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RECORD PROCESS ON THE CONTINUUM RANDOM TREE

ROMAIN ABRAHAM AND JEAN-FRANÇOIS DELMAS

Abstract. We consider the number of cuts X∗
n needed to isolate the root of the sub-tree

spanned by n leaves uniformly chosen at random in Aldous’s continuum random tree T . We
prove the almost sure convergence of X∗

n/
√
2n to a Rayleigh random variable Z. We get

from the a.s. convergence a representation of Z as the integral on the leaves of T of a record
process indexed by the tree T . The proof relies on a Brownian Snake approach. This result
was motivated by Janson’s convergence in distribution of the renormalized number of cuts
in a discrete random tree.

1. Introduction

The problem of random cutting down of a rooted tree arises first in Meir and Moon

[18]. The problem is the following: consider a rooted tree Tn with n vertices, select an edge
uniformly at random, delete that edge and keep the part of the tree that contains the root.
Continue recursively until only the root is left. We let Xn denote the number of cuts that
are needed to isolate the root. What is the asymptotic behavior of Xn as n tends to ∞?

This problem has been in particular tackled in [18] and in Bertoin [9] for Cayley trees
(uniform labeled tree with n vertices), in Panholzer [19] for simply generated trees or in
Janson [15] for conditioned Galton-Watson trees. The main result in [15] states that, if the
offspring distribution of the Galton-Watson process is critical (that is with mean equal to 1)
with finite variance, which we take equal to 1 for simplicity, then the following convergence
in distribution holds:

(1) (Tn/
√
n,Xn/

√
n)

(d)−−−−−→
n→+∞

(T , ZT )

where T is Aldous’s continuum random tree (CRT) introduced in Aldous [6, 7], the condi-
tioned law of ZT given T is specified by its moments, and ZT has a Rayleigh distribution with

density x e−x2/2 1{x>0}. However, there is no constructive description of ZT conditionally on
T .

The goal of this paper is to consider a continuous cutting of the CRT and to give an a.s
convergence for a quantity similar to Xn. More precisely, we consider a CRT T , associated
with a branching mechanism ψ(u) = αu2 under the excursion measure N. This tree is coded

by the height process
√

2/α Bex, where Bex is a positive Brownian excursion. Let mT be

the corresponding measure on the leaves of T (see Section 3.1 for a precise definition of mT ).
We set σ = mT (T ) the total mass of the tree T . Notice that Aldous’s CRT is distributed as
T under N[dT | σ = 1] with α = 1/2.

We throw points uniformly on the CRT at rate 2α in the same spirit as in Aldous and
Pitman [8] (see also Abraham and Serlet [4] for a direct construction and Abraham,

Date: July 19, 2011.
2010 Mathematics Subject Classification. 60J80,60C05.
Key words and phrases. continuum random tree, records, cutting down a tree.
This work is partially supported by the “Agence Nationale de la Recherche”, ANR-08-BLAN-0190.

1



2 ROMAIN ABRAHAM AND JEAN-FRANÇOIS DELMAS

Delmas and Voisin [3] for the general Lévy tree). When a mark appears, we cut the tree
on this mark and discard the sub-tree that does not contain the root. For x ∈ T , we denote
by θ(x) the time at which x is separated from the root. Then we define:

Θ =

∫

T
θ(x) mT (dx) and Z =

√

2α

σ
Θ.

Conditionally on σ, the random variable Z is distributed according to the Rayleigh distribu-
tion, see Proposition 4.4. Let us denote by Tn the reduced tree spanned from the CRT T by
n leaves uniformly chosen at random and the root. The tree Tn is distributed as a uniform
binary tree with n leaves and hence 2n−1 vertices, but with edges with random lengths. Let
X∗

n be the number of cuts (generated by the continuous cutting) that are needed to isolate
the root of this reduced tree. In this setting the root is isolated as soon as the remaining tree
containing the root is reduced to one edge. Notice that several cuts may appear on the same
edge of Tn, so X

∗
n looks like X2n−1 for binary trees but is not exactly the same object. The

main result of this paper, see Theorem 6.1, states that N-a.e.:

lim
n→+∞

X∗
n√
2n

=

√

2α

σ
Θ = Z.

In fact, we also prove the result conditionally on {σ = 1}, that is for Aldous’s CRT. This
strongly suggests that Z and ZT are equal. To get this equality, it is enough to check the
equality of all their moments conditionally on T . In fact, we were able to compute only the
3 first moments of Z conditionally on T , and we present the two first in Proposition 4.8 and
Remark 4.9. The 3 moments indeed coincide when α = 1/2. So, at this stage the question is
still open.

We provide also another representation of Θ in terms of the mass of the pruned tree
(a similar result also appears in Addario-Berry, Broutin and Holmgren [5]). More
precisely, we set for q ≥ 0:

σq =

∫

T
1{θ(x)≥q} m

T (dx)

the mass of the remaining tree at time q. It is also the mass of a tagged fragment in Aldous-
Pitman’s fragmentation. The process (σq, q ≥ 0) is distributed conditionally on {σ = 1}, as
(1/(1 + τq), q ≥ 0) ) where τ is a stable subordinator of index 1/2, see Aldous and Pitman

[8] or Abraham and Delmas [1]. Then we prove that:

Θ =

∫ +∞

0
σq dq.

Using results from Abraham, Delmas and Hoscheit [2] on pruning of Lévy trees, we also
derive asymptotics about (σi, i ∈ I) the sizes of the removed sub-trees during the cutting
procedure. According to Propositions 8.2 and 8.3, we have N-a.e.:

lim
n→+∞

1√
n

∑

i∈I
1{σi≥1/n} = lim

n→+∞
√
n
∑

i∈I
σi1{σi≤1/n} = 2

√

α

π
Θ =

√

2σ

π
Z.

The paper is organized as follows. In Section 2, we define the record process constructed
from the continuous cutting procedure on the real line, then we construct the cutting pro-
cedure on the CRT in Section 3. In Section 4 we compute the law of Θ and some moments
under various probability laws. We then introduce the reduced tree with n leaves in Section
5 and state and prove the a.s convergence of the number of cuts in Section 6. Section 7 is
devoted to the proof of a key result needed in the proof of Theorem 6.1. We give the other
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representation of Θ in Section 8 and we end the paper with an Appendix that gather technical
proofs of several lemmas used along the paper.

2. The record process

Let α > 0. We consider θ = (θ(t), t ≥ 0) the record process and X = (X(t), t ≥ 0) the
record counting process defined as follows. Let N(dt, dq) =

∑

i∈I δti,qi(dt, dq) be a Poisson
point measure with intensity 2α1{t≥0,q≥0}dtdq. For θ(0) ∈ [0,+∞] and X(0) ∈ N, we set for
all t ≥ 0:

θ(t) = min(θ(0), inf{qi; ti ≤ t}) and X(t) = X(0) +
∑

0<s≤t

1{θs−>θs}.

By construction θ and (θ,X) are Markov processes. We shall denote by Pq with q ∈ [0,+∞]
(resp. P(q,k) with q ∈ [0,+∞] and k ∈ N) the law of the process θ (resp. (θ,X)) starting at
q (resp. (q, k)), and we denote by Eq (resp. E(q,k)) the corresponding expectations.

Notice that θ and X are non-increasing, and a.s. X(t) = +∞ for every t > 0 if θ(0) = +∞.

Remark 2.1. Let us denote by 1 ≥ t1 > t2 > · · · the jumping times of the process (θ(t), 0 ≤
t ≤ 1) under P∞. By standard arguments on Poisson point measure, the random variable t1
is uniformly distributed on [0, 1]. Conditionally given t1, the random variable t2 is uniformly
distributed on [0, t1] and so on. We are thus considering the standard stick breaking scheme
and the random vector (1 − t1, t1 − t2, . . .) is distributed according to the Poisson-Dirichlet
distribution with parameter (0, 1).

Remark 2.2. The coefficient 2α in the intensity is added to have the same intensity as in
the pruning procedures of [4, 3, 2] but, as we can see from the previous remark, it does not
appear in the law of the number of records.

Let Yt be an exponential random variable with parameter 2αt. Notice that inf{qi; ti ≤ t}
is distributed as Yt. Let g be a bounded measurable function defined on [0,+∞]. For every
q ∈ [0,+∞] and t > 0, we have

Eq[g(θ(t))] = E[g(min(q, Yt))] = e−2αqt g(q) +

∫ q

0
g(x) 2αt e−2αtx dx.

