used by Fantechi and Göttsche [16] in the case of a finite group Γ

acting on Y . The additional argument needed when considering some element g in Γ of infinite order is
the following. As the action of Γ on Y is properly discontinuous, g does not admit any fixed point in Y .
Thus, H∗

(
Yg/CΓ(g); Q

)
= H∗

(
∅; Q

)
= 0. For another proof, see [1].

Statement of the results

We first compute the Chen–Ruan Orbifold Cohomology for the complex orbifolds [H3
C/Γ] in the follow-

ing way. In order to describe the vector space structure of H∗CR([H3
C/Γ]), we reduce our considerations

on complex orbifolds to the easier case of real orbifolds. This is achieved using Theorem 17 (Section 4),
which says that there is a Γ-equivariant homotopy equivalence between H3

C and H3
R .

As a result of Theorems 20 and 21, we can express the vector space structure of the Chen-Ruan orbifold
cohomology in terms of the numbers of conjugacy classes of finite subgroups and the cohomology of the
quotient space. Actually, Theorems 20 and 21 hold true for (finite index subgroups in) Bianchi groups
with units {±1}. These latter groups are the groups PSL2(O), where O is a ring of integers of imaginary
quadratic number fields such that it admits as only units {±1}. The remaining cases are the Gaussian
and Eisenstein integers, and we treat them separately in Sections 8.3 and 8.4, respectively.

More precisely, as a corollary to Theorems 20 and 21, which we are going to prove in Section 5, and
using Theorem 17, we obtain:
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Corollary 2 Let Γ be a finite index subgroup in a Bianchi group with units {±1}. Denote by λ2n the
number of conjugacy classes of cyclic subgroups of order n in Γ. Denote by λ∗2n the number of conjugacy
classes of those of them which are contained in a dihedral subgroup of order 2n in Γ. Then,

Hd
CR
(
[H3

C/Γ]
) ∼= Hd (H3

R/Γ; Q
)
⊕





Qλ4+2λ6−λ∗6 , d = 2,

Qλ4−λ∗4 +2λ6−λ∗6 , d = 3,

0, otherwise.

Together with the example computations for the Gaussian and Eisensteinian cases (Sections 8.3 and 8.4),
we obtain Hd

CR
(
[H3

C/Γ]
)

for all Bianchi groups Γ.

The (co)homology of the quotient space H3
R/Γ has been computed numerically for a large scope of

Bianchi groups [52], [46], [42]; and bounds for its Betti numbers have been given in [26]. Krämer [27]
has determined number-theoretic formulae for the numbers λ2n and λ∗2n of conjugacy classes of finite
subgroups in the Bianchi groups. Krämer’s formulae have been evaluated for hundreds of thousands of
Bianchi groups [41], and these values are matching with the ones from the orbifold structure computations
with [39] in the cases where the latter are available.

Using the previous description of H∗CR([H3
C/Γ]) and Theorem 11 we can compute the Chen-Ruan cup

product as follows. By degree reasons, the Chen-Ruan cup product αg ∪CR βh between cohomology
classes of two twisted sectors is zero. On the other hand, if αg ∈ H∗

(
(H3

C)g/CΓ(g)
)

and β ∈ H∗
(
H3

C/Γ
)

,
then αg ∪CR β = αg ∪ ı∗gβ ∈ H∗

(
(H3

C)g/CΓ(g)
)

, where ıg : (H3
C)g/CΓ(g) → H3

C/Γ is the natural map
induced by the inclusion (H3

C)g ⊂ H3
C (notice that in this case the obstruction bundle has fiber dimension

zero by Theorem 11).

Let us consider now, for any complexified Bianchi orbifold [H3
C/Γ], its coarse moduli space H3

C/Γ. It is
a quasi-projective variety ([5]) with Gorenstein singularities (Lemma 10). Therefore, it admits a crepant
resolution (see e.g. [44], [13]). Then we prove the following result.

Theorem 3 Let Γ be a Bianchi group and let [H3
C/Γ] be the corresponding orbifold, with coarse moduli

space H3
C/Γ. Let f : Y → H3

C/Γ be a crepant resolution of H3
C/Γ. Then there is an isomorphism as

graded Q-algebras between the Chen–Ruan cohomology ring of [H3
C/Γ] and the singular cohomology

ring of Y : (
H∗CR([H3

C/Γ]),∪CR
) ∼=

(
H∗(Y),∪

)
.

The proof of this theorem, which we shall give in Section 6, uses the McKay correspondence and our
computations of the Chen–Ruan orbifold cohomology of the complexified Bianchi orbifolds. In Section 7,
we compare this result with Ruan’s Cohomological Crepant Resolution Conjecture ([45], [14]). Even
though H3

C/Γ and Y are not projective varieties, hence Ruan’s conjecture does not apply directly, our
results confirm the validity of this conjecture.

Finally, in Section 8, we illustrate our study with the computation of some explicit examples.
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Notation

We use the following symbols for the finite subgroups in PSL2(O): for cyclic groups of order n, we
write Z/n; for the Klein four-group Z/2× Z/2, we write D2 ; for the dihedral group with six elements,
we write D3 ; and for the alternating group on four symbols, we write A4 .

2 The orbifold cohomology product

In order to equip the orbifold cohomology vector space with a product structure, called the Chen–Ruan
product, we use the orbifold complex structure on [Y/Γ].
Let Y be a complex manifold of dimension D with a properly discontinuous action of a discrete group Γ

by bi-holomorphisms. For any g ∈ Γ and y ∈ Yg , we consider the eigenvalues λ1, . . . , λD of the action
of g on the tangent space TyY . As the action of g on TyY is complex linear, its eigenvalues are roots of
unity.

Definition 4 Write λj = e2πirj , where rj is a rational number in the interval [0, 1[. The degree shifting
number of g in y is the rational number shift(g, y) :=

∑D
j=1 rj .

The degree shifting number agrees with the original definition by Chen and Ruan (see [16]). It is also
called the fermionic shift number in [54]. The degree shifting number of an element g is constant on a
connected component of its fixed point set Yg . For the groups under our consideration, Yg is connected,
so we can omit the argument y. Details for this and the explicit value of the degree shifting number are
given in Lemma 9. Then we can define the graded vector space structure of the Chen–Ruan orbifold
cohomology as

(1) Hd
CR([Y/Γ]) :=

⊕

g∈T

Hd−2 shift(g) (Yg/CΓ(g); Q
)
.

Denote by g, h two elements of finite order in Γ, and by Yg,h their common fixed point set. Chen and
Ruan construct a certain vector bundle on Yg,h , the obstruction bundle. We denote by c(g, h) its top
Chern class. In our cases, Yg,h is a connected manifold. In the general case, the fiber dimension of the
obstruction bundle can vary between the connected components of Yg,h , and c(g, h) is the cohomology
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class restricting to the top Chern class of the obstruction bundle on each connected component. The
obstruction bundle is at the heart of the construction [11] of the Chen–Ruan orbifold cohomology
product. In [16], this product, when applied to a cohomology class associated to Yg and one associated
to Yh , is described as a push-forward of the cup product of these classes restricted to Yg,h and multiplied
by c(g, h).
The following statement is made for global quotient orbifolds, but it is a local property, so we can apply
it in our case.

Lemma 5 (Fantechi–Göttsche) Let Yg,h be connected. Then the obstruction bundle on it is a vector
bundle of fiber dimension

shift(g) + shift(h)− shift(gh)− codimC
(
Yg,h ⊂ Ygh) .

In [16], a proof is given in the more general setting that Yg,h needs not be connected. Examples where
the product structure is worked out in the non-global quotient case, are for instance given in [11, 5.3],
[34] and [8].

2.1 Groups of hyperbolic motions

A class of examples with complex structures admitting the grading (1) is given by the discrete subgroups Γ

of the orientation preserving isometry group PSL2(C) of real hyperbolic 3-space H3
R . The Kleinian

model of H3
R gives a natural identification of the orientation preserving isometries of H3

R with matrices
in PSO(1, 3). By the subgroup inclusion PSO(1, 3) ↪→ PSU(1, 3), these matrices specify isometries of
the complex hyperbolic space H3

C . The details are as follows.

Construction 6 Given an orbifold [H3
R/Γ], we presently construct the complexified orbifold [H3

C/Γ].
Recall the Kleinian model for H3

R described in [15]: For this, we take a basis {f0, f1, f2, f3} for R4 , and
rewrite R4 as Ẽ1 := Rf0 ⊕ Rf1 ⊕ Rf2 ⊕ Rf3 . Then we define the quadratic form q1 by

q1(y0f0 + y1f1 + y2f2 + y3f3) = y2
0 − y2

1 − y2
2 − y2

3.

We consider the real projective 3-space PẼ1 = (Ẽ1 \ {0})/R∗, where R∗ stands for the multiplicative
group R \ {0}. The set underlying the Kleinian model is then

K := {[y0 : y1 : y2 : y3] ∈ PẼ1 | q1(y0, y1, y2, y3) > 0}.
Once that K is equipped with the hyperbolic metric, its group of orientation preserving isometries is
PSO4(q1,R) =: PSO(1, 3). The isomorphism of K to the upper-half space model of H3

R yields an
isomorphism between the groups of orientation preserving isometries, PSO(1, 3) ∼= PSL2(C). This is
how we include Γ into PSO(1, 3).
Now we consider the complex Euclidean 4-space Ẽ1 ⊗R C := Cf0 ⊕ Cf1 ⊕ Cf2 ⊕ Cf3, the complex
projective 3-space P(Ẽ1 ⊗R C) = (Ẽ1 ⊗R C \ {0})/C∗, and obtain a model

KC := {[z0 : z1 : z2 : z3] ∈ P(Ẽ1 ⊗R C) | q1(|z0|, |z1|, |z2|, |z3|) > 0}
for the complex hyperbolic 3-space H3

C , where |z| denotes the modulus of the complex number z. The
latter model admits PSU(1, 3) as its group of orientation preserving isometries, with a natural inclusion
of PSO(1, 3).
This is how we obtain our action of Γ on H3

C . In the remainder of this section we show some properties
of this action that will be used in the following.
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Lemma 7 The action of Γ on H3
C just defined is properly discontinuous.

Proof This fact should be well known and can be proved using the existence of Dirichlet fundamental
domains for the Γ-action on H3

C [21, Section 9.3]. We include here for completeness a self-contained
proof which relies on the fact that the Γ-action on H3

R is properly discontinuous [15, Theorems 1.2, p.
34, and 1.1 p. 311].

Let {γn}n>1 be a sequence of elements of Γ and let x ∈ H3
C be a point, such that {γn · x}n>1 is infinite.

We show that {γn · x}n>1 has no accumulation point in H3
C . To this aim, assume by contradiction that

x∞ ∈ H3
C is an accumulation point for {γn · x}n>1 . Let p : H3

C → H3
R be the projection defined in

the proof of Theorem 17 and consider p(x∞), {p(γn · x)}n>1 . Notice that since p is Γ-equivariant,
p(γn · x) = γn · p(x), and {γn · p(x)}n>1 is infinite, because Γ acts properly discontinuously on H3

R . It
follows that p(x∞) is an accumulation point for {γn · p(x)}n>1 , hence a contradiction.

Lemma 8 For any g ∈ Γ, the natural map
(
H3

C
)g
/CΓ(g)→ H3

C/Γ induced by the inclusion
(
H3

C
)g ⊂

H3
C is proper.

Proof The proof is given in two steps, in the first one we show that the map has finite fibres. Since this
fact holds true in general, for any discrete group Γ acting properly discontinuously by bi-holomorphisms
on a complex manifold M , we prove it in this generality. Let us denote by f : Mg/CΓ(g) → M/Γ the
natural map induced by the inclusion Mg ⊂ M . For any x ∈ Mg , let [x] ∈ Mg/CΓ(g) be its equivalence
class. Then

f−1(f ([x])) = {y ∈ Mg | y ∈ Γ · x}/CΓ(g) ,

where Γ · x denotes the orbit of x . Notice that for any h ∈ Γ, if h · x ∈ Mg , then g ∈ Stab(h · x) =

hStab(x)h−1 , and so there exists a unique gh ∈ Stab(x) such that hghh−1 = g, gh = h−1gh. Here for
any element y, Stab(y) denotes its stabilizer. Furthermore, if h1, h2 ∈ Γ are such that h−1

1 gh1 = h−1
2 gh2 ,

then g = h2h−1
1 gh1h−1

2 = (h2h−1
1 )g(h2h−1

1 )−1 . Therefore, h2h−1
1 ∈ CΓ(g) and hence h2 ∈ CΓ(g) · h1 .

