On the numerical evaluation of algebro-geometric solutions to integrable equations - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2011

On the numerical evaluation of algebro-geometric solutions to integrable equations

Résumé

Physically meaningful periodic solutions to certain integrable partial differential equations are given in terms of multi-dimensional theta functions associated to real Riemann surfaces. Typical analytical problems in the numerical evaluation of these solutions are studied. In the case of hyperelliptic surfaces efficient algorithms exist even for almost degenerate surfaces. This allows the numerical study of solitonic limits. For general real Riemann surfaces, the choice of a homology basis adapted to the anti-holomorphic involution is important for a convenient formulation of the solutions and smoothness conditions. Since existing algorithms for algebraic curves produce a homology basis not related to automorphisms of the curve, we study symplectic transformations to an adapted basis and give explicit formulae for M-curves. As examples we discuss solutions of the Davey-Stewartson and the multi-component nonlinear Schrödinger equations.
Fichier principal
Vignette du fichier
Kalla-Klein.pdf (8.67 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00601630 , version 1 (19-06-2011)

Identifiants

  • HAL Id : hal-00601630 , version 1

Citer

Caroline Kalla, Christian Klein. On the numerical evaluation of algebro-geometric solutions to integrable equations. 2011. ⟨hal-00601630⟩
110 Consultations
85 Téléchargements

Partager

More