Notice that if g belongs to C1(R+) with g′ bounded on R+, we have by an obvious integration
by parts that, for q ∈ [0,+∞] and t > 0,

Eq[g(θ(t))] = g(0) +

∫ q

0
g′(x) e−2αtx dx.

We can then compute the infinitesimal generator of θ denoted by L. Let g be a bounded
measurable function defined on [0,+∞] such that g − g(+∞) is integrable with respect to
the Lebesgue measure on R

+. For q ∈ [0,+∞], we have:

L(g)(q) = lim
t→0

Eq[g(θ(t))] − g(q)

t

= lim
t→0

−g(q)1 − e−2αqt

t
+

∫ q

0
2αg(x) e−2αtx dx

= 2α

∫ q

0
(g(x) − g(q)) dx.
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Let q0 > 0. This result also holds for q < q0 and g a bounded measurable function defined
on [0, q0]. In that case, we get that the process Mg = (Mg

t , t ≥ 0) is a martingale, where Mg

defined by:

(2) Mg
t = g(θ(t)) + 2α

∫ t

0
ds

∫ θ(s)

0

(

g(θ(s))− g(x)
)

dx.

Remark 2.3. If furthermore g belongs to C1(R+) and if x 7→ xg′(x) is integrable with respect
to the Lebesgue measure on R

+, then we have for q ∈ [0,+∞]:

L(g)(q) = −2α

∫ q

0
xg′(x) dx.

Similarly, we can also compute the infinitesimal generator of (θ,X), which we still denote
by L. This quantity is of interest only for θ(0) finite. Let g be a bounded measurable
function defined on R

+ ×N. Standard computations on birth and death processes yield that
for (q, k) ∈ R

+ × N:

L(g)(q, k) = lim
t→0

E(q,k)[g(θ(t),X(t))] − g(q, k)

t

= lim
t→0

−g(q, k)1 − e−2αqt

t
+

∫ q

0
2αg(x, k + 1) e−2αtx dx+ o(1)

= 2α

∫ q

0
(g(x, k + 1)− g(q, k)) dx.

In that case, we get that the process Mg = (Mg
t , t ≥ 0) defined by:

(3) Mg
t = g(θ(t),X(t)) − 2α

∫ t

0
ds

∫ θ(s)

0

(

g(x,X(s) + 1)− g(θ(s),X(s))

)

dx,

is a bounded martingale.

Let n ∈ N. Taking g(q, k) = k∧n, we deduce that the process N (n) = (N
(n)
t , t ≥ 0) defined

for t ≥ 0 by:

N
(n)
t = X(t) ∧ n− 2α

∫ t

0
θ(s)1{X(s)<n} ds

is a bounded martingale under P(q,k) (for q < +∞). Notice that for (q, k) ∈ R
+×N, we have:

E(q,k)[|N (n)
t |] ≤ E(q,k)[X(t) ∧ n] + 2α

∫ t

0
E(q,k)[θ(s)] ds

= k ∧ n+ 2α

∫ t

0
E(q,k)[θ(s)1{X(s)<n}] ds+ 2α

∫ t

0
E(q,k)[θ(s)] ds

≤ k + 4αtq,

where we used that X is non-negative in the first equality, that N (n) is a martingale in the
second one, and that θ is non-increasing in the last one. As (N (n), n ∈ N) converges a.s. to
the process N = (Nt, t ≥ 0) defined for t ∈ R

+ by:

(4) Nt = X(t)− 2α

∫ t

0
θ(s) ds,

we deduce that N is a martingale under P(g,k) for every (q, k) ∈ R
+ × N.
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By taking g(q, k) = k2 and using elementary stochastic calculus and similar arguments as
above, we also get that the process M = (Mt, t ≥ 0) defined for t ≥ 0 by:

(5) Mt = N2
t − 2α

∫ t

0
θ(s) ds

is a martingale under P(q,k) for every (q, k) ∈ R
+ ×N.

3. The Brownian snake of records

3.1. Real trees. We recall here the definition and basic properties of real trees. We refer to
Evans’s Saint Flour lectures [14] for more details on the subject.

Definition 3.1. A real tree is a metric space (T , d) satisfying the following two properties
for every x, y ∈ T :

• (unique geodesic) There is a unique isometric map fx,y from [0, d(x, y)] into T such
that fx,y(0) = x and fx,y(d(x, y)) = y.

• (no loop) If ϕ is a continuous injective map from [0, 1] into T such that ϕ(0) = x and
ϕ(1) = y, then

ϕ([0, 1]) = fx,y([0, d(x, y)]).

A rooted real tree is a real tree with a distinguished vertex denoted ∅ and called the root.

We denote by [[x, y]] the range of the mapping fx,y, which is the unique injective path
between x and y in the tree. We also define a length measure denoted by ℓ(dx) on a real tree
by:

ℓ([[x, y]]) = d(x, y).

We will consider here only compact real trees and these trees can be coded by some
continuous function which is very useful for constructing real trees, in particular random
trees. We consider a continuous function ζ : [0,+∞) → [0,+∞) with compact support [0, σ]
and such that ζ(0) = ζ(σ) = 0. This function ζ will be called in the following the height
function. For every s, t ≥ 0, we set

mζ(s, t) = inf
r∈[s∧t,s∨t]

ζ(r),

and

d(s, t) = ζ(s) + ζ(t)−mζ(s, t).

We then define the equivalence relation s ∼ t iff d(s, t) = 0. We set Tζ the quotient space

Tζ = [0,+∞)/ ∼ .

The distance d induces a distance on Tζ and we keep notation d for this distance. For
simplicity, for s ≥ 0, we shall denote by s the equivalence class which contains s. The metric
space (Tζ , d) is a compact real tree, see [13] Theorem 2.1. It can be viewed as a rooted real

tree by setting ∅ = 0. We shall write mT for the measure on (the leaves of) T defined as the
Lebesgue measure on [0, σ]. In particular, we have mT (T ) = σ.

We denote by N the σ-finite measure on the Polish set T of real trees (with the Gromov-

Hausdorff distance) of the real tree Tζ when ζ if an excursion away from 0 of
√

2
α |B| where

|B| is a standard reflected Brownian motion. The tree Tζ is then the genealogical tree of a
continuous state branching process with branching mechanism ψ(u) = αu2 under its canonical
measure.
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The density, with respect to Lebesque measure, of the length σ of the excursion ζ under
N is given by:

(6)
dr

2
√
απ r3/2

1{r>0}.

In particular, we have for µ ≥ 0:

N
[

1− e−µσ
]

=
√

µ/α.

Using the scaling property of the Brownian motion, there exists a regular version of the
measure N conditioned on the length of the height process ζ. We write N(r) for the probability
measure N[ · |σ = r].

3.2. The spatial process. We now consider a snake with lifetime process the excursion ζ
and with spatial motion the record process θ (see [17] for the definition and the existence of
a snake and [10] for the case of a discontinuous spatial motion). A snake is a path-valued
Markov process ((ζs,Ws), s ≥ 0) such that, conditionally given (ζs, s ≥ 0), the process is still
a (inhomogeneous) Markov process such that

• For every s ≥ 0, the process (Ws(t), t ≥ 0) is distributed as the record process θ killed
at time ζs.

• For every 0 ≤ s ≤ s′, we have
– Ws(t) =Ws′(t) for every t ∈ [0,mζ(s, s

′)].
– The process (Ws(t)−Ws(mζ(s, s

′)), t ∈ [mζ(s, s
′), ζs]) and the process (Ws′(t)−

Ws(mζ(s, s
′)), t ∈ [mζ(s, s

′), ζs′ ]) are independent.

Let us remark that, by definition, the starting points Ws(0) are the same for all s. We

denote by Nq (resp. N
(r)
q ) the law of the snake when ζ is distributed according to N (resp.

N
(r)) and when Ws(0) = q.

