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ON THE NUMERICAL EVALUATION OF

ALGEBRO-GEOMETRIC SOLUTIONS

TO INTEGRABLE EQUATIONS

C. KALLA AND C. KLEIN

Abstract. Physically meaningful periodic solutions to certain integrable partial dif-
ferential equations are given in terms of multi-dimensional theta functions associated
to real Riemann surfaces. Typical analytical problems in the numerical evaluation of
these solutions are studied. In the case of hyperelliptic surfaces e�cient algorithms exist
even for almost degenerate surfaces. This allows the numerical study of solitonic limits.
For general real Riemann surfaces, the choice of a homology basis adapted to the anti-
holomorphic involution is important for a convenient formulation of the solutions and
smoothness conditions. Since existing algorithms for algebraic curves produce a homol-
ogy basis not related to automorphisms of the curve, we study symplectic transformations
to an adapted basis and give explicit formulae for M-curves. As examples we discuss solu-
tions of the Davey-Stewartson and the multi-component nonlinear Schrödinger equations.

1. Introduction

The importance of Riemann surfaces for the construction of almost periodic solutions to
various integrable partial di�erential equations (PDEs) was realized at the beginning of the
1970s by Novikov, Dubrovin and Its, Matveev. The latter found the Its-Matveev formula
for the Korteweg-de Vries (KdV) equation in terms of multi-dimensional theta functions on
hyperelliptic Riemann surfaces. Similar formulae were later obtained for other integrable
PDEs as nonlinear Schrödinger (NLS) and sine-Gordon equations. For the history of the
topic the reader is referred to the reviews [2] and [9]. Krichever [21] showed that theta-
functional solutions to the Kadomtsev-Petviashvili equation can be obtained on arbitrary
Riemann surfaces. The problems of real-valuedness and smoothness of these solutions were
solved by Dubrovin and Natanzon in [11].

Novikov criticized the practical relevance of theta functions since no numerical algo-
rithms existed at the time to actually compute the found solutions. He suggested an
e�ective treatment of theta functions (see, for instance, [9]) by a suitable parametrization
of the characteristic quantities of a Riemann surface, i.e., the periods of holomorphic and
certain meromorphic di�erentials on the given surface. This program is limited to genera
smaller than 4 since so-called Schottky relations exist for higher genus between the compo-
nents of the period matrix of a Riemann surface. The task to �nd such relations is known
as the Schottky problem. This led to the famous Novikov conjecture for the Schottky
problem that a Riemann matrix (a symmetric matrix with negative de�nite real part) is
the matrix of B-periods of the normalized holomorphic di�erentials of a Riemann surface
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if and only if Krichever's formula with this matrix yields a solution to the KP equation.
The conjecture was �nally proven by Shiota [26].

First plots of KP solutions appeared in [24] and via Schottky uniformizations in [4].
Since all compact Riemann surfaces can be de�ned via non-singular plane algebraic curves
of the form

(1.1) F (x, y) :=
N∑
n=1

M∑
m=1

amnx
myn = 0, x, y ∈ C,

with constant complex coe�cients anm, Deconinck and van Hoeij developed an approach
to the symbolic-numerical treatment of algebraic curves. This approach is distributed as
the algcurves package with Maple, see [6, 7, 8]. A purely numerical approach to real
hyperelliptic Riemann surfaces was given in [14, 15], and for general Riemann surfaces in
[16]. For a review on computational approaches to Riemann surfaces the reader is referred
to [3].

In this paper we want to address typical analytical problems appearing in the numerical
study of theta-functional solutions to integrable PDEs, and present the state of the art
of the �eld by considering concrete examples. The case of hyperelliptic Riemann surfaces
(N = 2 in (1.1)) is the most accessible, since equation (1.1) can be solved explicitly for
y, and since a basis for di�erentials and homology can be given a priori. Families of
hyperelliptic curves can be conveniently parametrized by their branch points. The codes
[14, 15] are able to treat e�ectively numerically collisions of branch points, a limit in
which certain periods of the corresponding hyperelliptic surface diverge. If the limiting
Riemann surface has genus 0, the theta series breaks down to a �nite sum which gives for
an appropriate choice of the characteristic well known solitonic solutions to the studied
equation.