This implies that, if we define
Γx,g := {h ∈ Γ | h · x ∈ Mg} ,

then the map fx,g : Γx,g → Stab(x), h 7→ gh = h−1gh, descends to an injective map Γx,g/CΓ(g)→ Stab(x).
The claim now follows from the fact that Stab(x) is finite and Γx,g/CΓ(g) is bijective to f−1(f ([x])).

In the second step of the proof, M = H3
C and f :

(
H3

C
)g
/CΓ(g) → H3

C/Γ. Let d : H3
C × H3

C → R
be the distance function induced by the Bergman metric, that is the positive definite Hermitian form∑3

α,β
∂2 logK
∂zα∂ z̄β

dzαdz̄β on H3
C , where K is the Bergman kernel of H3

C (see [32, p. 145]). By restriction

d induces a distance function on
(
H3

C
)g . Moreover, defining for any [x], [y] ∈ H3

C/Γ (respectively
[x], [y] ∈

(
H3

C
)g
/CΓ(g)),

d̃([x], [y]) := Inf{d(ξ, η) | ξ ∈ Γ · x , η ∈ Γ · y} ,
we have a distance function on H3

C/Γ (on
(
H3

C
)g
/CΓ(g) respectively, where d̃ is defined accordingly).

By elementary topology, for metric spaces, a subspace K is compact if and only if any infinite subset
Z ⊂ K has an accumulation point in K . So, let K ⊂ H3

C/Γ be a compact subspace. To show that f−1(K)
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is compact, let Z ⊂ f−1(K) be an infinite subset. Since f has finite fibres, f (Z) is infinite, so it has an
accumulation point, say [x0] ∈ K . Notice that f−1([x0]) 6= ∅, since Im(f ) is closed. To see this, let
[x] 6∈ Im(f ). Then Γ · x ∩

(
H3

C
)g

= ∅, in other words, for any y ∈ Γ · x , g 6∈ Stab(y). Since the action
is properly discontinuous, any y ∈ Γ · x has a neighborhood U such that γ · U ∩ U 6= ∅, if and only if
γ ∈ Stab(y), for any γ ∈ Γ. In particular, the stabilizer of any point in U is contained in Stab(y), and
hence Γ · U ∩

(
H3

C
)g

= ∅. So, Γ · U gives an open neighbourhood of [x] which has empty intersection
with Im(f ). To finish the proof of the lemma, we observe that, if [x0] ∈ K is an accumulation point for
f (Z), and f−1([x0]) 6= ∅, then there exists [y0] ∈ f−1([x0]) ⊂ f−1(K) which is an accumulation point for
Z , since f has finite fibres.

As we will see in Section 4 (Remark 18), if g ∈ PSL2(C) ∼= PSO(1, 3) is different from ±1, and
(H3

C)g 6= ∅, then (H3
C)g ∩ H3

R 6= ∅. Therefore, g is an elliptic element of PSL2(C) ([15, Prop. 1.4, p.
34]), in particular it has exactly two fixed points on ∂H3

R
∼= P1

C , and the geodesic line in H3
R joining

these two points is contained in (H3
C)g . Moreover, g acts as a rotation around this geodesic line. For this

reason, we call any such element g a non-trivial rotation of H3
C .

Lemma 9 The degree shifting number of any non-trivial rotation of H3
C on its fixed points set is 1.

Proof For any rotation θ̂ of angle θ around a geodesic line in H3
R , there is a basis for the construction

of the Kleinian model such that the matrix of θ̂ takes the following shape ([15, Prop. 1.13, p. 40]),



1 0 0 0
0 1 0 0
0 0 cos θ − sin θ
0 0 sin θ cos θ


 ∈ PSO(1, 3).

This matrix, considered as an element of PSU(1, 3), performs a rotation of angle θ around the “complex-
ified geodesic line” with respect to the inclusion H3

R ↪→ H3
C . The fixed points of this rotation are exactly

the points x lying on this complexified geodesic line, and the action on their tangent space TxH3
C
∼= C3

is again a rotation of angle θ . Hence we can choose a basis of this tangent space such that this rotation is
expressed by the matrix 


1 0 0
0 eiθ 0
0 0 e−iθ


 ∈ SL3(C).

Therefore, the degree shifting number of the rotation θ̂ at x is 1.

Let now x ∈ (H3
C)g \ H3

R . From Remark 18 it follows that x and p(x) ∈ (H3
R)g belongs to the same

connected component of (H3
C)g , where p : H3

C → H3
R is the projection defined in the proof of Theorem 17.

Therefore, shift(g, x) = shift(g, p(x)) = 1.

Lemma 10 Let Γ be a Bianchi group acting on H3
C as in Construction 6. Then, for any point x ∈ H3

C ,
the stabilizer StabΓ(x) of x in Γ is a finite group isomorphic to one of the following groups: the cyclic
group of order 1, 2 or 3; the dihedral group D2 of order 4; the dihedral group D3 of order 6; the
alternating group A4 of order 12.
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Furthermore, the map StabΓ(x)→ GL3(C) given by γ 7→ Txγ , where Txγ is the differential of γ at x , is
an injective group homomorphism, whose image is contained in SL3(C) and it is conjugate to one of the
following subgroups G of SL3(C):

1) if StabΓ(x) is cyclic of order n = 1, 2 or 3, then G =

〈

ω 0 0
0 ω−1 0
0 0 1



〉

, where ω ∈ C∗ is a

primitive n-th root of 1.

2) If StabΓ(x) ∼= D2 , then G =

〈

−1 0 0
0 −1 0
0 0 1


 ,



−1 0 0
0 1 0
0 0 −1



〉

.

3) If StabΓ(x) ∼= D3 , then G =

〈

ω 0 0
0 ω2 0
0 0 1


 ,




0 1 0
1 0 0
0 0 −1



〉

, where ω ∈ C∗ is a primitive

third root of 1.

4) If StabΓ(x) ∼= A4 , then G =

〈

−1 0 0
0 −1 0
0 0 1


 ,



−1 0 0
0 1 0
0 0 −1


 ,




0 1 0
0 0 1
1 0 0



〉

.

Proof Since the action of Γ on H3
C is properly discontinuous (Lemma 7), StabΓ(x) is finite. The first

part of the lemma follows now from the classification of the finite subgroups of Γ (see Lemma 13).

From the proof of Lemma 9 we deduce that, if γ ∈ StabΓ(x) \ {1}, then Txγ is different from the
identity and det(Txγ) = 1, hence we obtain an injective group homomorphism StabΓ(x) → SL3(C).
The description of the images of these morphisms follows from elementary representation theory, as we
briefly explain.

The case 1) is clear. In case 2), G is generated by two matrices A,B ∈ SL3(C), such that A2 = B2 = I3 ,
and A ·B = B ·A. From Schur’s lemma it follows that A and B are simultaneously diagonalisable, hence
there exists a basis of C3 such that A and B are diagonal of the given form.

In case 3), G is generated by two matrices, A,B, such that A3 = B2 = (A · B)2 = I3 . Let {u, v,w} be a
basis of C3 , such that Au = ωu, Av = ω2v, Aw = w, where ω ∈ C∗ , ω3 = 1, ω 6= 1. From the relation
A · B = B · A2 , we deduce that Bw = ±w, Bu = av and Bv = bu, for some a, b ∈ C∗ . Since B2 = I3 , it
follows that ab = 1. Hence, in the basis {1

a u, v,w} of C3 , the matrices A and B have the desired form.

Finally, in case 4), we use the fact that A4 has four irreducible representations (see e.g. [48, Thm. 7,
p. 19]), three of dimension one that are induced by the representations of A4/H ∼= Z/3Z, where H
is the normal subgroup of A4 consisting of the permutations of order two. The remaining irreducible
representation of A4 is of dimension three. Therefore, up to conjugation, there is only one injective group
homomorphism A4 → SL3(C). The result follows from the fact that the three given matrices generate a
subgroup of SL3(C) isomorphic to A4 .
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Theorem 11 Let Γ be a group generated by translations and rotations of H3
C . Then all obstruction

bundles of the orbifold [H3
C/Γ] are of fiber dimension zero, except in the case corresponding to two

elements b, c ∈ Γ \ {1} with c = bk and bc 6= 1. In this last case the obstruction bundle is of fiber
dimension 1 and it is trivial.

Proof Non-trivial obstruction bundles can only appear for two elements of Γ with common fixed points.
The translations of H3

C have their fixed points on the boundary and not in H3
C . So let b and c be

non-trivial hyperbolic rotations around distinct axes intersecting in the point x ∈ H3
C =: Y . Then bc is

again a hyperbolic rotation around a third distinct axis passing through x . Obviously, these rotation axes
constitute the fixed point sets Yb , Yc and Ybc . Hence the only fixed point of the group generated by b
and c is x . Now Lemma 5 yields the following fiber dimension for the obstruction bundle on Yb,c :

shift(b) + shift(c)− shift(bc)− codimC
(
Yb,c ⊂ Ybc) .

After computing degree shifting numbers using Lemma 9, we see that this fiber dimension is zero.

Let now b and c be non-trivial hyperbolic rotations around the same axis Yb = Yc . Then c = bk and
either bc = 1, or bc 6= 1. As before we conclude that the fiber dimension of the obstruction bundle is
0 in the first case, and 1 in the second. However, if bc 6= 1, then Yb,c = Ybc , which is a non-compact
Riemann surface contained in H3

C , hence the obstruction bundle is trivial in this case [19, Thm. 30.3, p.
229].

Finally, if b = 1, or c = 1, the claim follows from Lemma 5 and Lemma 9 as before.

3 The centralizers of finite cyclic subgroups in the Bianchi groups

In this section, as well as Theorems 20 and 21, we will reduce all our considerations to the action on real
hyperbolic 3-space H3

R . For the latter action, there are Poincaré’s formulas [35] on the upper-half space
model, which extend the Möbius transformations from the hyperbolic plane. Let Γ be a finite index
subgroup in a Bianchi group PSL2(O−m). In 1892, Luigi Bianchi [6] computed fundamental domains for
some of the full Bianchi groups. Such a fundamental domain has the shape of a hyperbolic polyhedron
(up to a missing vertex at certain cusps, which represent the ideal classes of O−m ), so we will call it the
Bianchi fundamental polyhedron. We use the Bianchi fundamental polyhedron to induce a Γ-equivariant
cell structure on H3

R , namely we start with this polyhedron as a 3-cell, record its polyhedral facets, edges
and vertices, and tessellate out H3

R with their Γ-images.

It is well-known [25] (cf. also [15, Prop. 1.13, p. 40]) that any element of Γ fixing a point inside real
hyperbolic 3-space H3

R acts as a rotation of finite order. And the rotation axis does not pass through the
interior of the Bianchi fundamental polyhedron, because the interior of the latter contains only one point
on each Γ-orbit. Therefore, we can easily refine our Γ-equivariant cell structure such that the stabilizer
in Γ of any cell σ fixes σ point-wise: We just have to subdivide the facets and edges of the Bianchi
fundamental polyhedron by their symmetries (and then again spread out the subdivided cell structure on
H3

R using the Γ-action). This has been implemented in practice [38], and we shall denote H3
R with this

refined cell structure by Z .
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Definition 12 Let ` be a prime number. The `–torsion sub-complex is the sub-complex of Z consisting
of all the cells which have stabilizers in Γ containing elements of order `.

For ` being one of the two occurring primes 2 and 3, the orbit space of this sub-complex is a finite graph,
because the cells of dimension greater than 1 are trivially stabilized in the refined cellular complex. We
reduce this sub-complex with the following procedure, motivated in [41].

Condition A In the `–torsion sub-complex, let σ be a cell of dimension n − 1, lying in the boundary
of precisely two n–cells τ1 and τ2 , the latter cells representing two different orbits. Assume further that
no higher-dimensional cells of the `–torsion sub-complex touch σ ; and that the n–cell stabilizers admit
an isomorphism Γτ1

∼= Γτ2 .

Where this condition is fulfilled in the `–torsion sub-complex, we merge the cells τ1 and τ2 along σ and
do so for their entire orbits, if and only if they meet the following additional condition. We never merge
two cells the interior of which contains two points on the same orbit.

Condition B The inclusion Γτ1 ⊂ Γσ induces an isomorphism on group homology with Z/`–
coefficients under the trivial action.

The reduced `–torsion sub-complex is the Γ–complex obtained by orbit-wise merging two n–cells of the
`–torsion sub-complex satisfying conditions A and B.

We use the following classification of Felix Klein [25].

Lemma 13 (Klein) The finite subgroups in PSL2(O) are exclusively of isomorphism types the cyclic
groups of orders 1, 2 and 3, the dihedral groups D2 and D3 (isomorphic to the Klein four-group
Z/2× Z/2, respectively to the symmetric group on three symbols) and the alternating group A4 .