Equivalently, we can define directly the record process on the tree using a Poisson point
measure: conditionally given ζ, we consider a Poisson point measure

∑

i∈I δ(qi,xi)(dq, dx) on
R+ × Tζ with intensity 2α dq ℓ(dx). For every x ∈ Tζ , we set

θ(x) = min(q, inf{qi, xi ∈ [[∅, x]]}).
Then it is not difficult to see that the law of the process

((ζs, (θ(x), x ∈ [[∅, s]])), s ≥ 0)

when ζ is distributed according to N (resp. N(r)) is Nq (resp. N
(r)
q ).

We will write, for every s ≥ 0,

θ̂s =Ws(ζs) = θ(s).

4. Distribution of Θ and related computations

Recall that σ = mT (T ). We set:

Θ =

∫ σ

0
θ̂s ds =

∫

T
θ(x) mT (dx) and Z =

√

2α

σ
Θ.

In order to stress that Θ is defined from T , we may write Θ(T ) for Θ.
Let λ > 0, µ ≥ 0 and f(x) = λx+ µ. We set for q ∈ [0,+∞]:

(7) F (q) = Nq

[

1− e−
∫ σ
0 f(θ̂s) ds

]

.
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We define the function:

(8) G(x) =

(
√

µ

α
+

λ

2α

)

e
2α
λ

(

x−
√

µ/α
)

−x− λ

2α
·

The function G is one-to-one from [
√

µ/α,+∞) to [0,+∞), is increasing and is of class C∞.

Lemma 4.1. Let λ > 0, µ ≥ 0. The function F is of class C1 on [0,+∞) and solves the
following equation on [0,+∞):

(9) αF (q)2 + 2α

∫ q

0
xF ′(x) dx = f(q).

Furthermore, we have F = G−1.

The proof of this Lemma is postponed to the Appendix, Section 9.
Notice that F (+∞) = +∞ which doesn’t able us to compute the Laplace transform of

∫ σ
0 f(θ̂s) ds. However, we have the following result.

Corollary 4.2. Let λ > 0, µ ≥ 0. We have:

(10) N∞
[

σ e−µσ−λΘ
]

=
1

2
√
αµ + λ

·

Proof. We have for q ∈ [0,+∞):

(11) ∂µF (q) = Nq

[

σ e−
∫ σ
0 f(θ̂s) ds

]

.

Since G(F (q)) = q we get:

(∂µG)(F (q)) +G′(F (q)) ∂µF (q) = 0.

We have:

∂µG(x) = − 1

λ
e

2α
λ
(x−

√
µ/α) = − 1

λ

1

2
√
αµ+ λ

(2αG(x) + 2αx+ λ).

Notice that G′(F (q)) = 1/F ′(q). We deduce from (37) that:

∂µF (q) =
1

2α(F (q) + q)

1

2
√
αµ+ λ

(2αq + 2αF (q) + λ)

=
1

2
√
αµ+ λ

(

1 +
λ

2α(F (q) + q)

)

.

Letting q go to infinity gives the result. �

Using (6), we get that for every non-negative measurable random variable V , for q ∈
[0,+∞]:

(12) Nq[V ] =

∫ ∞

0

dr

2
√
απ r3/2

N
(r)
q [V ].

In particular, we deduce from Corollary 4.2 that:

(13)
1

2
√
απ

∫ ∞

0

dr√
r

e−µr
N
(r)
∞
[

e−λΘ
]

=
1

2
√
αµ+ λ

·

The proof of the next Lemma is postponed to the Appendix, Section 9.
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Lemma 4.3. Let Z ′ be a Rayleigh random variable with density x e−x2/2 1{x>0}. Let µ > 0,
c ≥ 0. We have:

(14)
1√
π

∫ +∞

0

dr√
r

e−µr
E

[

e−
√
2r cZ′

]

=
1

c+
√
µ
·

We then deduce the following result.

Proposition 4.4. Let Z ′ be a Rayleigh random variable with density x e−x2/2 1{x>0}. We

have that for all r > 0, the random variable Θ is distributed under N
(r)
∞ as

√

r
2α Z

′. In other

words, for all r > 0, under N
(r)
∞ , we have Z

(d)
= Z ′.

Proof. By comparing Equations (13) and (14), we obtain that:

(15)
1

2
√
απ

∫ ∞

0

dr√
r

e−µr
N
(r)
∞
[

e−λΘ
]

=
1

2
√
απ

∫ +∞

0

dr√
r

e−µr
E

[

e−λ
√

r
2α

Z′
]

for every µ ≥ 0. This implies that dr-a.e.:

N
(r)
∞
[

e−λΘ
]

= E

[

e−λ
√

r
2α

Z′
]

,

but, thanks to the scaling property for Brownian motion, the function

r 7→ N
(r)
∞
[

e−λΘ
]

is continuous, and so is the right-hand side of Equation (15). Thus the equality holds for
every r, which ends the proof. �

We deduce the following Corollary.

Corollary 4.5. We have:

(16) N
(r)
∞ [Θ] =

1

2

√

πr

α
and N

(r)
∞
[

Θ2
]

=
r

α
·

Proof. This is a direct consequence of Proposition 4.4 and the following fact:

(17) E[Z ′n] = 2n/2Γ((n + 2)/2) for n > −2,

which implies E[Z ′] =
√

π/2 and E[Z ′2] = 2. �

The last part of the Section is devoted to the computation of the first moment of Θ under

N
(r)
q , with q < +∞. We first give the asymptotic expansion of F with respect to small

λ. We write O(λk) for any function g of q, µ and λ such that for any q > 0, µ > 0 and
ε > 0 there exists a finite constant C (depending on q, µ and ε) such that for all λ ∈ [0, ε],
|g(q, µ, λ)| ≤ Cλk. Notice that O(λk) is not uniform in q or µ.

Lemma 4.6. Let q ∈ (0,+∞). We set z = q
√

α
µ . We have:

(18) F (q) =

√

µ

α
+

λ

2α
log(1 + z)− λ2

4α3/2µ1/2
z − log(1 + z)

1 + z
+O(λ3).

In particular, we deduce that:

(19) ∂λF (q)|λ=0 =
1

2α
log(1 + z) and ∂2λF (q)|λ=0 = − 1

2α3/2µ1/2
z − log(1 + z)

1 + z
·
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Proof. Using the second part of Lemma 4.1 and (8), we get:

(20) F (q) =

√

µ

α
+

λ

2α
log

(

2αq + 2αF (q) + λ

2
√
αµ + λ

)

.

Using (7), we get that F (q) decreases to
√

µ/α when λ goes down to 0, that is F (q) =
√

µ/α+O(1). Plugging this in the right-hand side of (20), we get:

F (q) =

√

µ

α
+O(λ).

Plugging this in the right-hand side of (20), we get:

F (q) =

√

µ

α
+

λ

2α
log(1 + z) +O(λ2).

Plugging this again in the right-hand side of (20), we get (18). This readily implies (19). �

We can then compute the first moment of Θ under N
(r)
q .

Proposition 4.7. Let Z ′ be a Rayleigh random variable with density x e−x2/2 1{x>0}. We set

(21) Hq(r) =

√

r

2α

∫ q
√
2αr

0
dy E

[

e−yZ′
]

.

For r > 0 and q ∈ [0,+∞), we have:

N
(r)
q [Θ] = Hq(r).

Since 0 ≤ 1− e−z ≤ z for z ≥ 0, we get:

(22) 0 ≤ qr −Hq(r) ≤
1

2

√
πα q2r3/2.

We also deduce from the previous Proposition that:

N
(r)
∞ [Θ] = H∞(r) =

√

r

2α

∫ +∞

0
dy E

[

e−yZ′
]

=

√

r

2α
E[1/Z ′] =

√
πr

2
√
α
,

where we used (17) with n = −1. Thus we recover the first part of (16) (notice that this
relies on the following identity for the Rayleigh random variable: E[Z ′] = E[1/Z ′]).

Proof. By the change of variable y = q
√
2αz, we have

Hq(r) =
q
√
r

2

∫ r

0

dz√
z

∫ +∞

0
dxx exp

(

−x
2

2
− q

√
2αz x

)

.