For solutions de�ned on general real algebraic curves, i.e., curves (1.1) with all anm
real, an important point in applications are reality and smoothness conditions. These are
conveniently formulated for a homology basis for which the A-cycles are invariant under
the action of the anti-holomorphic involution. However, the existing algorithms for the
computational treatment of algebraic curves produce a basis of the homology that is in
general not related to possible automorphisms of the curve. To implement the reality
and smoothness requirements, a transformation to the basis for which the conditions are
formulated has to be constructed. We study the necessary symplectic transformations and
give explicit relations for so-called M-curves, curves with the maximal number of real ovals.

To illustrate these concepts, we study for the �rst time numerically theta-functional
solutions to integrable equations from the family of NLS equations, namely, the multi-
component nonlinear Schrödinger equation

(1.2) i
∂ψj
∂t

+
∂2ψj
∂x2

+ 2

(
n∑
k=1

sk|ψk|2
)
ψj = 0, j = 1, . . . , n,

denoted by n-NLSs, where s = (s1, . . . , sn), sk = ±1, and the (2 + 1)-dimensional Davey-
Stewartson (DS) equations,

iψt + ψxx − α2 ψyy + 2 (Φ + ρ |ψ|2)ψ = 0,

Φxx + α2 Φyy + 2ρ |ψ|2xx = 0,(1.3)

where α = i or α = 1 and where ρ = ±1. Both equations (1.2) and (1.3) reduce to the
NLS equation under certain conditions: the former obviously in the case n = 1, the latter
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if ψ is independent of the variable y and satis�es certain boundary conditions, for instance
that Φ + ρ |ψ|2 tends to zero when x tends to in�nity.

Integrability of the NLS equation was shown by Zakharov and Shabat [31] and algebro-
geometric solutions were given by Its [18]. The multi-component nonlinear Schrödinger
equation (1.2) in the case n = 2, s = (1, 1), is called the vector NLS or Manakov system.
Manakov [23] �rst examined this equation as an asymptotic model for the propagation of
the electric �eld in a waveguide. Its integrability was shown for n = 2 by Zakharov and
Schulman in [32] and for the general case in [25]. Algebro-geometric solutions to the 2-NLSs

equation with s = (1, 1) were presented in [12], and for the general case in [19]. The DS
equation (1.3) was introduced in [5] to describe the evolution of a three-dimensional wave
packet on water of �nite depth. Its integrability was shown in [1], and solutions in terms
of multi-dimensional theta functions on general Riemann surfaces were given in [22, 19].

To ensure the correct numerical implementation of the formulae of [19], we check for
each point in the spacetime whether certain identities for theta functions are satis�ed.
Since these identities are not used in the code, they provide a strong test for the computed
quantities. Numerically the identities are never exactly satis�ed, but to high precision.
The code reports a warning if the residual of the test relations is larger than 10−6 which is
well below plotting accuracy. Typically the conditions are satis�ed to machine precision1.
In addition we compute the solutions on a numerical grid and numerically di�erentiate
them. We check in this way for low genus that the solutions to n-NLSs and DS in terms
of multi-dimensional theta functions satisfy the respective equations to better than 10−6.
These two completely independent tests ensure that the presented plots are showing the
correct solutions to better than plotting accuracy.

The paper is organized as follows: in Section 2 we recall some facts from the theory of
multi-dimensional theta functions and the theory of real Riemann surfaces, necessary to
give almost periodic solutions to the n-NLSs and DS equations. In Section 3 we consider
the hyperelliptic case and study concrete examples of low genus, also in almost degenerate
situations. In Section 4 we consider examples of non-hyperelliptic real Riemann surfaces
and discuss symplectic transformations needed to obtain smooth solutions. We add some
concluding remarks in Section 5.

2. Theta functions and real Riemann surfaces

In this section we recall basic facts on Riemann surfaces, in particular real surfaces,
and multi-dimensional theta functions de�ned on them. Almost periodic solutions to the
n-NLSs and the DS equations in terms of theta functions will be given following [19].

2.1. Theta functions. Let Rg be a compact Riemann surface of genus g > 0. Denote
by (A,B) := (A1, . . . ,Ag,B1, . . . ,Bg) a canonical homology basis, and by (ω1, . . . , ωg) the
basis of holomorphic di�erentials normalized via

(2.1)

∫
Ak
ωj = 2iπδkj , k, j = 1, . . . , g.