Now we investigate the associated normalizer groups. Straight-forward verification using the multiplica-
tion tables of the implied finite groups yields the following.

Lemma 14 Let G be a finite subgroup of PSL2(O−m). Then the type of the normalizer of any subgroup
of type Z/` in G is given as follows for ` = 2 and ` = 3, where we print only cases with existing
subgroup of type Z/`.

Isomorphism type of G {1} Z/2 Z/3 D2 D3 A4

normalizer of Z/2 Z/2 D2 Z/2 D2

normalizer of Z/3 Z/3 D3 Z/3.

Lemma 15 Let v ∈ H3
R be a vertex with stabilizer in Γ of type D2 or A4 . Let γ in Γ be

a rotation of order 2 around an edge e adjacent to v. Then the centralizer CΓ(γ) reflects Hγ
— which is the geodesic line through e — onto itself at v.
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Proof Denote by Γv the stabilizer of the vertex v. In the case that Γv is of type D2 , which is Abelian,
it admits two order-2-elements β, β · γ centralizing γ and turning the geodesic line through e onto itself

such that the image of e touches v from the side opposite to e (illustration:
b
e

b
v
βe b

). In the case that Γv

is of type A4 , it contains a normal subgroup of type D2 that admits again two such elements.

Any edge of the reduced torsion sub-complex is obtained by merging a chain of edges on the intersection
of one geodesic line with some strict fundamental domain for Γ in H . We call this chain the chain of
edges associated to α . It is well defined up to translation along the rotation axis of α .

Lemma 16 Let α be any 2–torsion element in Γ. Then the chain of edges associated to α is a
fundamental domain for the action of the centralizer of α on the rotation axis of α .

Proof We distinguish the following two cases of how 〈α〉 ∼= Z/2 is included into Γ.

First case. Suppose that there is no subgroup of type D2 in Γ which contains 〈α〉. Then the connected
component to which the rotation axis of α passes in the quotient of the 2-torsion subcomplex, is
homeomorphic to a circle, with cell structure b . We can write Γe = 〈α〉 and Γe′ =

〈
γαγ−1

〉
. One

immediately checks that any fixed point x ∈ H of α induces the fixed point γ · x of γαγ−1 . As PSL2(C)
acts by isometries, the whole fixed point set in H of α is hence identified by γ with the fixed point set
of γαγ−1 . This gives us the identification γ−1 from e′ to an edge on the rotation axis of α , adjacent to
e because of the first condition on γ . We repeat this step until we have attached an edge δe on the orbit
of the first edge e, with δ ∈ Γ. As δ is an isometry, the whole chain is translated by δ from the start
at e to the start at δe. So the group 〈δ〉 acts on the rotation axis with fundamental domain our chain of
edges. And δαδ−1 is again the rotation of order 2 around the axis of α . So, δαδ−1 = α and therefore
〈δ〉 < CΓ(α).

Second case. Suppose that there is a subgroup G of Γ of type G ∼= D2 containing 〈α〉. Then the rotation
axis of α passes in the quotient of the 2-torsion subcomplex to an edge on a connected component of
homeomorphism type b b , b b or b b (see [7]). If there is no further inclusion G < G′ < Γ with
G′ ∼= A4 , let G′ := G. Then the chain associated to α can be chosen such that one of its endpoints
is stabilized by G′ . The other endpoint of this chain must then lie on a different Γ–orbit, and admit
as stabilizer a group H′ containing 〈α〉, of type D2 or A4 . By Lemma 15, each G′ and H′ contain a
reflection of the rotation axis of α , centralizing α . These two reflections must differ from one another
because they do not fix the chain of edges. So their free product tessellates the rotation axis of α with
images of the chain of edges associated to α .

4 A spine for the complexified Bianchi orbifolds

In this section, we prove the following theorem, which will be used to prove Theorem 3.

Theorem 17 Let Γ be a Bianchi group. Then there is a Γ-equivariant homotopy equivalence between
H3

C and H3
R . In particular, H3

C/Γ is homotopy equivalent to H3
R/Γ.
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Proof We consider the ball model for complex hyperbolic 3-space H3
C [21] (which is called the Klein

model in [15]). This provides us with a complex structure such that H3
R is naturally embedded into H3

C
as the fixed points set of the complex conjugation. In the other direction, following [21], we define a
projection as follows. For any point z ∈ H3

C , there is a unique geodesic arc, with respect to the Bergman
metric, αz,z̄ from z to its complex conjugate z̄ (see e.g. [21, Theorem 3.1.11]); and the intersection point
p(z) = αz,z̄ ∩ H3

R is equidistant to z and z̄ [21, Section 3.3.6]. This defines a projection p : H3
C → H3

R .
Notice that p is PSO(1, 3)-equivariant and hence also Γ-equivariant.

Clearly, the restriction p|H3
R

is the identity. On the other hand, let

H : H3
C × [0, 1]→ H3

C , H(z, t) = αz,z̄ (tρ(z, p(z)))

where ρ is the hyperbolic distance and we have parametrized the geodesic arc such that αz,z̄(0) = p(z) and
αz,z̄(ρ(z, p(z))) = z. Then H is an homotopy between p and the identity map of H3

C . Furthermore, since
PSO(1, 3) is a group of isometries of H3

C , it sends geodesics to geodesics and so, for any M ∈ PSO(1, 3),

H(Mz, t) = αMz,Mz (tρ(Mz, p(Mz)))

= Mαz,z̄ (tρ(z, p(z))) = MH(z, t) .(2)

It follows that H is PSO(1, 3)-equivariant, in particular it is Γ-equivariant.

Remark 18 From (2) it follows that, if g ∈ PSO(1, 3) fixes a point z, with z 6= z̄, then g fixes the
geodesic arc αz,z̄ pointwise. Indeed, from the fact that g · z̄ = g · z = z̄, we deduce that g(αz,z̄) = αz,z̄ .
Moreover, for every z′ ∈ αz,z̄ , we see that g · z′ = z′ , because otherwise we get a contradiction from the
following equalities:

ρ(z, z′) = ρ(g · z, g · z′) = ρ(z, g · z′) ,

where ρ is the hyperbolic distance.

Remark 19 From Lemma 10 it follows that the points z ∈ H3
C such that the stabilizer StabΓ(z) ⊂ Γ is

not cyclic are isolated, hence, Theorem 17 implies that such points z belong to H3
R .

5 Orbifold cohomology of real Bianchi orbifolds

Our main results on the vector space structure of the Chen–Ruan orbifold cohomology of Bianchi orbifolds
are the below two theorems.

Theorem 20 For any element γ of order 3 in a finite index subgroup Γ in a Bianchi group with
units {±1}, the quotient spaceHγ/CΓ(γ) of the rotation axis modulo the centralizer of γ is homeomorphic
to a circle.

Proof As γ is a non-trivial torsion element, by [41, lemma 22] the Γ–image of the chain of edges
associated to γ contains the rotation axis Hγ . Now we can observe two cases.
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b First, assume that the rotation axis of γ does not contain any vertex of stabilizer type D3 (from [41],
we know that this gives us a circle as a path component in the quotient of the 3–torsion sub-
complex). Assume that there exists a reflection of Hγ onto itself by an element of Γ. Such a
reflection would fix a point on Hγ . Then the normalizer of 〈γ〉 in the stabilizer of this point would
contain the reflection. This way, Lemma 14 yields that this stabilizer is of type D3 , which we have
excluded. Thus, there can be no reflection of Hγ onto itself by an element of Γ.
As Γ acts by isometries preserving a metric of non-positive curvature (a CAT(0) metric), every
element g ∈ Γ sending an edge of the chain for γ to an edge on Hγ outside the fundamental
domain, can then only perform a translation on Hγ . A translation along the rotation axis of γ
commutes with γ , so g ∈ CΓ(γ). Hence the quotient space Hγ/CΓ(γ) is homeomorphic to a circle.

b b If Hγ contains a point with stabilizer in Γ of type D3 , then there are exactly two Γ–orbits of
such points. The elements of order 2 do not commute with the elements of order 3 in D3 , so the
centralizer of γ does not contain the former ones. Hence, CΓ(γ) does not contain any reflection
of Hγ onto itself. Denote by α and β elements of order 2 of each of the stabilizers of the two
endpoints of a chain of edges for γ . Then αβ performs a translation on Hγ and hence commutes
with γ . A fundamental domain for the action of 〈αβ〉 on Hγ is given by the chain of edges
for γ united with its reflection through one of its endpoints. As no such reflection belongs to the
centralizer of γ and the latter endpoint is the only one on its Γ–orbit in this fundamental domain,
the quotient Hγ/CΓ(γ) matches with the quotient Hγ/〈αβ〉 , which is homeomorphic to a circle.

Theorem 21 Let γ be an element of order 2 in a Bianchi group Γ with units {±1}. Then, the
homeomorphism type of the quotient space Hγ/CΓ(γ) is

b b an edge without identifications, if 〈γ〉 is contained in a subgroup of type D2 inside Γ and
b a circle, otherwise.

Proof By Lemma 16, the chain of edges for γ is a fundamental domain for CΓ(γ) on the rotation axis
Hγ of γ . Again, we have two cases.

b b If 〈γ〉 is contained in a subgroup of type D2 inside Γ, then any chain of edges for γ admits
endpoints of stabilizer types D2 or A4 , because we can merge any two adjacent edges on a 2–
torsion axis with touching point of stabilizer type Z/2 or D3 . As D2 is an Abelian group and
the reflections in A4 are contained in the normal subgroup D2 , the reflections in these endpoint
stabilizers commute with γ , so the quotient space Hγ/CΓ(γ) is represented by a chain of edges
for γ . What remains to show, is that there is no element of CΓ(γ) identifying the two endpoints of
stabilizer type D2 (respectively A4 ). Assume that there is an element g ∈ CΓ(γ) carrying out this
identification. Any one of the two endpoints, denote it by x , contains in its stabilizer a reflection α
of the rotation axis of γ . The other endpoint is then g · x and contains in its stabilizer the conjugate
gα by g. Denote by m the point in the middle of (x, g · x), i.e. the point on Hγ with equal distance
to x and to g ·x . As 〈gα, γ〉 is Abelian, gα is in CΓ(γ) and hence (x,m) and (g ·x,m) are equivalent

modulo CΓ(γ) via the element gαg (illustration:
b b
x m gx gm

〈α, γ〉
b

〈gα, γ〉
b

). Then the chain of edges for
γ does not reach from x to g · x . This contradicts our hypotheses, so the homeomorphism type of
Hγ/CΓ(γ) is an edge without identifications.
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b The other case is analogous to the first case of the proof of Theorem 20, the rôle of D3 being
played by D2 and A4 .

Furthermore, the following easy-to-check statement will be useful for our orbifold cohomology compu-
tations.

Remark 22 There is only one conjugacy class of elements of order 2 in D3 as well as in A4 . In D3 ,
there is also only one conjugacy class of elements of order 3, whilst in A4 there is an element γ such
that γ and γ2 represent the two conjugacy classes of elements of order 3.

Proof In cycle type notation, we can explicitly establish the multiplication tables of D3 and A4 , and
compute the conjugacy classes.

Corollary 23 (Corollary to Remark 22) Let γ be an element of order 3 in a Bianchi group Γ with
units {±1}. Then, γ is conjugate in Γ to its square γ2 if and only if there exists a group G ∼= D3 with
〈γ〉 ( G ( Γ.

Denote by λ2` the number of conjugacy classes of subgroups of type Z/`Z in a finite index subgroup Γ

in a Bianchi group with units {±1}. Denote by λ∗2` the number of conjugacy classes of those of them
which are contained in a subgroup of type Dn in Γ. By Corollary 23, there are 2λ6 − λ∗6 conjugacy
classes of elements of order 3. As a result of Theorems 20 and 21, we have the following isomorphism
of vector spaces:

⊕

γ∈T

H•
(
(HR)γ/CΓ(γ);Q

)

∼= H•
(
HR/Γ; Q

)⊕λ∗4 H• ( b b ; Q)
⊕(λ4−λ∗4 )

H•
(

b ; Q
)⊕(2λ6−λ∗6 )

H•
(

b ; Q
)
,

where T ⊂ Γ is a set of representatives of conjugacy classes of elements of finite order in Γ. The
(co)homology of the quotient space HR/Γ has been computed numerically for a large scope of Bianchi
groups [52], [46], [42]; and bounds for its Betti numbers have been given in [26]. Krämer [27] has deter-
mined number-theoretic formulae for the numbers λ2` and λ∗2` of conjugacy classes of finite subgroups
in the full Bianchi groups. Krämer’s formulae have been evaluated for hundreds of thousands of Bianchi
groups [41], and these values are matching with the ones from the orbifold structure computations with
[39] in the cases where the latter are available.