Then we compute for µ > 0,
∫ +∞

0

dr

2
√
απr

e−µrHq(r) =
q

4
√
πα

∫ +∞

0
dr e−µr

∫ r

0

dz√
z

∫ +∞

0
dxx exp

(

−x
2

2
− q

√
2αz x

)

=
q

4
√
πα

∫ +∞

0

dz√
z

∫ +∞

z
dr e−µr

∫ +∞

0
dxx exp

(

−x
2

2
− q

√
2αz x

)

=
q

4
√
πα

1

µ

∫ +∞

0

dz√
z
e−µz

∫ +∞

0
dxx exp

(

−x
2

2
− q

√
2αz x

)

=
q

4
√
α

1

µ

1√
µ+ q

√
α
,

where we used equality (14) for the last equality.
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On the other hand, we have:
∫ +∞

0

dr

2
√
απr

e−µr
N
(r)
q [Θ] = −∂µ

∫ +∞

0

dr

2
√
απ r3/2

e−µr
N
(r)
q [Θ]

= −∂µNq

[

e−µσ Θ
]

= −∂µ
[

∂λF (q)|λ=0

]

= − 1

2α
∂µ log

(

1 + q

√

α

µ

)

=
q

4
√
α

1

µ

1√
µ+ q

√
α
,

where we used (12) for the second equality, the definition (7) of F for the third one and (19)

for the fourth one. Therefore, we have that dr-a.e. N
(r)
q [Θ] = Hq(r). Then the equality holds

for all r > 0 by continuity (using again a scaling argument). �

We end that section with the computation of the first moments of Θ conditionally given
the tree Tζ or equivalently conditionally on the height process ζ.

Proposition 4.8. We have:

N∞
[

Θ
∣

∣ ζ
]

=
1

2α

∫ σ

0

dt1
ζt1

N∞
[

Θ2
∣

∣ ζ
]

=
2

(2α)2

∫ σ

0

∫ σ

0

dt1dt2
L1L2

,

where L1 = ζt1 and L2 is the length of the tree spanned by t1 and t2 i.e. L2 = ζt1 + ζt2 −
mζ(t1, t2).

Remark 4.9. We deduce from Proposition 4.8, that:

N∞
[

Z
∣

∣ ζ
]

=
1√
2ασ

∫ σ

0

dt1
ζt1

N∞
[

Z2
∣

∣ ζ
]

=
1

ασ

∫ σ

0

∫ σ

0

dt1dt2
L1L2

·

Recall the rate at which marks are thrown is 2α. Using notations (1), we deduce from
Theorems 1.9 and 1.10 of [15] that, for α = 1/2, Z and ZT have, conditionally on T the same
first two moments. We also check this is true for the third moment. But we were not able
to perform computations of N∞

[

Zk
∣

∣ ζ
]

in closed form for general k in order to check that
Z and ZT have the same distribution conditionally on T .

Proof. We have:

N∞[Θ
∣

∣ ζ] =

∫ σ

0
N∞[θ̂s

∣

∣ ζ]ds.

But, conditionally on ζs, θ̂s is distributed according to an exponential random variable with
parameter 2αζs by standard results on Poisson point measures. Therefore, we have:

N∞[Θ
∣

∣ ζ] =
1

2α

∫ σ

0

ds

ζs
·

For the second moment, we have:

N∞[Θ2
∣

∣ ζ] =

∫ σ

0

∫ σ

0
dt1dt2N∞[θ̂t1 θ̂t2

∣

∣ ζ].

Let us set h0 = 2αmζ(t1, t2), h1 = 2αζt1 − h0, and h2 = 2αζt2 − h0. Remark that
L1 = (h0 + h1)/2α and L2 = (h0 + h1 + h2)/2α. Moreover, under N∞ conditionally given ζ,
we have

(θ̂t1 , θ̂t2)
(d)
= (Y0 ∧ Y1, Y0 ∧ Y2)
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where Y0, Y1, Y2 are independent exponentially distributed random variables with respective
parameter h0, h1 and h2. Consequently, we have

N∞[θ̂t1 θ̂t2
∣

∣ ζ] =

∫ +∞

0
duh0 e

−h0u E[u ∧ Y1]E[u ∧ Y2]

=

∫ +∞

0
duh0 e

−h0u 1

h1h2

(

1− e−h1u
)(

1− e−h2u
)

=
1

h1h2

(

1− h0
h0 + h1

− h0
h0 + h2

+
h0

h0 + h1 + h2

)

=
1

(h0 + h1)(h0 + h1 + h2)
+

1

(h0 + h2)(h0 + h1 + h2)
·

When integrating with respect to dt1dt2, these two terms give the same contribution by
symmetry and we get the second moment of the Proposition. �

5. Sub-tree with n leaves

5.1. Definition. Let r ≥ 0 and let T be a tree distributed according to N
(r). Let (t1, . . . , tn)

be n points uniformly chosen at random on [0, r] and let Tn be the sub-tree of T spanned
from these n points and the root:

Tn =

n
⋃

k=1

[[∅, tk]].

Notice that Tn has 2n − 1 edges. Let (h1, . . . , h2n−1) be the lengths of the edges given in
lexicographic order. We shall consider the total length of Tn:

Ln =

2n−1
∑

k=1

hk.

We first recall the density of (h1, . . . , h2n−1), see also [13]. The proof of this Lemma is
given in the Appendix, Section 9.

Lemma 5.1. Under N
(r), (h1, . . . , h2n−1) has density:

f (r)n (h1, . . . , h2n−1) = 2
(2n− 2)!

(n− 1)!

αn

rn
Ln e

−αL2
n/r 1{h1>0,...,h2n−1>0}.

We set h∅,n = h1 for the length of the edge of Tn originating from the root, that is
h∅,n = d(∅,mn) = ℓ([[∅,mn]]) with mn defined by:

(23)

n
⋂

k=1

[[∅, tk]] = [[∅,mn]].

5.2. The total length of the sub-tree. The main result of this Section is the following.

Proposition 5.2. Let Ln be the total length of Tn. Then L2
n, is distributed under N

(r) as
rΓn/α where Γn = E1+ · · ·+En, with (Ek, k ∈ N

∗) independent exponential random variables

with mean 1. In particular, we have that N(r)-a.s.

lim
n→+∞

Ln/
√
n =

√

r/α.
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Proof. Use the density f
(r)
n to get:

N
(r)[g(L2

n)] =

∫

g





(

2n−1
∑

k=1

hk

)2


 f (r)n (h1, . . . , h2n−1) dh1 · · · dh2n−1

=
(2n − 2)!

(n− 1)!

∫

g
(

L2
n

) αn

nn
2Lne

−αL2
n/r1{h1≥0,··· ,h2n−1≥0}dh1 · · · dh2n−1.

Consider now the change of variables:

u1 =

√

α

r
h1, · · · , u2n−2 =

√

α

r
h2n−2, x =

√

α

r
Ln,

with Jacobian equal to
(

α
r

)n− 1
2 . We have:

N
(r)[g(L2

n)] =
(2n− 2)!

(n − 1)!

∫

g

(

rx2

α

)

αn

rn
2

√

r

α
x e−x2

(α

r

)n− 1
2

1{u1≥0,...,u2n−2≥0}1{u1+···+u2n−2≤x}du1 · · · du2n−2dx

=
1

(n− 1)!

∫

g

(

rx2

α

)

2x e−x2
x2n−21x≥0dx

=
1

(n− 1)!

∫

g
(rz

α

)

e−z zn−11z≥0dz,

where we used that:
∫

1{u1≥0,...,u2n−2≥0}1{u1+···+u2n−2≤x}du1 · · · du2n−2 =
x2n−2

(2n − 2)!

for the second equality and considering the obvious change of variables z = x2 for the last
equality. Then use that Γn has distribution gamma with parameter (n, 1) to get the first part
of the Proposition.

For the second part, we compute

N
(r)

[

+∞
∑

n=1

(

L2
n

n
− r

α

)4
]

=
r

α

+∞
∑

n=1

E

[

(

Γn

n
− 1

)4
]

=
r

α

+∞
∑

n=1

1

n2

(

3 +
1

n

)

< +∞.

This implies that N
(r)-a.s.

∑+∞
n=1

(

L2
n
n − r

α

)4
is finite, which proves the last part of the

Proposition. �

5.3. The length of the vertex originating at the root.

Proposition 5.3. The sequence (
√
nh∅,n, n ≥ 1) converges in distribution to

√

r/α E1/2,
where E1 is an exponential random variable with mean 1.

Proof. Let k ∈ (−1,+∞). We set Hk = (α/r)k/2N(r)[hk∅,n]. We have:

Hk = 2
(2n − 2)!