The matrix B with entries Bkj =
∫
Bk ωj of B-periods of the normalized holomorphic dif-

ferentials ωj , j = 1, . . . , g, is symmetric and has a negative de�nite real part. The theta

1We work with double precision, i.e., a precision of 10−16; due to rounding errors this is typically
reduced to 10−12 to 10−14.
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function with (half integer) characteristic δ = [δ1, δ2] is de�ned by

(2.2) ΘB[δ](z) =
∑
m∈Zg

exp
{
1
2〈B(m + δ1),m + δ1〉+ 〈m + δ1, z + 2iπδ2〉

}
,

for any z ∈ Cg; here δ1, δ2 ∈
{

0, 12
}g

are the vectors of the characteristic δ; 〈., .〉 denotes
the scalar product 〈u,v〉 =

∑
i ui vi for any u,v ∈ Cg. The theta function Θ[δ](z) is even

if the characteristic δ is even, i.e., if 4 〈δ1, δ2〉 is even, and odd if the characteristic δ is odd,
i.e., if 4 〈δ1, δ2〉 is odd. An even characteristic is called non-singular if Θ[δ](0) 6= 0, and an
odd characteristic is called non-singular if the gradient ∇Θ[δ](0) is non-zero. The theta
function with characteristic is related to the theta function with zero characteristic (the
Riemann theta function denoted by Θ) as follows

(2.3) Θ[δ](z) = Θ(z + 2iπδ2 + Bδ1) exp
{
1
2〈Bδ1, δ1〉+ 〈z + 2iπδ2, δ1〉

}
.

Denote by Λ the lattice Λ = {2iπN + BM, N,M ∈ Zg} generated by the A and B-
periods of the normalized holomorphic di�erentials ωj , j = 1, . . . , g. The complex torus
J(Rg) = Cg/Λ is called the Jacobian of the Riemann surface Rg. The theta function (2.2)
has the following quasi-periodicity property with respect to the lattice Λ:

Θ[δ](z + 2iπN + BM)

(2.4) = Θ[δ](z) exp
{
−1

2〈BM,M〉 − 〈z,M〉+ 2iπ(〈δ1,N〉 − 〈δ2,M〉)
}
.

For the formulation of solutions to physically relevant integrable equations in terms of
multi-dimensional theta functions, there is typically a preferred homology basis in which
the solution takes a simple form. Let (A,B) and (Ã, B̃) be arbitrary canonical homology
basis de�ned on Rg, represented here by 2g-dimensional vectors. Under the change of
homology basis

(2.5)

(
A B
C D

)(
Ã
B̃

)
=

(
A
B

)
,

where

(
A B
C D

)
∈ Sp(2g,Z) is a symplectic matrix, the theta function (2.2) transforms as

(2.6) ΘB[δ](z) = κ
√

det K̃ exp
{

1
2 z̃

t K̃−1B z̃
}

ΘB̃[δ̃](z̃),

where K̃ = 2iπA+B B̃ and

B = 2iπ (2iπ C +D B̃) K̃−1,(2.7)

z̃ = (2iπ)−1 K̃ z,(2.8) (
δ1
δ2

)
=

(
A −B
−C D

)(
δ̃1
δ̃2

)
+

1

2
Diag

(
BAt

DCt

)
,(2.9)

for any z ∈ Cg, where Diag(.) denotes the column vector of the diagonal entries of the

matrix. Here κ is a constant independent of z and B̃ (the exact value of κ is not needed
for our purposes).

The Abel map Rg −→ J(Rg) is de�ned by

(2.10)

∫ p

p0

:=

∫ p

p0

ω,

for any p ∈ Rg, where p0 ∈ Rg is the base point of the application, and where ω =
(ω1, . . . , ωg)

t is the vector of the normalized holomorphic di�erentials.
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Now let ka denote a local parameter near a ∈ Rg and consider the following expansion
of the normalized holomorphic di�erentials ωj , j = 1, . . . , g,

(2.11) ωj(p) = (Va,j +Wa,j ka(p) + . . .) dka(p),

for any point p ∈ Rg lying in a neighbourhood of a, where Va,j , Wa,j ∈ C. Let us
denote by Da (resp. D′a) the operator of the directional derivative along the vector
Va = (Va,1, . . . , Va,g)

t (resp. Wa). According to [24] and [19], the theta function sat-
is�es the following identities derived from Fay's identity [13]:

(2.12) DaDb ln Θ(z) = q1 + q2
Θ(z +

∫ b
a ) Θ(z−

∫ b
a )

Θ(z)2
,

(2.13)

D′a ln
Θ(z +

∫ b
a )

Θ(z)
+D2

a ln
Θ(z +

∫ b
a )

Θ(z)
+
(
Da ln

Θ(z +
∫ b
a )