When we pass to the complexified orbifold [H3
C/Γ], the real line that is the rotation axis in HR of an

element of finite order, becomes a complex line. However, the centralizer still acts in the same way by
reflections and translations. So, the interval b b as a quotient of the real line yields a stripe b b ×R as a
quotient of the complex line. And the circle b as a quotient of the real line yields a cylinder b ×R as
a quotient of the complex line. Therefore, using the degree shifting numbers of Lemma 9, we obtain the
result of Corollary 2,

Hd
CR
(
[H3

C/Γ]
) ∼= Hd (HC/Γ; Q

)
⊕





Qλ4+2λ6−λ∗6 , d = 2,

Qλ4−λ∗4 +2λ6−λ∗6 , d = 3,

0, otherwise.
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As the authors have calculated the Bredon homology HFin
0 (Γ; RC) of the Bianchi groups with coefficients

in the complex representation ring functor RC (see [36]), Mislin’s following lemma allows us a verification
of our computations (we calculate both sides of Mislin’s isomorphism explicitly).

Lemma 24 (Mislin [31]) Let Γ be an arbitrary group and write FC(Γ) for the set of conjugacy classes
of elements of finite order in Γ. Then there is an isomorphism

HFin
0 (Γ; RC)⊗Z C ∼= C[FC(Γ)].

6 The cohomology ring isomorphism

In this section, we prove Theorem 3. To this aim, we first prove that there is a bijective correspondence
between conjugacy classes of elements of finite order in Γ \ {1} and exceptional prime divisors of
the crepant resolution f : Y → H3

C/Γ. Here we follow, and we use results from, [24], therefore
we interpret the aforementioned correspondence as a McKay correspondence for complexified Bianchi
orbifolds. In Section 6.3, we use this correspondence to define a morphism of graded vector spaces
Φ : H∗CR([H3

C/Γ]) → H∗(Y). Finally, using a Mayer-Vietoris argument, together with results from [24]
and [34], we show that Φ is an isomorphism and that it preserves the cup products.

Throughout this section, Γ is a Bianchi group and [H3
C/Γ] is the corresponding complexified Bianchi

orbifold.

6.1 The singular locus of complexified Bianchi orbifolds and the existence of crepant
resolutions

Let us recall that the singular points of H3
C/Γ are the image, under the projection H3

C → H3
C/Γ, of

the points with non-trivial stabilizer. Moreover, every element γ ∈ Γ \ {1}, such that (H3
C)γ 6= ∅, is a

non-trivial rotation of H3
C of order 2 or 3 (see the discussion before Lemma 9) and the fixed-point locus

(H3
C)γ is a Riemann surface. More precisely, we get the following result.

Lemma 25 Let Σ ⊂ H3
C/Γ be the singular locus. Then, the following statements hold true.

1) Σ is an analytic space of dimension 1 with finitely many singular points x1, . . . , xs .

2) For any γ ∈ Γ, let ıγ : (H3
C)γ/CΓ(γ) → H3

C/Γ be the morphism induced by the inclusion
(H3

C)γ ↪→ H3
C and let Σγ := Im(ıγ) be the image of ıγ . Then, every irreducible component of Σ

is equal to Σγ ⊂ Σ, for some γ ∈ Γ.

3) For any γ ∈ Γ, the centralizer CΓ(γ) is a normal subgroup of NΓ(〈γ〉), the normalizer of 〈γ〉
in Γ. Moreover, NΓ(〈γ〉)/CΓ(γ) acts on (H3

C)γ/CΓ(γ). And (H3
C)γ/NΓ(〈γ〉) is the normalisation

of Σγ .

4) Let γ ∈ Γ. If γ has order 2, or it has order 3 and it is not conjugated to γ2 in Γ, then
CΓ(γ) = NΓ(〈γ〉). If γ has order 3 and it is conjugated to γ2 in Γ, then CΓ(γ) has index 2 in
NΓ(〈γ〉).
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Proof 1) As observed before, if γ ∈ Γ \ {1} is such that (H3
C)γ 6= ∅, then it is a non-trivial rotation.

Therefore, (H3
C)γ is a Riemann surface and so Σ is an analytic space of dimension 1. The singular points

of Σ are the image of the points z ∈ H3
C with stabilizer not cyclic. As observed in Remark 19, such

points belong to H3
R . Now, the fact that Σ has finitely many singular points follows from the existence of

a fundamental domain for the action of Γ on H3
R , which is bounded by finitely many geodesic surfaces

([15, Thm. 1.1, p. 311]).

2) Is a consequence of the fact that (H3
C)γ is irreducible, as it is isomorphic to the disk ∆ = {z ∈ C | |z| <

1}, and the image of an irreducible analytic space is irreducible.

3) Let η ∈ CΓ(γ), and let δ ∈ NΓ(〈γ〉). Then

δ−1ηδγ = δ−1ηγkδ = δ−1γkηδ = γδ−1ηδ ,

where k ∈ N is such that δγδ−1 = γk . Hence δ−1ηδ ∈ CΓ(γ) and so CΓ(γ) is a normal subgroup of
NΓ(〈γ〉).
The natural action of NΓ(〈γ〉) on (H3

C)γ is properly discontinuous, hence every point has finite stabilizer.
From this it follows that (H3

C)γ/NΓ(〈γ〉) is a normal analytic space. Furthermore, let z, z′ ∈ (H3
C)γ

be two points that are mapped to the same point x ∈ H3
C/Γ, and suppose that x is a smooth point of

Σ. Under these hypotheses, StabΓ(z) = StabΓ(z′) = 〈γ〉 and so, if g ∈ Γ is such that g · z = z′ , we
know that g 〈γ〉 g−1 = 〈γ〉, that is g ∈ NΓ(〈γ〉). This implies that ıγ induces a birational map between
(H3

C)γ/NΓ(〈γ〉) and Σγ , hence 3) follows.

To prove 4), let us consider the action of NΓ(〈γ〉)/CΓ(γ) on 〈γ〉 \ {1} given by conjugation. If γ has
order 2, or it has order 3 and it is not conjugated to γ2 , then this action is trivial, hence CΓ(γ) = NΓ(〈γ〉).
In the remaining case, the orbit of γ has two elements, so the result follows.

The existence of a crepant resolution of H3
C/Γ follows from [44] (see also [13]), since H3

C/Γ has
Gorenstein singularities (Lemma 10). For later use, and to fix notations, we briefly review its construction.
Under the notation of Lemma 25, let x1, . . . , xs ∈ Σ be the singular points of Σ (the singular locus of
H3

C/Γ). By Lemma 10, there are disjoint open neighborhoods U1, . . . ,Us ⊂ H3
C/Γ of x1, . . . , xs ,

respectively, each of them isomorphic to the quotient of an open neighborhood of the origin in C3 by a
finite subgroup of SL3(C). Therefore, for any i = 1, . . . , s, there exists a crepant resolution fi : Vi → Ui

of Ui .

Let X := (H3
C/Γ) \ {x1, . . . , xs} be the complement of x1, . . . , xs . It is an analytic space with transverse

singularities of type A. That is, every singular point x ∈ X has a neighborhood isomorphic to a
neighborhood of a singular point of {(u, v,w) ∈ C3 |wn+1 = uv}×Cd−2 , for some integer n > 1, where
d = dim(X) is equal to 3 in our case. Notice that n is constant on each connected component C of the
singular locus of X , hence we say that X has transverse singularities of type An on C .

Every analytic space with transverse singularities of type A admits a unique crepant resolution (see e.g.
[34, Prop. 4.2]), up to canonical isomorphism. So, let f0 : V → X be a crepant resolution of X . By
uniqueness, the restriction of f0 : V → X to Ui \ {xi} is canonically isomorphic to the restriction of
fi : Vi → Ui to Ui \ {xi}, ∀i = 1, . . . , s. Therefore, f0, f1, . . . , fs can be glued together, yielding a crepant
resolution f : Y → H3

C/Γ.
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6.2 McKay correspondence for complexified Bianchi orbifolds

In this section, we prove that there is a natural one-to-one correspondence between conjugacy classes of
elements of finite order of Γ\{1} and exceptional prime divisors of the crepant resolution f : Y → H3

C/Γ.
Let us recall that the authors of [24] define a natural bijective correspondence between conjugacy classes
of junior elements of G \ {1} (here, G is a finite subgroup of SLn(C)) and exceptional prime divisors
of a minimal model of Cn/G (if f : Y → Cn/G is a crepant resolution, then Y is a minimal model of
Cn/G). This result has been interpreted, and extended in several directions, using derived categories in
[9] and [13].

We will need some general facts about analytic spaces with transverse singularities of type A, which we
briefly recall. Let M be a complex manifold with an effective and properly discontinuous action of a
discrete group Γ, and let X = M/Γ be the quotient space. For γ ∈ Γ, let C ⊂ X be the image under the
quotient map M → M/Γ of the fixed-point locus Mγ . Let us suppose that X has transverse singularities
of type An on C . In particular, the stabilizer of any point z ∈ Mγ is 〈γ〉 ∼= Z/(n + 1)Z, so two points
z, z′ ∈ Mγ are identified by the projection M → M/Γ if and only if they are on the same NΓ(〈γ〉)-orbit
(see the proof of Lemma 25, 3), where NΓ(〈γ〉) is the normalizer of 〈γ〉 in Γ.

Note 26 We observe that, in this situation, for any g ∈ NΓ(〈γ〉), gγg−1 = γ±1 .

Proof Let us consider the normal bundle of Mγ in M , NMγ/M . The group 〈γ〉 acts fibrewise on NMγ/M ,
so we have a splitting NMγ/M = (NMγ/M)χ⊕(NMγ/M)χ

−1
, where (NMγ/M)χ

±1
is the sub-bundle of NMγ/M

where 〈γ〉 acts as multiplication by the character χ±1 , and χ is a generator of the group of characters
of 〈γ〉. Assume that gγg−1 = γk , and let z ∈ Mγ , z′ := g · z. Then, the tangent map of g at z, Tzg,
induces an isomorphism

(3) NMγ/M(z) ∼= NMγ/M(z′)

between the fibre of NMγ/M at z and that at z′ . Since Tzg◦Tzγ = Tz(g◦γ) = Tz′γ
k◦Tzg, the isomorphism

(3) yields an isomorphism between the following representations of 〈γ〉: 〈γ〉 → GL(NMγ/M(z)), γ 7→
Tzγ , and 〈γ〉 → GL(NMγ/M(z′)), γ 7→ Tz′γ

k . But the last representation is the direct sum of the
irreducible representations of 〈γ〉 having characters χk and χ−k , so k ≡ ±1 (mod n + 1).

We say that X has transverse singularities of type An on C and non-trivial monodromy, if γ is
conjugated to γ−1 in Γ. Otherwise we say that X has transverse singularities of type An on C and
trivial monodromy. We refer to [34, Section 3.1] for an equivalent definition of the monodromy. Notice
also that in [34] the monodromy is referred to a suitable neighbourhood of [Mγ/NΓ(〈γ〉)] in the orbifold
[M/Γ]. However, by [34, Prop. 2.9], such an orbifold structure is determined uniquely by X .

Let now Ũ be a neighborhood of Mγ in M that is isomorphic to a neighborhood of the 0-section of
NMγ/M (i.e. a tubular neighborhood of Mγ in M ). The natural action of NΓ(〈γ〉) on NMγ/M induces an
action of NΓ(〈γ〉) on Ũ , such that Ũ/NΓ(〈γ〉) is an open neighborhood of C in X . Moreover, if X has
non-trivial monodromy on C , then Ũ/CΓ(γ) is an analytic space with transverse singularities of type
An on Mγ/CΓ(γ) and trivial monodromy, and the natural map Ũ/CΓ(γ) → Ũ/NΓ(〈γ〉) is a two-to-one
topological covering (this is analogous to [34, Cor. 3.6]).

We summarise in the following proposition the previous considerations, in the case of complexified
Bianchi orbifolds.
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Proposition 27 Let Γ be a Bianchi group, let Σ be the singular locus of H3
C/Γ, and let x1, . . . , xs be

the singular points of Σ. Let X := (H3
C/Γ) \ {x1, . . . , xs}. Then, the following holds true.

1) For every connected component C of Σ \ {x1, . . . , xs}, X has transverse singularities of type An

on C , with n ∈ {1, 2}.

2) If C is contained in the image of (H3
C)γ with n = 2 and γ is not conjugated to γ2 , or with n = 1,

then X has trivial monodromy on C .