(n− 1)!

αn+k/2

rn+k/2

∫

R
2n−1
+

dh1 . . . dh2n−1h
k
1 Ln e

−αL2
n/r .
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Consider the same change of variables as in the proof of Proposition 5.2 to get:

Hk = 2
(2n − 2)!

(n− 1)!

αn+k/2

rn+k/2

∫

R
2n−1
+

( r

α

)k/2
uk1

( r

α

)1/2
x e−αx2/r 1{u1+···+u2n−2≤x}

( r

α

)n− 1
2

du1 · · · du2n−2dx

= 2
(2n − 2)!

(n− 1)!

∫ ∫

R2
+

du1dx1{u1≤x} u
k
1x e

−x2
∫ ∫

R
2n−3
+

du2 . . . du2n−21u2+···+u2n−2≤x−u1

= 2
(2n − 2)!

(n− 1)!

1

(2n− 3)!

∫ +∞

0
dxx e−x2

∫ x

0
dhhk(x− h)2n−3.

Set y = x2, to get:

Hr = 2
(2n − 2)!

(n− 1)!

1

(2n − 3)!
β(k + 1, 2n − 2)

∫ +∞

0
dx x2n+k−1 e−x2

=
(2n− 2)!

(n − 1)!

1

(2n − 3)!
β(k + 1, 2n − 2)

∫ +∞

0
dy yn+

k
2
−1 e−r

=
(2n− 2)!

(n − 1)!

1

(2n− 3)!

Γ(k + 1)(2n − 3)!

Γ(2n + k − 1)
Γ(n+

k

2
)

=
Γ(k + 1)

2k
Γ(n− 1

2)

Γ(n+ k
2 − 1

2 )
,

where, for the last equality, we used twice the duplication formula:

(24)
Γ(2n − 1)

Γ(n)
=

22n−2Γ(n− 1/2)√
π

·

We observe that limn→+∞N
(r)[nk/2hk∅,n] =

k!
2k

(

r
α

)k/2
= E[(

√
rE1/(2

√
α))k]. This gives the

result, as the exponential distribution is characterized by its moments. �

From the proof of Proposition 5.3, we also get the following result.

Lemma 5.4. For all k ∈ (−1,+∞), we have, when n goes to infinity:

N
(r)[hk∅,n] =

( r

α

)k/2 Γ(k + 1)

2k
Γ(n− 1

2 )

Γ(n+ k
2 − 1

2)
∼ (r/α)k/2n−k/22−kΓ(k + 1).

6. Number of records on sub-trees

Recall the vertex originating from the root of Tn is [[∅,mn]], with mn defined by (23). Let
T ∗
n be the sub-tree of Tn where we remove the edge [[∅,mn]]:

T ∗
n = Tn \ [[∅,mn]],

and L∗
n its total length i.e. L∗

n = Ln − h∅,n. We also set θ∅,n = θ(mn), and conditionally on
h∅,n, θ∅,n is an exponential random variable with mean 1/h∅,n < +∞. Thus, we have:

N
(r)
∞

[

∫

T ∗
n

θ(x) ℓ(dx)
∣

∣

∣ T ∗
n , θ∅,n

]

≤ L∗
nθ∅,n < +∞.

Let X∗
n be the number of records on the tree T ∗

n :

X∗
n =

∑

x∈T ∗
n

1{θ(x−)>θ(x)},
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where θ(x−) = lim
y→x

y∈[[∅,x]]\{x}
θ(y). We can then state the main result.

Theorem 6.1. We have that, for all r > 0, N
(r)
∞ -a.s.:

lim
n→+∞

X∗
n√
n
= 2

√

α

r
Θ.

Remark 6.2. We have:

(25)
X∗

n√
2n− 1

N
(r)
∞ -a.s−−−−→
n→∞

√

2α

r
Θ = Z.

Notice that the binary tree Tn has 2n − 1 vertices; and it corresponds to a critical Galton-
Watson tree with reproduction law taking values in {0, 2} and with variance σ2 = 1 condi-
tionally on its number of edges being 2n − 1. Therefore, we get a similar result as Theorem
1.6 in [15].

The proof of Theorem 6.1 relies on the following technical result, which will be proved in
Section 7.

Proposition 6.3. We have that, for all r > 0, N
(r)
∞ -a.s.:

(26) lim
n→+∞

1√
n

∫

T ∗
n

θ(x) ℓ(dx) =
1√
rα

Θ.

and N
(r)-a.s.:

(27) rN(r)
∞

[

1√
n

∫

T ∗
n

θ(x) ℓ(dx)
∣

∣

∣ Tn

]

≤ Ln√
n
N
(r)
∞
[

Θ
∣

∣

∣ Tn

]

+R′
n,

where R′
n is non-negative and σ(Tn)-measurable and the sequence (R′

n, n ≥ 1) converges N
(r)
∞ -

a.s. to 0.

Proof of Theorem 6.1. We set:

∆n =
X∗

n√
n
− 2α√

n

∫

T ∗
n

θ(x) ℓ(dx).

Using the martingale of Equation (5), we have that:

(28) N
(r)
∞
[

∆2
n

∣

∣

∣ Tn

]

=
2α√
n
N
(r)
∞

[

1√
n

∫

T ∗
n

θ(x) ℓ(dx)
∣

∣

∣ Tn

]

.

We have:

N
(r)
∞





∑

n≥1

∆2
n41{R′

n4≤1}



 =
∑

n≥1

N
(r)
∞
[

N
(r)
∞
[

∆2
n4 | Tn4

]

1{R′
n4≤1}

]

≤
∑

n≥1

2α

n2r2
N
(r)
∞

[(

Ln4

n2
N
(r)
∞
[

Θ
∣

∣

∣ Tn4

]

+R′
n4

)

1{R′
n4≤1}

]

≤
∑

n≥1

2α

n2r2

(

1

n2
N
(r)
∞
[

L2
n4

]1/2
N
(r)
∞
[

Θ2
]1/2

+ 1

)

< +∞,
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where we used (28) and (27) for the first inequality, Cauchy-Schwarz inequality for the second

one, and Proposition 5.2 as well as (16) for the last one. This result implies that N
(r)
∞ -a.s.

limn→+∞∆n41{R′
n4≤1} = 0 and thus N

(r)
∞ -a.s. limn→+∞∆n4 = 0 as the sequence (R′

n, n ≥ 1)

converges N
(r)-a.s. to 0. We deduce from (26), that N

(r)
∞ -a.s. the sequence (X∗

n4/n
2, n ≥ 1)

converges to 2
√

r
αΘ. Then using that (X∗

n, n ≥ 1) is increasing, we get for k ∈ N, such that

n4 < k ≤ (n+ 1)4, that:

n2

(n+ 1)2
X∗

n4

n2
≤ X∗

k√
k
≤ (n + 1)2

n2

X∗
(n+1)4

(n+ 1)2
·

Thus, we get that N
(r)
∞ -a.s. the sequence (X∗

k/
√
k, k ≥ 1) converges to 2

√

α
rΘ. �

7. Proof of Proposition 6.3

Let Fn be the σ-field generated by Tn and (θ(x), x ∈ Tn). The filtration (Fn, n ≥ 1) is

increasing towards ∨n≥1Fn = F , the σ-field generated by T and (θ̂s, s ∈ [0, σ]) = (θ(x), x ∈
T ).

In order to first give a description of the Brownian snake conditionally on Fn, we consider
the sub-trees that are grafted on Tn. For x, y ∈ T , we define an equivalence relation by
setting

x ∼Tn y ⇐⇒ [[∅, x]] ∩ Tn = [[∅, y]] ∩ Tn
and we set (Ti, i ∈ In) for the different equivalent classes. The set Ti can be viewed as a
rooted real tree with root xi = Ti ∩ Tn. Notice that xi represents the point of Tn at which
the tree Ti is grafted on Tn. Finally, we set θi = θ(xi) and σi = mT (Ti) which corresponds
to the length of the height process of Ti.

Using Theorem 3 of [16] (combined with the spatial motion θ), we get the following result.

Lemma 7.1. Under Nq conditionally on Fn, the point measure
∑

i∈In
δ(Ti,θi,xi)(dT , dq, dx)

is a Poisson point measure with intensity

2α1Tn(x)ℓ(dx) N[dT ] δθ(x)(dq).