Θ(z)
−K1

)2
+ 2D2

a ln Θ(z) +K2 = 0,

for any z ∈ Cg and any distinct points a, b ∈ Rg; here the scalars qi,Ki, i = 1, 2 depend
on the points a, b and are given by

(2.14) q1(a, b) = DaDb ln Θ[δ](
∫ b
a ),

(2.15) q2(a, b) =
Da Θ[δ](0)Db Θ[δ](0)

Θ[δ](
∫ b
a )2

,

(2.16) K1(a, b) =
1

2

D′a Θ[δ](0)

Da Θ[δ](0)
+Da ln Θ[δ](

∫ b
a ) ,

(2.17) K2(a, b) = −D′a ln Θ(
∫ b
a )−D2

a ln
(

Θ(
∫ b
a ) Θ(0)

)
−
(
Da ln Θ(

∫ b
a )−K1(a, b)

)2
,

where δ is a non-singular odd characteristic.

2.2. Real Riemann surfaces. A Riemann surface Rg is called real if it admits an anti-
holomorphic involution τ : Rg → Rg, τ2 = id. The connected components of the set of
�xed points of the anti-involution τ are called real ovals of τ . We denote by Rg(R) the set
of �xed points. According to Harnack's inequality [17], the number k of real ovals of a real
Riemann surface of genus g cannot exceed g+ 1: 0 ≤ k ≤ g+ 1. Curves with the maximal
number k = g + 1 of real ovals are called M-curves.

The complement Rg \Rg(R) has either one or two connected components. The curve Rg
is called a dividing curve if Rg \Rg(R) has two components, and Rg is called non-dividing
if Rg \ Rg(R) is connected (notice that an M-curve is always a dividing curve).

Example 2.1. Consider the hyperelliptic curve of genus g de�ned by the equation

(2.18) µ2 =

2g+2∏
i=1

(λ− λi),

where the branch points λi ∈ R are ordered such that λ1 < . . . < λ2g+2. On such a
curve, we can de�ne two anti-holomorphic involutions τ1 and τ2, given respectively by
τ1(λ, µ) = (λ, µ) and τ2(λ, µ) = (λ,−µ). Projections of real ovals of τ1 on the λ-plane
coincide with the intervals [λ2g+2, λ1], . . . , [λ2g, λ2g+1], whereas projections of real ovals of
τ2 on the λ-plane coincide with the intervals [λ1, λ2], . . . , [λ2g+1, λ2g+2]. Hence the curve
(2.18) is an M-curve with respect to both anti-involutions τ1 and τ2.
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Let (A,B) be a basis of the homology group H1(Rg). According to Proposition 2.2 in
Vinnikov's paper [30], there exists a canonical homology basis (that we call for simplicity
`Vinnikov basis' in the following) such that

(2.19)

(
τA
τB

)
=

(
Ig 0
H −Ig

)(
A
B

)
,

where Ig is the g×g unit matrix, and H is a block diagonal g×g matrix, de�ned as follows:

1) if Rg(R) 6= ∅,

H =



0 1
1 0

. . .

0 1
1 0

0
. . .

0


if Rg is dividing,

H =



1
. . .

1
0

. . .

0


if Rg is non-dividing;

rank(H) = g + 1− k in both cases.

2) if Rg(R) = ∅, (i.e. the curve does not have real oval), then

H =


0 1
1 0

. . .

0 1
1 0

 or H =



0 1
1 0

. . .

0 1
1 0

0


;

rank(H) = g if g is even, rank(H) = g − 1 if g is odd.
Now let us choose the canonical homology basis in H1(Rg) satisfying (2.19), take a, b ∈

Rg and assume that τa = a and τb = b. Denote by ` a contour connecting the points a
and b which does not intersect the canonical homology basis. Then the action of τ on the
generators (A,B, `) of the relative homology group H1(Rg, {a, b}) is given by

(2.20)

τAτB
τ`

 =

 Ig 0 0
H −Ig 0
Nt Mt 1

AB
`

 ,

where the vectors N,M ∈ Zg are related by (see [19])

(2.21) 2N + HM = 0.
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2.3. Theta-functional solutions of the n-NLSs equation. Algebro-geometric data
associated to smooth theta-functional solutions of the n-NLSs equation (1.2) consist of
{Rg, τ, f, za}, where Rg is a compact Riemann surface of genus g > 0 dividing with respect
to an anti-holomorphic involution τ , and admitting a real meromorphic function f of degree
n+ 1; here za ∈ R is a non critical value of f such that the �ber f−1(za) = {a1, . . . , an+1}
over za belongs to the set Rg(R). Local parameters kaj near aj are de�ned by kaj (p) =
f(p)− za, for any point p ∈ Rg lying in a neighbourhood of aj .