3) If n = 2 and γ is conjugated to γ2 , then X has non-trivial monodromy on C . Furthermore, using
the same notation as before, Ũ/CΓ(γ) is an analytic space with transverse singularities of type A2

and trivial monodromy; the map Ũ/CΓ(γ)→ Ũ/NΓ(〈γ〉) is a two-to-one topological covering.

In the following proposition, we establish a McKay correspondence for complexified Bianchi orbifolds
following [24].

Proposition 28 Let Γ be a Bianchi group, and let f : Y → H3
C/Γ be a crepant resolution. Then, there

is a one-to-one correspondence between conjugacy classes of elements of finite order of Γ \ {1} and
exceptional prime divisors of f .

Proof Let γ ∈ Γ\{1} be an element of finite order. Then γ is an elliptic element of PSL2(C) ([15, Def.
1.3, p. 34]) and so (H3

C)γ 6= ∅ ([15, Prop. 1.4, p. 34]). By Lemma 9, the degree shifting number of γ is
1, in other words, in the notation of [24], γ is a junior element of StabΓ(z), for any z ∈ (H3

C)γ .

As observed in Lemma 25, the image of (H3
C)γ in H3

C/Γ is an irreducible component Σγ of the singular
locus Σ of H3

C/Γ.

Now we distinguish two cases.
Case 1: γ has order 2, or it has order 3 and is not conjugated to γ2 in Γ.
Then, there are open subsets U1, . . . ,Ur ⊂ H3

C/Γ of the form Ui = Ũi/Gi , where Ũi ⊂ H3
C is an open

neighbourhood of a point z ∈ (H3
C)γ , Gi = StabΓ(z), for i = 1, . . . , r , and such that Σγ ⊂ ∪r

i=1Ui .
Notice that in this case, the conjugacy class of γ ∈ Gi consists only of γ , so by [24, Cor. 1.5], γ
corresponds to an exceptional prime divisor Eγ,i of the restriction f|f−1(Ui) : f−1(Ui) → Ui , for any
i = 1, . . . , r (as observed before, γ is a junior element of Gi ). Moreover, by the definition of the Eγ,i ’s
(see [24]), it follows that on f−1(Ui ∩ Uj), the divisors Eγ,i and Eγ,j coincide, so they glue together to
form an exceptional prime divisor Eγ ⊂ Y of f .

Case 2: γ has order 3 and is conjugated to γ2 in Γ.
Let now C ⊂ Σγ be the complement in Σγ of the singular points of Σ. By Proposition 27, there is an open
subset Ũ ⊂ H3

C , with an action of NΓ(〈γ〉), such that Ũ/NΓ(〈γ〉) ⊂ H3
C/Γ is an open neighbourhood

of C and Ũ/CΓ(γ) → Ũ/NΓ(〈γ〉) is a two-to-one topological covering. Furthermore, Ũ/CΓ(γ) is an
analytic space with transverse singularities of type A2 and trivial monodromy. Let Ṽ → Ũ/CΓ(γ) be a
crepant resolution, then by the uniqueness of the crepant resolution for spaces with transverse singularities
of type A, there is a morphism

(4) Ṽ → f−1 (Ũ/NΓ(〈γ〉)
)
,
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such that the following diagram commutes:

Ṽ −−−−→ f−1
(
(Ũ/NΓ(〈γ〉)

)
y

yf|

Ũ/CΓ(γ) −−−−→ Ũ/NΓ(〈γ〉) .
From Case 1, γ corresponds to an exceptional prime divisor Fγ of Ṽ → Ũ/CΓ(γ). Let us denote by
Eγ,0 ⊂ Y the image of Fγ under the morphism (4).

In order to extend Eγ,0 over the whole Σγ , let W ⊂ H3
C/Γ be a (possibly disconnected) neighborhood

of Σγ \ C , such that each connected component is of the form W̃/G, where W̃ ⊂ H3
C is an open

neighborhood of a point z ∈ (H3
C)γ , and G = StabΓ(z). By [24, Cor. 1.5], (the conjugacy class of) γ

corresponds to an exceptional prime divisor E′γ ⊂ f−1(W). By construction, Eγ,0 and E′γ glue together
to form an exceptional prime divisor Eγ of f : Y → H3

C/Γ.
Notice that if we apply the same procedure starting from γ2 = γ−1 , we obtain the same divisor Eγ . This
concludes the proof of the proposition.

6.3 The linear map

Let Γ be a Bianchi group, and let f : Y → H3
C/Γ be a crepant resolution of H3

C/Γ. In this section, we
define a linear map

Φ : H∗CR([H3
C/Γ],Q)→ H∗(Y,Q) .

To this aim, let us fix the following presentation of the Chen-Ruan orbifold cohomology of [H3
C/Γ] (cf.

Definition 1):

(5) H∗CR([H3
C/Γ],Q) = ⊕γ∈T H∗−2shift(γ) ((H3

C)γ/CΓ(γ),Q
)

where T ⊂ Γ is a set of representatives of the conjugacy classes of elements of finite order of Γ. Then
Φ is defined as the sum of linear maps

(6) Φγ : H∗−2shift(γ) ((H3
C)γ/CΓ(γ),Q

)
→ H∗(Y,Q) , for γ ∈ T .

If γ = 1, then we define Φ1 := f ∗ : H∗
(
H3

C/Γ,Q
)
→ H∗(Y,Q). Let now γ ∈ T \ {1}, and consider

the following Cartesian diagram

Ẽγ
̃γ−−−−→ Eγ

π

y
yf|Eγ

(H3
C)γ/CΓ(γ)

ıγ−−−−→ H3
C/Γ ,

where ıγ is the morphism induced by the inclusion (H3
C)γ ↪→ H3

C , and Eγ ⊂ Y is the exceptional
prime divisor corresponding to the class of γ by Proposition 28. Let γ : Ẽγ → Y be the composition of
̃γ : Ẽγ → Eγ followed by the inclusion Eγ ↪→ Y . Notice that γ is proper since ıγ is so (Lemma 8).
Then we define

(7) Φγ(α) := (γ)∗(π∗(α)) , ∀α ∈ H∗−2shift(γ) ((H3
C)γ/CΓ(γ),Q

)
.
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Where, ∀β ∈ H∗(Ẽγ ,Q), (γ)∗(β) ∈ H∗+2(Y,Q) is the cohomology class that corresponds via Poincaré
duality (cf. [29, Chapter XIV]) to the following element of H4−∗

c (Y,Q)∨ (the dual space of the cohomol-
ogy of Y with compact support):

(8) ω ∈ H4−∗
c (Y,Q) 7→

∫

Ẽγ
β ∪ ∗γ(ω) .

Remark 29 In (8), Ẽγ is a complex analytic space of real dimension 4 (it is a divisor of Y ). If it is
singular, by the integral

∫
Ẽγ
β ∪ ∗γ(ω) we mean the integral of the pull-back of β ∪ ∗γ(ω) on a resolution

of the singularities of Ẽγ (which is a complex manifold and hence it has a natural orientation). Notice
that this does not depend on the particular resolution of Ẽγ . If ρ′ : Ẽ′γ → Ẽγ and ρ′′ : Ẽ′′γ → Ẽγ are
two resolutions of Ẽγ , then there exists a third resolution Ẽ′′′γ , with two morphisms ρ1 : Ẽ′′′γ → Ẽ′γ ,
ρ2 : Ẽ′′′γ → Ẽ′′γ , such that ρ′ ◦ ρ1 = ρ′′ ◦ ρ2 . One can take, for example, Ẽ′′′γ to be a resolution of the
Cartesian product Ẽ′γ ×

ρ′,Ẽγ ,ρ′′
Ẽ′′γ . In particular, Ẽ′′′γ differs from Ẽ′γ (Ẽ′′γ , respectively) by a closed analytic

subspace of (complex) codimension > 1, which has measure zero and so the integral in (8) does not
depend on the resolution of Ẽγ .

Let us first notice that Φ is degree preserving, since any γ ∈ Γ \ {1} has shift(γ) = 1, and
(γ)∗ : H∗(Ẽγ ,Q)→ H∗+2(Y,Q) increases the degrees by two (the real codimension of Ẽγ in Y ).

In the proof of Theorem 3 we will use a compatibility property of Φ with respect to open embeddings, as
follows. Let U ⊂ H3

C/Γ be an open subset, and let Ũ ⊂ H3
C be the pre-image of U with respect to the

quotient map H3
C → H3

C/Γ. Then the action of Γ on H3
C restricts to an action on Ũ , in such a way that

[Ũ/Γ] is an open sub-orbifold of [H3
C/Γ]. The same definition of Φ gives a linear map

ΦU : H∗CR([Ũ/Γ],Q)→ H∗(f−1(U),Q) .

Lemma 30 Under the previous notation, let i : [Ũ/Γ] ↪→ [H3
C/Γ] and j : f−1(U) ↪→ Y be the open

inclusions. Then
ΦU ◦ i∗ = j∗ ◦ Φ .

Proof It suffices to prove that ΦU
γ ◦ i∗ = j∗ ◦ Φγ , for any γ ∈ T of finite order, where ΦU

γ and Φγ are
defined as in (7). If γ = 1 the claim follows by the functoriality property of the pull-back. So, let us
assume that γ 6= 1 and consider the following commutative diagram.

ẼU
γ

π|
��

Uγ //

ĩ

''

f−1(U)
j

$$
Ũγ/CΓ(γ)

i

''

Ẽγ

π
��

γ // Y

(H3
C)γ/CΓ(γ)

where, by abuse of notation, we have denoted with i : Ũγ/CΓ(γ) → (H3
C)γ/CΓ(γ) the map induced

by the inclusion i : [Ũ/Γ] ↪→ [H3
C/Γ]; π , Ẽγ and γ are defined as in the definition of Φ; ẼU

γ :=
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π−1(Ũγ/CΓ(γ)), π| is the restriction of π , ĩ is the open inclusion, and Uγ is the restriction of γ . The
result follows, if we prove that (Uγ )∗ ◦ ĩ∗ = j∗ ◦ (γ)∗ . So, let β ∈ H∗(Ẽγ). Then, ∀δ ∈ H∗c (f−1(U)), we
get:

∫

f−1(U)
[(Uγ )∗ ◦ ĩ∗](β) ∪ δ =

∫

ẼU
γ

ĩ∗(β) ∪ (Uγ )∗(δ) .

On the other hand, there exists δ̃ ∈ H∗c (Y) such that δ = j∗δ̃ (this follows from the excision property
[29, pp. 320, 362, 363]). Therefore,

∫

ẼU
γ

ĩ∗(β) ∪ (Uγ )∗(δ) =

∫

ẼU
γ

ĩ∗(β) ∪ (Uγ )∗(j∗δ̃)

=

∫

ẼU
γ

ĩ∗(β) ∪ ĩ∗(∗γ(δ̃))

=

∫

ẼU
γ

ĩ∗[β ∪ ∗γ(δ̃)]

=

∫

Ẽγ
β ∪ ∗γ(δ̃)

=

∫

Y
(γ)∗(β) ∪ δ̃ =

∫

f−1(U)
[j∗ ◦ (γ)∗](β) ∪ δ .

Using Poincaré duality, we conclude that [(Uγ )∗ ◦ ĩ∗](β) = [j∗ ◦ (γ)∗](β).

6.4 Proof of Theorem 3

Here we prove that the map Φ defined in the previous section is an isomorphism of graded Q-algebras.
Our approach has been inspired by [13].

First of all, we prove the following result.

Proposition 31 The linear map Φ : H∗CR([H3
C/Γ],Q)→ H∗(Y,Q) defined in the previous section is an

isomorphism of vector spaces.

Proof We use the Mayer-Vietoris exact sequence for Chen-Ruan orbifold cohomology. We will define
an appropriate open covering of the orbifold [H3

C/Γ]. This induces an open covering of the inertia
orbifold. Since the Chen-Ruan orbifold cohomology is the usual cohomology of the inertia orbifold, we
have a Mayer-Vietoris long exact sequence.

The open covering is defined as follows. As before, let x1, . . . , xs ∈ H3
C/Γ be the singular points of the

singular locus Σ of H3
C/Γ, and let X := (H3

C/Γ)\{x1, . . . , xs}. Then there is a unique open sub-orbifold
X ⊂ [H3

C/Γ] having X as coarse moduli space. Notice that X is an analytic space with transverse
singularities of type A. Let now, for any i = 1, . . . , s, Wi ⊂ H3

C/Γ be an open neighbourhood of xi

isomorphic to W̃i/Gi , where W̃i is an open subset of H3
C isomorphic to an open ball, and Gi is the

stabilizer of a point zi ∈ W̃i that maps onto xi under the quotient map H3
C → H3

C/Γ. Without loss
of generality, we suppose that W1, . . . ,Ws are pairwise disjoint. Then W := ts

i=1[W̃i/Gi] is an open
sub-orbifold of [H3

C/Γ]. Let us denote with W := ts
i=1Wi the coarse moduli space of W .