We deduce from that Lemma the next result.

Lemma 7.2. Under N
(r)
q and conditionally on Fn, the point measure

Nn(dσ, dq, dx) =
∑

i∈In
δ(σi,θi,xi)(dσ, dq, dx)

is distributed as a Poisson point measure:

Ñ (dσ, dq, dx) =
∑

j∈J
δσ̃j ,θj ,xj

(dσ, dq, dx)

with intensity 2α1Tn(x)ℓ(dx)
dσ

2
√
απ σ3/21σ>0 δθ(x)(dq) conditioned on {∑j∈J σ̃j = r}.

We can compute some elementary functionals of Nn.
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Lemma 7.3. The point measure Nn has intensity:

2α1Tn(x)ℓ(dx) E
(r),Ln [dσ] δθ(x)(dq),

where E
(r),Ln satisfies, for any non-negative measurable function F :

2α

∫

Tn

ℓ(dx) E(r),Ln [F (x, σ)] = E





∑

j∈J
F (sj , σ̃j)

∣

∣

∣

∑

j∈J
σ̃j = r



 .

We also have:

(29) E
(r),Ln [σ] =

r

2αLn
and E

(r),Ln [σ3/2] ≤ 1

2
√
απ

1

Ln
r2 e−αL2

n/4r .

Proof. The first part of the Lemma is a consequence of the exchangeability of (σi, i ∈ In).
With F (q, r′) = r′, we get:

2αLnE
(r),Ln [σ] = 2α

∫

Tn

ℓ(dx) E(r),Ln [σ] = E





∑

j∈J
σ̃j |

∑

j∈J
σ̃j = r



 = r.

This gives the first equality of (29). Recall that:

N
[

1− e−µσ
]

=

∫ ∞

0

dr

2
√
απ r3/2

(

1− e−µr
)

=
√

µ/α.

We have, using the Palm formula for Poisson point measures, for a > 1/2:

E





∑

j∈J
σ̃aj e

−µ
∑

i∈J σ̃i



 = E





∑

j∈J
σ̃aj e

−µσ̃j e−µ
∑

i∈J,i6=j σ̃i





= 2αLnN
[

σa e−µσ
]

exp

(

−2αLn

∫ +∞

0

dσ

2
√
απσ3/2

(

1− e−µσ
)

)

= 2αLnN
[

σa e−µσ
]

e−2Ln
√
αµ .

Moreover, we have:

N
[

σa e−µσ
]

=

∫ ∞

0

dr

2
√
απ r3/2

ra e−µr =
1

2
√
απ

Γ(a− 1/2)µ1/2−a.

We deduce that:

E





∑

j∈J

(

2
√
αLnσ̃

3/2
j +

1

Γ(3/2)
σ̃2j

)

e−µ
∑

i∈J σ̃i





= 2αLn e
−2Ln

√
αµ

(

2
√
αLnN[σ

3/2 e−µσ ] +
1

Γ(3/2)
N[σ2 e−µσ ]

)

= 2αLn e
−2Ln

√
αµ 1

2
√
απ

(

2
√
αLn

µ
+

1

µ3/2

)

=
2√
π

∂2

∂µ2
e−Ln

√
µα .
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Using (39), we have

∂2

∂µ2
e−Ln

√
µα =

∂2

∂µ2
1√
π

∫ +∞

0

dx

x3/2
e−1/x e−

1
4
αL2

nµx

=
1√
π

(α

4
L2
n

)2
∫ +∞

0
dx

√
x e−1/x e−

1
4
αL2

nµx

=
Ln

√
α

2
√
π

∫ +∞

0
dr

√
r e−αL2

n/4r e−µr

= αLn

∫ +∞

0

dr

2
√
απ r3/2

r2 e−αL2
n/4r e−µr .

We deduce that:

E





∑

j∈J

(

2
√
αLnσ̃

3/2
j +

1

Γ(3/2)
σ̃2j

)

∣

∣

∣

∑

i∈J
σ̃i = r



 =
2αLn√
π
r2 e−αL2

n/4r .

Then, using the first part of Lemma 7.3 with F (s, σ) = 2
√
αLnσ

3/2 + 1
Γ(3/2) σ

2, we get the

second equality of (29). �

We consider the process (Mn, n ≥ 1) defined by, for q ∈ [0,+∞]:

Mn = N
(r)
q

[

Θ
∣

∣

∣
Fn

]

.

Thanks to Corollary 4.5, we get that:

N
(r)
q [M2

n] ≤ N
(r)
q

[

Θ2
]

≤ N
(r)
∞
[

Θ2
]

=
r

α
·

Therefore (Mn, n ≥ 1) is (a well defined) square integrable non-negative martingale. In

particular it converges N
(r)
q -a.s. (and in L2(N

(r)
q )) to Θ as the increasing σ-fields Fn increase

to F .

Lemma 7.4. We have, for n ≥ 1,

(30) −Rn ≤Mn − r

Ln

∫

T ∗
n

θ(x) ℓ(dx) ≤ Vn,

where (Rn, n ≥ 1) and (Vn, n ≥ 1) are non-negative sequences which converge N
(r)
∞ -a.s. to

0. Furthermore the non-negative sequence (R′
n, n ≥ 1), with R′

n = N∞(r)[Rn|Tn] Ln/
√
n,

converges N
(r)
∞ -a.s. to 0.

This Lemma and the N
(r)
∞ -a.s. convergences of (Mn, n ≥ 1) to Θ and of (Ln/

√
n, n ≥ 1)

to
√

r/α (see Proposition 5.2) prove (26). Then use that N
(r)
∞ [Mn | Tn] = N

(r)
∞ [Θ | Tn] to get

(27). This ends the proof of Proposition 6.3.

Proof of Lemma 7.4. We consider the set I∗n = {i ∈ In, xi ≥ mn} of indexes such that Ti is
not grafted on the edge of Tn originating from the root. We set:

An = {s ≥ 0; [[∅, s]]∩T ∗
n 6= ∅} =

⋃

i∈I∗n
T i, M∗

n = N
(r)
q

[∫

An

θ̂s ds
∣

∣

∣
Fn

]

and Vn =Mn−M∗
n.
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Notice that the sequence (An, n ∈ N
∗) is non-decreasing and that

⋂

n∈N∗ Ac
n = ∅, as there is

no tree grafted on the root. By dominated convergence, this implies that N
(r)
q -a.s.:

lim
n→+∞

∫

Ac
n

θ̂s ds = 0.

As:

Vn+m = N
(r)
q

[

∫

Ac
n+m

θ̂s ds
∣

∣

∣ Fn+m

]

≤ N
(r)
q

[

∫

Ac
n

θ̂s ds
∣

∣

∣ Fn+m

]

,

and as Fn+m increases to F , we get that lim supm→+∞ Vn+m ≤
∫

Ac
n
θ̂s ds and thus N

(r)
q -a.s.

(31) lim
n→+∞

Vn = 0.

Recall the function Hq defined by (21). We have, with Θi = Θ(Ti) =
∫

Ti θ(x) m
T (dx):

M∗
n = N

(r)
q

[
∫

An

θ̂s ds
∣

∣

∣ Fn

]

= N
(r)
q





∑

i∈I∗n
Θi

∣

∣

∣ Fn



 = N
(r)
q





∑

i∈I∗n
N
(σi)
θ(xi)

[Θ]
∣

∣

∣ Fn





= N
(r)
q





∑

i∈I∗n
Hθ(xi)(σi)

∣

∣

∣
Fn



 .

Since Hq(r) ≤ qr, see (22), we get using Lemma 7.3:

M∗
n = 2α

∫

T ∗
n

ℓ(dx) E(r),Ln [Hθ(x)(σ)] ≤ 2α

∫

T ∗
n

ℓ(dx) θ(x)E(r),Ln [σ] = r
1

Ln

∫

T ∗
n

ℓ(dx) θ(x).

This gives the upper bound of (30).

We shall now prove the lower bound of (30). Since Hq(r) ≥ qr − 1
2

√
απ q2r3/2, see (22),

we also get using the second equality of (29):

Mn ≥M∗
n ≥ r

1

Ln

∫

T ∗
n

ℓ(dx) θ(x)− 1

2

√
απ E

(r),Ln [σ3/2]

∫

T ∗
n

ℓ(dx) θ(x)2

≥ r
1

Ln

∫

T ∗
n

ℓ(dx) θ(x)− 1

4
r2 e−αL2

n/4r θ2∅,n.

