Record process on the Continuum Random Tree - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2011

Record process on the Continuum Random Tree

Résumé

We consider the number of cuts $X_n^*$ needed to isolate the root of the sub-tree spanned by $n$ leaves uniformly chosen at random in Aldous's continuum random tree $\ct$. We prove the almost sure convergence of $X_n^*/\sqrt{2 n}$ to a Rayleigh random variable $Z$. We get from the a.s. convergence a representation of $Z$ as the integral on the leaves of $\ct$ of a record process indexed by the tree $\ct$. The proof relies on a Brownian Snake approach. This result was motivated by Janson's convergence in distribution of the renormalized number of cuts in a discrete random tree.
Fichier principal
Vignette du fichier
record_2011_07.pdf (252.49 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00609467 , version 1 (19-07-2011)
hal-00609467 , version 2 (04-06-2012)
hal-00609467 , version 3 (01-02-2013)

Identifiants

Citer

Romain Abraham, Jean-François Delmas. Record process on the Continuum Random Tree. 2011. ⟨hal-00609467v1⟩

Collections

ENPC CERMICS
216 Consultations
119 Téléchargements

Altmetric

Partager

More