22 Fabio Perroni and Alexander D. Rahm

Let us consider the open covering {X ,W} of [H3
C/Γ], the open covering {f−1(X), f−1(W)} of Y and

the corresponding long exact cohomology sequences of Mayer-Vietoris. By Lemma 30, Φ induces a
morphism between long exact sequences as follows:

Hk−1(f−1(X) ∩ f−1(W)) // Hk(Y) // Hk(f−1(X))⊕ Hk(f−1(W)) // Hk(f−1(X) ∩ f−1(W))

Hk−1
CR (X ∩W)

ΦX∩W

OO

// Hk
CR([H3

C/Γ])

Φ

OO

// Hk
CR(X )⊕ Hk

CR(W)

ΦX⊕ΦW

OO

// Hk
CR(X ∩W)

ΦX∩W

OO

The map ΦW is an isomorphism by [24]. Therefore, the Proposition follows from the five-lemma if
ΦX and ΦX∩W are isomorphisms. To see that they are isomorphisms, recall that X and X ∩ W are
analytic spaces with transverse singularities of type A. Therefore, ΦX and ΦX∩W are isomorphisms if the
monodromy is trivial ([34, Prop. 4.8 and 4.9]). On the other hand, if the monodromy is not trivial, then
there is an unramified double covering X̃ → X such that X̃ has transverse singularities of type A and

trivial monodromy (Proposition 27). Let f̃−1(X)→ X̃ be the crepant resolution of X̃ (the coarse moduli

space of X̃ ). Then there is a natural map f̃−1(X) → f−1(X), which is an unramified double covering.

Since H∗CR(X ) ∼= H∗CR(X̃ )Z/2Z ([34, Prop. 3.13]) and H∗(f−1(X)) ∼= H∗
(

f̃−1(X)
)Z/2Z

, we conclude that

ΦX is an isomorphism. The same proof works for ΦX∩W .

The proof of Theorem 3 is now completed when combining Proposition 31 with the following statement.

Proposition 32 Φ : (H∗CR([H3
C/Γ],Q),∪CR)→ (H∗(Y,Q),∪) is a ring homomorphism.

Proof Notice that on the non-twisted sector, Φ preserves the cup products because f ∗ is a ring homomor-
phism. So let αg, βh be cohomology classes of the twisted sectors (H3

C)g/CΓ(g), (H3
C)h/CΓ(h). Since

shift(g) = shift(h) = 1, the Chen–Ruan degrees deg(αg), deg(βh) are > 2, hence deg
(
αg ∪CR βh

)
> 4.

By Theorem 17, we conclude that Hd
CR([H3

C/Γ]) = 0 if d > 4; so αg ∪CR βh = 0. On the other
hand, since Φ is grading preserving, deg

(
Φ(αg) ∪ Φ(βh)

)
> 4, so also Φ(αg) ∪ Φ(βh) = 0 because

Hd(Y) ∼= Hd
CR([H3

C/Γ]), for any d . Finally, let αg ∈ H∗((H3
C)g/CΓ(g)) and β ∈ H∗(H3

C/Γ). Then,
αg ∪CR β = αg ∪ ı∗gβ ∈ H∗((H3

C)g/CΓ(g)), so Φ
(
αg ∪CR β

)
= (g)∗π∗

(
αg ∪ ı∗gβ

)
. On the other hand,

Φ(αg) ∪ Φ(β) = (g)∗π∗(αg) ∪ f ∗(β)

= (g)∗
(
π∗(αg) ∪ ∗g(f ∗(β))

)
(projection formula)

= (g)∗
(
π∗(αg) ∪ π∗(ı∗g(β))

)
(f ◦ g = ıg ◦ π)

= (g)∗π∗
(
αg ∪ ı∗g(β)

)

= Φ(αg ∪CR β) .

7 Cohomological Crepant Resolution Conjecture for Bianchi orbifolds

In this section, we compare the results obtained so far with the Cohomological Crepant Resolution
Conjecture of Ruan. We begin by briefly reviewing the statement of this conjecture, referring to [45],
[14], and the references therein, for further details.
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Let X be a complex orbifold, and let X be its coarse moduli space. We assume that X is a complex
projective variety which has a crepant resolution f : Y → X . The quantum corrected cohomology
ring of f : Y → X is a ring structure on the vector space H∗(Y,C) = ⊕d>0 Hd(Y,C), which is a
deformation of the standard cohomology ring of Y . Its definition depends on the choice of a basis
of ker (f∗ : H2(Y,Q)→ H2(X,Q)) consisting of homology classes of effective curves β1, . . . , βn . One
defines the 3-point function

(9) (α1, α2, α3)(q1, . . . , qn) =
∑

(k1,...,kn)∈Nn

〈α1, α2, α3〉Yβ qk1
1 · . . . · qkn

n ,

where β = k1β1 + . . . + knβn ∈ H2(Y,Z), and 〈α1, α2, α3〉Yβ is the Gromov-Witten invariant of Y , of
genus 0, of homology class β , with respect to the cohomology classes α1, α2, α3 ∈ H∗(Y,C). Recall
that a compact complex curve D ⊂ Y of homology class β is called an exceptional curve for f . To
simplify the discussion, we assume that the 3-point function (9) converges in a neighborhood of the
origin (q1, . . . , qn) = (0, . . . , 0) (see [14] for the general case); and then, for any (q1, . . . , qn) in this
neighborhood, we define a product ?f on the cohomology of Y as follows: Given cohomology classes
α1, α2 , then α1 ?f α2 is the cohomology class which satisfies the following equation:

(α1 ?f α2, α3) = (α1, α2, α3)(q1, . . . , qn) , ∀α3 ∈ H∗(Y,C) ,

where the pairing (, ) to the left hand side is the Poincaré pairing of Y . The product ?f satisfies the usual
properties of the cup product, e.g. it is associative, graded-commutative, and 1 is its neutral element.
The family of rings

(
H∗(Y,C), ?f

)
, as (q1, . . . , qn) varies, is part of the (small) quantum cohomology

of Y . Assigning to q1, . . . , qn specific values, we obtain the so-called quantum corrected cohomology
ring of f : Y → X ([45], [14]). Notice that if (q1, . . . , qn) = (0, . . . , 0), then ?f coincides with the usual
cup product, as it follows from the fact that (α1, α2, α3)(0, . . . , 0) =

∫
Y α1 ∪ α2 ∪ α3 . So, the quantum

corrected cohomology ring of f : Y → X is regarded as a deformation of the usual cohomology ring of
Y .

Ruan’s Cohomological Crepant Resolution Conjecture predicts that there is an analytic continuation
of (9) to a region containing a point (q̄1, . . . , q̄n) such that, for (q1, . . . , qn) = (q̄1, . . . , q̄n), the ring(
H∗(Y,C), ?f

)
is isomorphic to the Chen–Ruan orbifold cohomology ring

(
H∗CR(X ),∪CR

)
of X .

In the case of a Bianchi orbifold [H3
C/Γ], the coarse moduli space H3

C/Γ is not a projective variety
[15], and so, for every crepant resolution f : Y → H3

C/Γ, Y is not a projective variety. Hence the
Gromov-Witten invariants of Y are, in general, not well defined. However, we will see that [H3

C/Γ] has
a Kähler structure, and that one does not expect non-zero quantum corrections coming from exceptional
curves for f . This is motivated by a deformation theoretic argument about the complex structure of Y (let
us recall that the Gromov-Witten invariants are invariant under deformations of the complex structure).
More precisely, we conjecture that, for any homology class β ∈ H2(Y,Z) of a connected exceptional
curve for f , there is an open subset U ⊂ Y containing all the connected curves D ⊂ Y of homology class
β , and a deformation of the complex structure of U that does not contain any compact complex curve.

In this article we prove the latter conjecture in one special case, namely Γ = PSL2(O−5), while the
general case should be feasible with similar arguments. Hence, in accordance with Ruan’s conjecture,
there should be a ring isomorphism

(
H∗CR([H3

C/Γ]),∪CR
) ∼=

(
H∗(Y),∪

)
. This is confirmed by our

Theorem 3.
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Proposition 33 Let [H3
C/Γ] be a Bianchi orbifold. Then the Bergman metric on H3

C descends to a
Kähler (orbifold) metric on [H3

C/Γ].

Proof Let
ds2 =

∑
gαβ̄ d zα d z̄β

be the Bergman metric on H3
C . By [32, Theorem 8.4, p. 144], ds2 is invariant under the action of Γ,

hence it induces a Kähler metric on the orbifold [H3
C/Γ].

Let now f : Y → H3
C/Γ be a crepant resolution. Let D ⊂ Y be an exceptional, compact, complex and

connected curve, that is f∗([D]) = 0, where [D] is the fundamental class of D. Since [H3
C/Γ] is Kähler,

f (D) is a point, so D is contained in the exceptional divisor of f . In particular, for any homology class
β ∈ ker

(
f∗ : H2(Y,Q)→ H2(H3

C/Γ,Q)
)

, and for any stable map µ : C → Y , such that µ∗([C]) = β ,
the image of µ is contained in the exceptional divisor of f . Hence it suffices to consider the problem
locally in a neighbourhood of the exceptional divisor.

From the results of Sections 3 and 5, we see that the singular locus of H3
C/Γ is the union of several

irreducible components, each of which is isomorphic either to ∆ = {z ∈ C | |z| < 1} or to ∆∗ = ∆\{0}.
Furthermore, the generic point of each irreducible component of the singular locus is a transverse
singularity of type An of H3

C/Γ, with n = 1 or 2.

Let us now consider the special case where Γ = PSL2(O−5) (see Section 8.2). In this case we show
that the quantum corrections to the cohomology ring of Y coming from exceptional curves vanish. The
singular locus of X = H3

C/Γ has two connected components, X(2) ∼= ∆∗ , whose points are transverse
singularities of type A2 , and X(1) , that is the union of three irreducible components, X′(1),X

′′
(1),X

′′′
(1)
∼= ∆,

that meet in two points P,Q and the complement X(1) \ {P,Q} is a locus of transverse singularities
of type A1 (see Figure 2 and Section 8.2). The exceptional divisor of f : Y → X has two connected
components: E(2) , which is mapped to X(2) by f , and E(1) , such that f (E(1)) = X(1) . Furthermore, E(1)

has three irreducible components, E′(1),E
′′
(1),E

′′′
(1) , that are mapped by f to X′(1),X

′′
(1),X

′′′
(1) , respectively.

Let us consider first the A2 -singularities X(2) . Notice that from the presentation of the Chen-Ruan
cohomology (Section 8.2) it follows that H3

C/Γ has trivial monodromy on X(2) . Hence there is an open
neighborhood U of X(2) , such that U ∼= Ũ/(Z/3Z), where Ũ is a complex manifold with an action
of Z/3Z, such that the fixed-points locus ŨZ/3Z is a smooth submanifold of Ũ isomorphic to X(2) .
Furthermore, up to deformation, we can assume that Ũ is an open neighbourhood of the zero-section of
the normal bundle NŨZ/3Z|Ũ of ŨZ/3Z in Ũ . This can be achieved using the deformation to the normal
cone of the imbedding ŨZ/3Z ⊂ Ũ ([20, Chapter 5]). The vector bundle map NŨZ/3Z|Ũ → ŨZ/3Z ∼= X(2)

induces a morphism Ũ/(Z/3Z)→ X(2) that equips U ∼= Ũ/(Z/3Z) with the structure of a fibration over
X(2) , with fibres all isomorphic to the surface singularity of type A2 . The important fact is that this fibration
is trivial. To see this, let us recall that the action of Z/3Z on the fibres of NŨZ/3Z|Ũ induces a splitting,
NŨZ/3Z|Ũ = L⊕M, where L and M are the eigenbundles corresponding to the irreducible characters of
the representation of Z/3Z on the fibres of NŨZ/3Z|Ũ . In our case, L and M are trivial line bundles on
X(2) (see [19, Thm. 30.3, p. 229]), therefore the fibration NŨZ/3Z|Ũ/(Z/3Z)→ X(2) is trivial, that is, it is
isomorphic to the projection to the first factor of X(2)×{(u, v,w) ∈ C3 | uv = w3}. Now, using the theory
of deformations of rational double points (see [10], [51]), we deform the family NŨZ/3Z|Ũ/(Z/3Z)→ X(2)
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to a family of affine smooth surfaces. Finally, consider the neighbourhood U := f−1(U) of E(2) .
Taking a simultaneous resolution of the previous deformation of NŨZ/3Z|Ũ/(Z/3Z) → X(2) , we obtain a
deformation of U to a manifold that does not contain compact complex curves.