This proves the lower bound of (30) with:

(32) Rn =
1

4
r2 e−αL2

n/4r θ2∅,n.

It remains to prove that this quantity tends to 0. First, we have:

N
(r)
∞ [h2∅,nθ

2
∅,n] = N

(r)
∞ [h2∅,nN

(r)
∞ [θ2∅,n |h∅,n]] =

1

(2α)2
,

where we used that θ∅,n is exponentially distributed conditionally given h∅,n for the second
equality. We deduce that:

N
(r)
∞

[

+∞
∑

n=1

h2∅,nθ
2
∅,n

n2

]

<∞

and hence N
(r)
∞ -a.s.:

+∞
∑

n=1

h2∅,nθ
2
∅,n

n2
<∞.
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This implies that for some finite constant C1, N
(r)
∞ -a.s.:

h2∅,nθ
2
∅,n ≤ C1n

2.

Using Lemma 5.4, we have N
(r)
∞ [h

−1/2
∅,n ] ∼ n1/4

√

απ/2r, which implies by similar arguments

that for some finite constant C2, N
(r)
∞ -a.s.:

(33) h
−1/2
∅,n ≤ C2n

3/2.

Finally, using Formula (32) for Rn, we have N
(r)
∞ -a.s.:

Rn ≤ C1C
4
2 n

8 e−αL2
n/4r .

As N
(r)
∞ -a.s. limn→+∞Ln/

√
n =

√

r/α, we deduce that limn→+∞Rn = 0.
Using (33), we deduce that:

R′
n =

Ln√
n
N
(r)
∞ [Rn | Tn] =

Ln√
n

r2

4
e−αL2

n/4r
1

4α2

1

h2∅,n
≤ C4

2

r2

4
n11/2Ln e

−αL2
n/4r .

Thus, we get the non-negative sequence (R′
n, n ≥ 1), converges N

(r)
∞ -a.s. to 0, which ends the

proof. �

8. Another expression for Θ

For q ≥ 0, we define the measure on real trees:

N
q[T ∈ •] = N

[

T ∈ •; e−αq2σ
]

.

This measure corresponds to the excursion measure of the genealogical tree of the continuous
state branching process with branching mechanism ψq(u) = ψ(u + q) − ψ(q) = αu2 + 2αu,
see [1]. We consider the sub-tree of T on which the record process is no smaller than q:

T q = {x ∈ T ; θ(x) ≥ q}.

We set σq = mT (T q). Notice that σq is also the Lebesgue measure of {s ∈ [0, σ], θ̂s ≥ q}. See
[1] for the distribution of the decreasing process (σq, q ≥ 0). According to [1], the distribution
of T q is given by N

q. In particular, we have:

N[σq] = N

[

σ e−αq2σ
]

=
1

2αq
·

Let (θi, i ∈ I) be the set of jumping times of (σq, q ≥ 0). We set:

T i = {x ∈ T ; θ(x) = θi} and σi = mT (T i) = σθi− − σθi .

According to [1], we have that N
(r)
∞ -a.s. T i is a real tree for all i ∈ I. Then the following

result is straightforward as by definition Θ =
∑

i∈I θiσ
i and σq =

∑

θi≥q σ
i.

Proposition 8.1. We have N∞-a.e. or N
(r)
∞ -a.s.:

Θ =

∫ +∞

0
σq dq.
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We define the backward filtration G = (Gq, q ≥ 0) with Gq = σ(T r, r ≥ q). Following [2],
we get that the random measure:

N (dT ′, dq) =
∑

i∈I
δT i,θi(dT ′, dq)

is under N∞ a point measure with intensity:

1{q>0}2ασq N
q
[

dT ′] dq.

This means that for every non-negative predictable process (Y (T ′, q), q ∈ R+,T ′ ∈ T) with
respect to the backward filtration G,

(34) N∞

[∫

Y (T ′, q)N (dT , dq)
]

= N∞

[∫

Yq 1{q>0}2ασq dq
]

,

where (Yq =
∫

Y (T ′, q)Nq[dT ′], q ∈ R+) is predictable with respect to the backward filtration
G. We refer to [11, 12] for the general theory of random point measures.

Recall that, according to Proposition 4.4, Z =
√

2α
σ Θ is a Rayleigh random variable with

density x e−x2/2 1{x>0}.

Proposition 8.2. We have N∞-a.e.:

lim
n→+∞

1√
n

∑

i∈I
1{σi≥1/n} = 2

√

α

π
Θ =

√

2σ

π
Z.

Proof. Let M > 0 be large. We consider the G-stopping time τM = inf{q;σq < M/2α}. We
define for every θ > 0 and every positive integer n,

Qn(θ) =
∑

i∈I
1{σi≥1/n}1{θi>θ}.

We have Qn(τM ) =
∑

i∈I 1{σi≥1/n}1{σθi+
<M/2α} so that:

N∞ [Qn(τM )] = N∞

[
∫ +∞

τM

dq σqN
[

1{σ≥1/n} e
−αq2σ

]

]

≤ N∞

[∫ +∞

0
dq min

(

σq,
M

2α

)

N

[

1{σ≥1/n} e
−αq2σ

]

]

≤ 1

2α

∫ +∞

0
dq min

(

M,
1

q

)∫ +∞

1
n

dr

2
√
απr3/2

e−αq2r

=

√
n

4α3/2
√
π

∫ +∞

0
dq min

(

M,
1

q

)
∫ +∞

1

dr

r3/2
e−αq2r/n,

where the first equality is derived from (34). Elementary computations yields there exists a
finite constant c which depends on M but not on n such that:

(35) N∞ [Qn(τM )] = N∞

[∫ +∞

τM

dq σqN
[

1{σ≥1/n} e
−αq2σ

]

]

≤ c
√
n
(

1 + log(n)1{n≥αM2}
)

.

Classical results on random point measures imply that the process (Nn(θ∨ τM), θ ≥ 0), with:

Nn(θ) = Qn(θ)− 2α

∫ +∞

θ
dq σqN

[

1{σ≥1/n} e
−αq2σ

]
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is a backward martingale with respect to G. Moreover, since (Qn(θ), θ ≥ 0) is a pure jump
process with jumps of size 1, the process (Mn(θ ∨ τM ), θ ≥ 0), with:

Mn(θ) = Nn(θ)
2 − 2α

∫ +∞

θ
dq σqN

[

1{σ≥1/n} e
−αq2σ

]

is also a backward martingale with respect to G. Using (35), we get that N∞
[

(

Nn4(τM )/n2
)2
]

is less than a constant times n−3/2; therefore

+∞
∑

n=1

(

Nn4(τM )

n2

)2

is finite in L1(N∞) and thus is N∞-a.e. finite. This implies that N∞-a.e.:

lim
n→+∞

Nn4(τM )

n2
= 0.

Moreover, we have by monotone convergence:

2α√
n

∫ +∞

τM

dq σqN
[

1{σ≥1/n} e
−αq2σ

]

= 2α

∫ +∞

τM

dq σq

∫ +∞

1

dr

2
√
απr3/2

e−αq2 r
n

N∞-a.e.−−−−−→
n→∞

2

√

α

π

∫ +∞

τM

dqσq.

We get that the sequence (Qn4(τM )/n2, n ≥ 1) converges N∞-a.e. toward 2
√

α
π

∫ +∞
τM

dq σq.

Since (Qn(θ), n ≥ 1) is non-decreasing, we deduce that N∞-a.e.:

lim
n→+∞

Qn(τM )√
n

= 2

√

α

π

∫ +∞

τM

dq σq.

Since Θ is finite N∞-a.e., we get that N∞-a.e. τM = 0 for M large enough. This gives the
result. �

Proposition 8.3. We have N∞-a.e.:

lim
n→+∞

√
n
∑

i∈I
σi1{σi≤1/n} = 2

√

α

π
Θ =

√

2σ

π
Z.

Proof. The proof is very similar to the proof of Proposition 8.2. We set:

Qn(θ) =
∑

i∈I
σi1{σi≤1/n}1{θi≥θ}.