Let us now consider the exceptional curves that are contained in E(1) . Notice that each component E′(1) ,
E′′(1) , E′′′(1) , can be seen as the exceptional divisor of a crepant resolution of a transverse singularity of
type A1 . Hence, from our description of the obstruction bundles (Theorem 11) and from [34, Theorem
7.6], it follows that the exceptional curves contained in one of these components do not contribute to the
quantum corrected cohomology ring of Y . If D ⊂ Y is a connected exceptional curve which is contained
in more than one component of E(1) , then f (D) coincides with P or Q, the points where the components
X′(1),X

′′
(1),X

′′′
(1) meet together. Near P and Q, X is isomorphic to the singularity C3/D2 (see Section

8.2), where D2 =
〈
ξ, η | ξ2 = η2 = (ξη)2 = 1

〉 ∼= Z/2Z ⊕ Z/2Z. We can realize the quotient C3/D2

as
(
C3/ 〈ξ〉

)
/ 〈η〉, and notice that C3/ 〈ξ〉 ∼= {(u, v,w, z) ∈ C3 × C | uv = w2} with the action of 〈η〉

given by η · (u, v,w, z) 7→ (u, v,−w,−z). The semi-universal deformation of {(u, v,w) ∈ C3 | uv = w2}
is uv = w2 + t , where t is the deformation parameter. Notice that the action of 〈η〉 on C3/ 〈ξ〉 extends
to {(u, v,w, z) ∈ C3 × C | uv = w2 + t}, for all t , as follows: η · (u, v,w, z) = (u, v,−w,−z). Hence
{(u, v,w, z) ∈ C3 × C | uv = w2 + t}/ 〈η〉, for t ∈ C, is a deformation of C3/D2 . Notice that for
t 6= 0, {(u, v,w, z) ∈ C3 ×C | uv = w2 + t}/ 〈η〉 has transverse singularities of type A1 , and they can be
smoothed by a deformation as follows. Taking the invariants of the 〈η〉-action, we see that

{(u, v,w, z) ∈ C3 × C | uv = w2 + t}/ 〈η〉 ∼= {(u, v, ρ, σ, τ ) ∈ C5 | uv = ρ+ t , ρσ = τ 2} ,

where ρ = w2, σ = z2, τ = wz. And so, {(u, v, ρ, σ, τ ) ∈ C5 | uv = ρ + t , ρσ = τ 2 + s} is a
deformation of C3/D2 , with deformation parameters t and s. For t 6= 0 and s 6= 0, the variety
{(u, v, ρ, σ, τ ) ∈ C5 | uv = ρ + t , ρσ = τ 2 + s} is an affine smooth variety. Thus, a simultaneous
resolution of this family yields a deformation of a neighbourhood of f−1(P) (f−1(Q), respectively), such
that the generic member of the family is a smooth affine variety. Hence, it does not contain compact
complex curves.

8 Orbifold cohomology computations for sample Bianchi orbifolds

(1)′ (7)′

(1)

(2)

(7)

(8)

Figure 1: Fundamental domain in
the case m = 2.

We will carry out our computations in the upper-half space model
{x + iy + rj ∈ C⊕ Rj | r > 0} for H3

R in three cases. Details on
how to compute Chen–Ruan orbifold cohomology can be found
in [34]. In the case Γ = PSL2(Z[

√
−5 ]), we also compute the

cohomology ring structure.

8.1 The case Γ = PSL2(Z[
√
−2 ]).

Let ω :=
√
−2 . A fundamental domain for Γ := PSL2(Z[ω]) in real hyperbolic 3-space H has been

found by Luigi Bianchi [6]. We can obtain it by taking the geodesic convex envelope of its lower boundary
(half of which is depicted in Figure 1) and the vertex ∞, and then removing the vertex ∞, making it
non-compact. The other half of the lower boundary consists of one isometric Γ–image of each of the
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depicted 2-cells (in fact, the depicted 2-cells are a fundamental domain for a Γ–equivariant retract of H ,
which is described in [43]). The coordinates of the vertices of Figure 1 in the upper-half space model are
(1) = j, (1)′ = ω + j,

(2) = 1
2ω +

√
1
2 j, (7) = 1

2 +
√

3
4 j, (7)′ = 1

2 + ω +
√

3
4 j, (8) = 1

2 + 1
2ω + 1

2 j.

The 2-torsion sub-complex (dashed) and the 3-torsion sub-complex (dotted) are indicated in the figure.
The set of representatives of conjugacy classes can be chosen

T = {Id, α, γ, β, β2},

with α = ±
(

1 ω
ω −1

)
, β = ±

(
0 −1
1 1

)
and γ = ±

(
0 1
−1 0

)
, so α and γ are of order 2, and β is of order 3.

Using Lemma 24 and with the help of our Bredon homology computations, we check the cardinality
of T . The fixed point sets are then the following subsets of complex hyperbolic space H := H3

C :
HId = H ,
Hα = the complex geodesic line through (2) and (8),
Hγ = the complex geodesic line through (1) and (2),
Hβ = Hβ2

= the complex geodesic line through (7) and (8).

The matrix g = ±
(

1 −ω
0 1

)
performs a translation preserving the j-coordinate and sends the edge (1)(7)

onto the edge (1)′(7)′ , so the orbit space HR/Γ is homotopy equivalent to a circle. Consider the real
geodesic line HγR on the unit circle of real part zero. The edge g−1 ·

(
(2)(1)′

)
=
(
g−1(2)

)
(1) lies on HγR

and is not Γ–equivalent to the edge (1)(2). Because of Lemma 15, the centralizer CΓ(γ) reflects the line
HγR onto itself at (2), and again at g−1(2). Furthermore, none of the four elements of Γ sending (2) to
g−1(2) belongs to CΓ(γ) . Hence the quotient space HγR/CΓ(γ) consists of a contractible segment of two

adjacent edges. Thus Hd−2 (HγC/CΓ(γ); Q
) ∼=

{
Q, d = 2
0 else

is contributed to the orbifold cohomology.

Next, consider the real geodesic line HβR on the circle of constant real coordinate 1
2 , of center 1

2 and

radius
√

3
4 . The edge g−1 ·

(
(8)(7)′

)
=
(
g−1(8)

)
(7) lies on HβR and is not Γ–equivalent to the edge

(7)(8). The centralizer of β contains the matrix V := ±
(

21− ω
ω − 1 1 + ω

)
of infinite order, which sends

the edge
(
g−1(8)

)
(7) to (8)z with z = 1

2 + 3
5ω +

√
3

100 j. We conclude that the translation action of the

group 〈V〉 on the line HβR is transitive, with quotient space represented by the circle
(
g−1(8)

)
(7)∪ (7)(8),

first and last vertex identified. Thus Hd−2
(
HβC/CΓ(β); Q

)
∼= Hd−2

(
Hβ2

C /CΓ(β2); Q
)
∼=
{
Q, d = 2, 3
0 else

is

contributed to the orbifold cohomology.

Because of Lemma 15, the centralizer CΓ(α) reflects the line HαR onto itself at (2), and again at (8).
So, the quotient space HαR/CΓ(α) is represented by the single contractible edge (2)(8). This yields that

Hd−2 (HαC/CΓ(α); Q
) ∼=

{
Q, d = 2
0 else

is contributed to the orbifold cohomology.

Summing up over T , we obtain

Hd
CR

(
[H3

C/PSL2(Z[
√
−2 ])]

)
∼= Hd

(
HC/PSL2(Z[

√
−2 ]); Q

)
⊕





Q4, d = 2,

Q2, d = 3,

0, otherwise.
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u

uP

Q

tA1 tA1 tA1

Figure 2: Two singular points P,Q which are analytically isomorphic to the singularity at the origin of
C3/D2 .

8.2 The case Γ = PSL2(O−5).

We start by analysing the case where
Γ = PSL2(O−5) .

In this case the singular locus of X has two connected components. One component is a transverse
singularity of type A2 (we write tA2 ). The other component, drawn in Figure 2, contains two singular
points P,Q which are analytically isomorphic to the singularity at the origin of C3/D2 , where

D2 =
〈
ξ, η | ξ2 = η2 = (ξη)2 = 1

〉 ∼= Z/2⊕ Z/2

is the Klein-four-group acting via the standard diagonal representation D2 → SL3(C):

ξ 7→ diag(−1,−1, 1) , η 7→ diag(−1, 1,−1) .

The points P,Q are joined by three curves of transverse singularities of type A1 (tA1 ), which correspond
in a neighbourhood of P (resp. Q) to the image in C3/D2 of the coordinate axes of C3 .

From Corollary 2, we get the following presentation of the Chen–Ruan cohomology:

Hd
CR([H3

C/PSL2(O−5)] , Q) ∼= Hd(H3
C/PSL2(O−5),Q)⊕

{
Q2 ⊕Q3 d = 2

Q2 ⊕ {0} d = 3

where the first direct summand is the cohomology of the non-twisted sector. The second direct summand(
Q2

Q2

)
is the cohomology of the 3-torsion twisted sector X(3) whose coarse moduli space is the connected

component of the singular locus of X corresponding to the tA2 -singularity. Notice that this locus is
topologically isomorphic to S1 × R ∼= C∗ , λ6 = 1 and λ∗6 = 0, where λ2n, λ

∗
2n are as defined in

Corollary 2. Finally, the third direct summand
(
Q3

{0}

)
is the cohomology of the 2-torsion twisted sector

X(2) . This sector has three connected components each one homeomorphic to the strip [0, 1] × R and
corresponding to the tA1 -singularities joining the points P and Q in Figure 2. In the coarse moduli space
X , these components form the configuration in Figure 2. Here, we have λ4 = λ∗4 = 3.
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Now we study the Chen–Ruan cup product ∪CR , verifying first that the ordinary cup product on
the non-twisted sector H∗(H3

C/Γ,Q) vanishes. From the explicit description of the quotient space
H3

R/PSL2(O−5) in [43], we get the picture of the Borel–Serre compactification of H3
R/PSL2(O−5)

drawn in Figure 3. Here, we have expanded the singular cusp at
√
−5+1

2 to a fundamental rectangle
(s, s′, s′′, s′′′) for the action of the cusp stabilizer Γ√−5+1

2
on the plane attached by the Borel–Serre bordifi-

cation. In the same way, we expand the cusp at infinity to a fundamental rectangle (∞,∞′,∞′′,∞′′′) for
the action of the cusp stabilizer Γ∞ on the plane attached there. This is not visible in our 2-dimensional
diagram, but is located above the rectangle (o, o′, o′′, o′′′), where o is of height 1 one above the cusp 0.
The fundamental polyhedron for the Γ-action is then spanned by the rectangle (∞,∞′,∞′′,∞′′′) and
the polygons of Figure 3. The face identifications of the fundamental polyhedron are

(∞, o, t, o′,∞′) ∼ (∞′′′, o′′′, t′, o′′,∞′′),(10)

(∞, o, b, u, o′′′,∞′′′) ∼ (∞′, o′, b′, u′, o′′,∞′′),(11)

(a′′′, s′′′, s′′, a′′, v′) ∼ (a, s, s′, a′, v),(12)

(u, a′′′, s′′′, s, a, b) ∼ (u′, a′′, s′′, s′, a′, b′),(13)

(o, t, v, a, b) ∼ (o′, t, v, a′, b′),(14)

(o′′′, t′, v′, a′′′, u) ∼ (o′′, t′, v′, a′′, u′).(15)

Here, we did not respect the orientation of the 2-cells, but have written them in the way in which their
vertices are identified.

It is well known that the Borel–Serre compactification of H3
R/PSL2(O−m) is homotopy equivalent

to H3
R/PSL2(O−m) itself, and it has been worked out in [37] how the boundary is attached in the

compactification.
So we can describe the cohomology cocycles of H3

R/PSL2(O−5) in terms of the above fundamental
polyhedron and face identifications. By [21][section 9.3], H3

C admits a fundamental polyhedron PC for
Γ with the interior of its top-dimensional facets (called sides) being open smooth submanifolds. This
yields a Γ-equivariant cell structure on H3

C . The natural map H3
R ↪→ H3

C → H3
R induces a map of the

sides with respect to the fundamental polyhedron PR for Γ on H3
C ,

sides(PR) ↪→ sides(PC)→ sides(PR),
which respects the side identifications (side pairings). All of the side pairings of PC are detected this
way, because they generate the group Γ (see [21][section 9.3]), and so do already the side pairings of
PR . Hence there are no additional identifications when complexifying the orbifold, and thus there are no
additional cohomology cocycles on H3

C/PSL2(O−5). Generators for H1(H3
R/PSL2(O−5),Q) are, with

reference to the above numbering of the identifications, obtained from

(∞,∞′′′) under (1) and (s, s′′′) under (3).

Both (∞,∞′) under (2) and (s, s′) under (4) yield trivial cocycles because of the identifications (5) and
(6).

For instance using the arc method introduced in [23][section 3.2], we can now check explicitly that the
cup product of the two cocycles obtained from (∞,∞′′′) under (1) and (s, s′′′) under (3) vanishes.
As further to the two 1-dimensional cocycles, H3

R/Γ only admits a 0- and a 2-dimensional cocycle,
and as there are no further identifications when complexifying, we arrive at the claimed vanishing of the
ordinary cup product on the non-twisted sector H∗(H3

C/Γ,Q).
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s′′

s′

s′′′

s

o′′′

o′

o′′

b′

u′

t′

v′
a′′′

a′

a′′

o

b

u

t

v
a

Figure 3: Fundamental domain for the Borel-Serre compactification in the case m = 5.

〈
V S2

〉 〈V S〉p
q

〈L〉

S · ∞ S2 · ∞

S2 · p

S · p

〈V 〉

Figure 4: Geodesics fixed by certain finite order elements of PSL2(Z[
√
−1 ]).

The cup product of two classes coming from the twisted sectors would be a class in dimension > 4,
where the twisted sectors vanish, and by the above calculation, so does the non-twisted sector.

Therefore, the Chen–Ruan cup product ∪CR is trivial on [H3
C/PSL2(O−5)].

8.3 The case Γ = PSL2(Z[
√
−1 ]).

Let i :=
√
−1 . A fundamental domain for the action of Γ := PSL2(Z[i]) on real hyperbolic 3-space H

has been found by Luigi Bianchi, and the stabilizers have been computed by Flöge [18], whose notation
we are going to adopt. It is drawn in Figure 5. Here the vertex stabilizers are

Γp = 〈A,L〉 ∼= D2 , Γq = 〈V, S〉 ∼= D3 , Γu = 〈W, S〉 ∼= A4 , Γv = 〈R,A〉 ∼= D3 ,
where A = ±

(
0 1
−1 0

)
, L = ±

(
−i 0
0 i

)
, S = ±

(
0 −1
1 1

)
,
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p q

u

〈W 〉〈V 〉

v

〈R〉

〈AL〉 = 〈
V S2

〉

〈S〉
〈A〉

〈RA〉〈L〉

Figure 5: Half of a fundamental domain for the action of PSL2(Z[
√
−1 ]) on H , open towards the cusp at

∞. The second half can be obtained as a copy of the open pyramid glued from below to its base square.

R = ±
(
−i 1
0 i

)
, V = ±

(
−i −i
0 i

)
and W = ±

(
−i 1− i
0 i

)
;

1 = A2 = L2 = V2 = R2 = S3 = W2.

The matrices mentioned in Figure 5 (and their square when they are of order 3) constitute a system
of representatives modulo Γ of the non-trivial elements of finite order. So we compute the respective
quotients of their rotation axis by their centralizer, in order to obtain the CR orbifold cohomology. For the
elements of order 3, namely RA and S , Theorem 20 and its proof pass unchanged, so HRA/CΓ(〈RA〉) ∼= b

and HS/CΓ(〈S〉) ∼= b .

For the elements of order 2, we study the quotient of their fixed geodesic by their centralizer through
Figure 4. Further, we obtain another such figure useful for our purpose by making the following
replacements on Figure 4: q 7→ v, S 7→ (RA)2 , VS2 7→ A, V 7→ R. The symmetries obtained from
combining complex conjugation with the rotation by L ensure that the relabeled figure is isometric to the
printed one.

The points p, S · p, S2 · p, (RA)2 · p, R · p all have stabilizer type D2 , because they are on the orbit
of p, and hence the 2-torsion axes passing through them are mirrored by order-2-elements commuting
with the rotation around the respective axis. We immediately conclude that HL/CΓ(〈L〉) is represented by
the half-open interval [p,∞). In the stabilizer of q, which is of type D3 , apart from the trivial element,
only the order 3 element and its square commute with each other. So there are no mirrorings at q in
the centralizer of the rotations with axis passing through q. Hence, HV/CΓ(〈V〉) ∼= [S · p, q,∞) and
HVS2

/CΓ(〈VS2〉)
∼= [p, q, S2 · ∞).

By the above described replacements on Figure 4, we obtain analogously that
HR/CΓ(〈R〉) ∼= [(RA)2 · p, v,∞) and HA/CΓ(〈A〉) ∼= [p, v,RA · ∞).

In the stabilizer of the point u, there are order-2-elements commuting with W , and therefore
HW/CΓ(〈W〉) ∼= [u,∞).

Summing up, and taking into account that H/Γ is contractible, we obtain the CR orbifold cohomology

Hd
CR

(
[H3

C/PSL2(Z[
√
−1 ])]

)
∼=





Q, d = 0,

Q10, d = 2,

Q4, d = 3,

0, otherwise.
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u

w

v

〈L〉 〈K〉 〈MS〉

〈
AL2 = M

〉

〈
AL = K2S2

〉

〈S〉

Figure 6: Half of a fundamental domain for the action of PSL2(O−3) on H , open towards the cusp at
∞. The second half can be obtained as a copy of the open pyramid glued from below to its base square.

u

ww′′′

w′

vv′

v′′

Figure 7: The 2-cells in H equidistant to the cusps at 0 and ∞, with no other PSL2(O−3)-cusp being
closer. The triangle (u, v,w) is the same one as in Figure 6, and the vertex u sits on the middle of the
geodesic (0,∞).

8.4 The case Γ = PSL2(O−3).

Let ω :=
√
−3−1

2 . A fundamental domain for the action of Γ := PSL2(Z[ω]) on real hyperbolic 3-
space H has been found by Luigi Bianchi, and the stabilizers have been computed by Flöge [18], whose
notation we are going to adopt. It is drawn in Figure 6. Here the vertex stabilizers are

Γu = 〈A,L〉 ∼= D3 , Γv = 〈K, S〉 ∼= A4 , Γw = 〈M, S〉 ∼= A4 ,
where A = ±

(
0 1
−1 0

)
, L = ±

(
−ω2 0

0 ω

)
, S = ±

(
0 −1
1 1

)
, K = ±

(
ω2 −ω
0 ω

)
;

1 = A2 = L3 = K3 = S3 = M2 .

As 〈S〉 ∼= Z/3 and Γv ∼= A4 ∼= Γw , the latter two vertex stabilizers do neither reflect HS , nor do they
contribute any element to CΓ(〈S〉). That is why though all cusps are on one Γ-orbit, the centralizer
CΓ(〈S〉) ∼= 〈S〉 leaves pointwise fixed HS , which is the geodesic line through (v,w) starting at a cusp s
in the Γv -orbit of ∞ and ending at a cusp e in the Γw -orbit of ∞. By the A4 -symmetries in v and w,
(s, v) is mapped to (∞, v) and (e,w) is mapped to (∞,w). Hence there can be no translations of HS

in Γ, and therefore HS/CΓ(〈S〉) = HS . The A4 -symmetries enforce all 3-torsion axes passing through
a representative of v or w to admit the same centralizer quotient. Hence also HK/CΓ(〈K〉) = HK and
HMS/CΓ(〈MS〉) = HMS are open geodesic lines starting and ending at cusps.
In contrast, HL is getting reflected onto itself by Γu . But the elements of order 2 in Γu ∼= D3 do not
commute with L , and hence HL = HL/CΓ(〈L〉) is the geodesic line (∞,M · ∞) with the vertex u on its
middle.

Concerning the 2-torsion axes, HM does not get reflected by Γu ∼= D3 . It gets reflected by order-
2-elements in Γw and Γv′ commuting with M (see Figure 7); hence HM/CΓ(〈M〉) ∼= b b . By the
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D3 -symmetry in u, the same happens for HAL : It gets reflected in v and w′′′ by centralizing elements
and not in u; therefore HAL/CΓ(〈AL〉) ∼= b b .

Summing up, and taking into account that H/Γ is contractible, we obtain the CR orbifold cohomology

Hd
CR

([
H3

C/PSL2

(
Z
[√−3− 1

2

])])
∼=





Q, d = 0,

Q10, d = 2,

0, otherwise.

8.5 The case Γ = PSL2(O−11).

(3)′(6)′

(3) (6)

(8)

(9)

Figure 8: Fundamental domain in
the case m = 11.

Let O−11 be the ring of integers in Q(
√
−11 ).

Then O−11 = Z[ω] with ω = −1+
√
−11

2 .

A fundamental domain for Γ := PSL2(O−11) in real hyperbolic
3-space H has been found by Luigi Bianchi [6]. Half of its lower
boundary given in Figure 8. The coordinates of the vertices of
Figure 8 in the upper-half space model are (3) = j, (3)′ = 1+ω+ j,

(6) = 1
2 +

√
3
4 j, (6)′ = 1

2 + ω +
√

3
4 j, (8) = 3

11 + 3
11ω +

√
2
11 j,

(9) = 8
11 + 5

11ω +
√

2
11 j. The set of representatives of conjugacy

classes can be chosen

T = {Id, γ, β, β2},

with β = ±
(

0 −1
1 1

)
and γ = ±

(
0 1
−1 0

)
,

so γ is of order 2, and β is of order 3. Using Lemma 24 and
with the help of our Bredon homology computations, we check the
cardinality of T . That we have one less conjugacy class of finite order elements than in the case O−2 ,
comes from the fact that by Remark 22, there is only one conjugacy class of order–2–elements in A4 .

The fixed point sets are then the following subsets of complex hyperbolic space H := H3
C :

HId = H ,
Hγ = the complex geodesic line through (3) and (8),
Hβ = Hβ2

= the complex geodesic line through (6) and (9).

The 2–torsion sub-complex is of homeomorphism type b b and the 3–torsion sub-complex is of homeo-
morphism type b . Therefore, we obtain

Hd
CR
(
[H3

C/PSL2(Z[
√
−11 ])]

) ∼= Hd (HC/PSL2(O−11); Q
)
⊕





Q1+2, d = 2,

Q2, d = 3,

0, otherwise.
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8.6 The case Γ = PSL2(O−191).

(179)′(191)′

(683)′
(432)′

(359)′

(299)′

(629)′

(526)′

(240)′

(234)′

(486)′

(215)′

(179) (191)

(215)

(234)

(240)

(299)

(359)

(432)

(486)

(526) (629)(683)

Figure 9: Fundamental domain in
the case m = 191. The coordinates
of the vertices can be displayed by
[39].

Let O−191 be the ring of integers in Q(
√
−191 ). Again, the set of

representatives of conjugacy classes can be chosen

T = {Id, γ, β, β2},

with β = ±
(

0 −1
1 1

)
and γ = ±

(
0 1
−1 0

)
, so γ is of order 2, and

β is of order 3. Both the 2– and the 3–torsion sub-complexes are
of homeomorphism type b . Then,

Hd
CR
(
[H3

C/PSL2(Z[
√
−191 ])]

)

∼= Hd (HC/PSL2(O−191); Q
)
⊕





Q1+2, d = 2,

Q1+2, d = 3,

0, otherwise.

We conclude this section with the following explanation why in our
fundamental domain diagrams, there occurs only one representative
per torsion-stabilized edge.

Remark 34 Let e be a non-trivially stabilized edge in the funda-
mental domain for the refined cell complex. Then the fundamental
domain for the 2–dimensional retract can be chosen such that it
contains e as the only edge on its orbit.

Sketch of proof. Observe that the inner dihedral angle 2π
q of the

Bianchi fundamental polyhedron is 2π
` or π

` at its edges admitting a
rotation of order ` from the Bianchi group. We can verify this in the
vertical half-plane where the action of PSL2(Z) is embedded into
the action of the Bianchi group, for the generators of orders ` = 2
and ` = 3 of PSL2(Z) which fix edges orthogonal to the vertical
half-plane. These angles are transported to all edges stabilized by
Bianchi group elements conjugate under SL2(C) to these two rota-
tions. Poincaré [35] partitions the edges of the Bianchi fundamental
polyhedron into cycles, consisting of the edges on the same orbit, of
length q

` = 1 or 2. In the case of length 2, Poincaré’s description
implies that each of the two 2–cells separated by the first edge of
the cycle, is respectively on the same orbit as one of the 2–cells
separated by the second edge of the cycle. As the fundamental
domain for the 2–dimensional retract is strict with respect to the
2–cells, it can be chosen such that it contains e as the only edge on
its orbit.

Note that we can check our computations using the algorithm of
[40, Section 5.3] for the computation of subgroups in the centralizers.
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