We have:

N∞ [Qn(τM )] = N∞

[∫ +∞

τM

dq σqN
[

σ1{σ≤1/n} e
−αq2σ

]

]

≤ 1

4α3/2
√
π
√
n

∫ +∞

0
dq min

(

M,
1

q

)∫ 1

0

dr√
r
e−αq2r/n < +∞,
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as well as for some finite constant c which depends on M but not on n:

N∞

[
∫ +∞

τM

dq σqN
[

σ21{σ≤1/n} e
−αq2σ

]

]

≤ 1

4α3/2
√
π n3/2

∫ +∞

0
dq min

(

M,
1

q

)∫ 1

0
dr

√
r e−αq2r/n

≤ cn−3/2(1 + log(n)).

which is finite. Classical results on random point measures imply that the process (Nn(θ ∨
τM ), θ ≥ 0) and (Mn(θ ∨ τM ), θ ≥ 0), with:

Nn(θ) = Qn(θ)− 2α

∫ +∞

θ
dq σqN

[

σ1{σ≤1/n} e
−αq2σ

]

Mn(θ) = Nn(θ)
2 − 2α

∫ +∞

θ
dq σqN

[

σ21{σ≤1/n} e
−αq2σ

]

are backward martingales with respect to G. We get that N∞
[

(

n2Nn4(τM )
)2
]

is less than

a constant times n−3/2. Following the proof of Proposition 8.2, we deduce that N∞-a.e.
limn→+∞ n2Nn4(τM ) = 0. Furthermore, we have:

2α
√
n

∫ +∞

τM

dq σqN
[

σ1{σ≤1/n} e
−αq2σ

]

= 2α
√
n

∫ +∞

τM

dq σq

∫ 1
n

0

dr

2
√
απr

e−αq2r

= 2α

∫ +∞

τM

dq σq

∫ 1

0

dr

2
√
απr

e−αq2 r
n

→ 2

√

α

π

∫ +∞

τM

dq σq.

We conclude the proof as in the proof of Proposition 8.2. �

9. Appendix

Proof of Lemma 4.1. The first part of the Lemma is a well known result. We introduce the
function ut(q) defined for t ≥ 0 and q ≥ 0 by:

ut(q) = Nq

[

1− e−
∫ σ
0 f(θ̂s)1{ζs≤t} ds

]

.

We deduce from Theorem II.5.11 of [20] that u is the unique non-negative solution of:

ut(q) + Eq

[∫ t

0
αut−s(θ(s))

2 ds

]

= Eq

[∫ t

0
f(θ(s)) ds

]

.

Using the Markov property of θ, we get that for t ≥ r ≥ 0:

(36) ut(q) + Eq

[
∫ r

0
αut−s(θ(s))

2 ds

]

= Eq

[
∫ r

0
f(θ(s)) ds

]

+ Eq[ut−r(θ(r))].

Notice that limt→+∞ ut(q) = F (q). And we have:

ut(q) ≤ F (q) ≤ N

[

1− e−(q+µ)σ
]

=
√

(q + µ)/α.

By monotone convergence, we deduce from (36) that:

F (q) + Eq

[∫ r

0
αF (θ(s))2 ds

]

= Eq

[∫ r

0
f(θ(s)) ds

]

+ Eq[F (θ(r))].
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This implies that the process N = (Nt, t ≥ 0) defined by:

Nt = F (θ(t)) +

∫ t

0

(

f(θ(s))− αF (θ(s))2
)

ds,

is a martingale under Eq, for q < +∞. We deduce from (2) (with g = F ) that:

∫ t

0

(

f(θ(s))− αF (θ(s))2 − 2α

∫ θ(s)

0
(F (x) − F (q)) dx

)

ds

is a martingale. Since it is predictable, it is a.s. constant. We get that a.e. for q ≥ 0:

f(q)− αF (q)2 + 2αqF (q) − 2α

∫ q

0
F (x) dx = 0,

that is a.e.:

F (q) =

√

q2 − 2

∫ q

0
F (x) dx+ (f(q)/α) + q.

Since by construction F is non-decreasing, we get that F is continuous and then of class C1.
An obvious integration by parts gives (9).

We now prove the second part of the Lemma. Notice that F (0) = N0 [1− e−µσ ] =
√

µ/α.
By differentiating (9) we have:

(37) 2αF ′(q)(F (q) + q) = λ.

This implies that F ′ > 0 and thus F is one-to-one from [0,+∞) to [
√

µ/α,+∞). Moreover,
F−1 solves the differential equation

(38) g′(x) =
2α

λ
(g(x) + x).

Elementary computations give that the unique solution to (38) with the initial condition

g(
√

µ/α) = 0 is G. Thus, we get by uniqueness F−1 = G. �

Proof of Lemma 4.3. We set

J =

√

µ

2

∫ ∞

0

dr√
r

e−µr

∫ ∞

0
dx x e−x2/2 e−c

√
2r x .

With the change of variable t2 = 2µr and with ρ = c/
√
µ, we get:

J =

∫

[0,+∞)2
dtdx x exp(−(t2 + x2 + 2ρtx)/2)

=

∫

[0,+∞)2
dtdx (x+ ρt) e−(t2+x2+2ρtx)/2 −ρ

∫

[0,+∞)2
dtdx t e−(t2+x2+2ρtx)/2

=

∫ ∞

0
dt
[

− exp(−(t2 + x2 + 2ρtx)/2)
]x=+∞
x=0

− ρJ

=

∫ ∞

0
dt e−t2/2 −ρJ

=
√

π/2 − ρJ.

This implies that J =

√

π/2

ρ+ 1
=

√

µ

2

√
π

c+
√
µ
, which is exactly what we needed. �
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Proof of Lemma 5.1. Let (h1, . . . , h2n−1) be the lengths of the edges of the tree Tn with leaves
t1, . . . , tn. Let F be a non-negative function defined on R

2n−1. We set:

Jn = N

[

∫

[0,σ]n
dt1 . . . dtn e

−µσ F (h1, . . . , h2n−1)

]

.

By conditioning with respect to σ, we get:

Jn =
1

2
√
πα

∫ +∞

0

dr

r3/2
rn e−µr

(
∫

F (h1, . . . , h2n−1)f
(r)
n (h1, . . . , h2n−1) dh1 . . . dh2n−1

)

.

Using Theorem 3 of [16], we also have, for some constant cn,

Jn = cn

∫

[0,+∞)2n−1

dh1 . . . dh2n−1 F (h1, . . . , h2n−1)N
[

e−µσ | h1, . . . , h2n−1

]

= cn

∫

[0,+∞)2n−1

dh1 . . . dh2n−1 F (h1, . . . , h2n−1) e
−2αLnN[1−exp(−µσ)]

= cn

∫

[0,+∞)2n−1

dh1 . . . dh2n−1 F (h1, . . . , h2n−1) e
−2

√
αµ Ln ,

where we used the Poisson decomposition of the continuum random tree (see e.g. Lemma
7.1) for the second equality.

Take F = 1 in the previous equality to check that:

cn
1

(2
√
αµ)2n−1

=
1

2
√
πα

∫ +∞

0

dr

r3/2
rn e−µr =

Γ
(

n− 1
2

)

2
√
παµn−1/2

·

This gives, thanks to the duplication formula (24):

cn = αn−1 2
2n−2Γ

(

n− 1
2

)

√
π

= αn−1 (2n − 2)!

(n− 1)!
·

We deduce that:

cn e
−2

√
αµ Ln =

1

2
√
πα

∫ +∞

0

dr

r3/2
rn e−µr f (r)n (h1, . . . , h2n−1).

We recall the following Laplace transform for the density of the stable subordinator of
index 1/2: for a > 0 and µ ≥ 0,

(39) a

∫ +∞

0

dr√
2πr3

e−µr−a2/(2r) = e−a
√
2µ .

We then deduce, with a =
√
2α Ln that:

1

2
√
πα

∫ +∞

0

dr

r3/2
rn e−µr

(

2α

rn
cnLn e

−αL2
n/r

)

= cn
√
2α Ln

∫ +∞

0

dr√
2πr3/2

e−µr−(
√
2α Ln)2/2r

= cn e
−2Ln

√
αµ .

By uniqueness of the Laplace transform, this gives the result. �
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