Denote by (A,B, `j) the generators of the relative homology group H1(Rg, {an+1, aj}).
Let d ∈ Rg and θ ∈ R. Then the following functions ψj , j = 1, . . . , n, give smooth solutions
of the n-NLSs equation (1.2), see [19],

(2.22) ψj(x, t) = |Aj | eiθ
Θ(Z− d + rj)

Θ(Z− d)
exp {−i (Ej x− Fj t)} ,

where |Aj | = |q2(an+1, aj)|1/2 exp
{
1
2 〈d,Mj〉

}
. The vector Mj ∈ Zg is de�ned by the

action of τ on the relative homology group H1 (Rg, {an+1, aj}) (see (2.20)). Moreover,
rj =

∫
`j
ω, and the vector Z reads

Z = iVan+1 x+ iWan+1 t,

where vectors Van+1 and Wan+1 are de�ned in (2.11). The scalars Ej , Fj are given by

(2.23) Ej = K1(an+1, aj), Fj = K2(an+1, aj)− 2

n∑
k=1

q1(an+1, ak),

and scalars qi,Ki, i = 1, 2 are de�ned in (2.14)-(2.17). According to [19], necessary condi-
tions for the functions ψj in (2.22) to solve the n-NLSs equation are the identities (2.12)
and (2.13) with (a, b) := (an+1, aj).

The signs s1, . . . , sn in (1.2) are given by

(2.24) sj = exp {iπ(1 + αj)} ,
where αj ∈ Z denote certain intersection indices on Rg de�ned as follows: let ãn+1, ãj ∈
Rg(R) lie in a neighbourhood of an+1 and aj respectively such that f(ãn+1) = f(ãj).

Denote by ˜̀
j an oriented contour connecting ãn+1 and ãj . Then

(2.25) αj = (τ ˜̀
j − ˜̀

j) ◦ `j
is the intersection index of the closed contour τ ˜̀

j − ˜̀
j and the contour `j ; this index is

computed in the relative homology group H1(Rg, {an+1, aj}).
In particular, it was shown in [19] that solutions of the focusing n-NLSs equation, i.e.,

for s = (1, . . . , 1), are obtained when the branch points of the meromorphic function f are
pairwise conjugate.

2.4. Theta-functional solutions of the DS equations. Now let us introduce smooth
solutions of the DS equations. In characteristic coordinates

ξ =
1

2
(x− iα y), η =

1

2
(x+ iα y), α = i or 1,

the DS equations (1.3) take the form

iψt +
1

2
(∂ξξ + ∂ηη)ψ + 2φψ = 0,

∂ξ∂ηφ+ ρ
1

2
(∂ξξ + ∂ηη)|ψ|2 = 0,(2.26)



8 C. KALLA AND C. KLEIN

where φ := Φ + ρ |ψ|2, ρ = ±1. Recall that DS1ρ denotes the Davey-Stewartson equation
when α = i (in this case ξ and η are both real), and DS2ρ when α = 1 (in this case ξ and
η are pairwise conjugate).

In both cases, for the DS1ρ and DS2ρ equations, the solutions have the form [22, 19]:

(2.27) ψ(ξ, η, t) = |A| eiθ Θ(Z− d + r)

Θ(Z− d)
exp

{
−i
(
G1 ξ +G2 η −G3

t
2

)}
,

(2.28) φ(ξ, η, t) =
1

2
(ln Θ(Z− d))ξξ +

1

2
(ln Θ(Z− d))ηη +

h

4
.

Here r =
∫ b
a ω for some distinct points a, b ∈ Rg, and the vector Z is de�ned as

(2.29) Z = i
(
κ1Va ξ − κ2Vb η + (κ21Wa − κ22Wb)

t
2

)
.

Moreover, the scalars G1, G2 and G3 read

(2.30) G1 = κ1K1(a, b), G2 = κ2K1(b, a),

(2.31) G3 = κ21K2(a, b) + κ22K2(b, a) + h,

where the scalars K1,K2 are de�ned in (2.16) and (2.17). As shown in [19], necessary
conditions for the functions ψ (2.27) and φ (2.28) to solve the DS equations are the identities
(2.12) and (2.13).

Algebro-geometric data associated to smooth solutions (2.27), (2.28) of the DS1ρ equa-
tion consist of {Rg, τ, a, b, ka, kb}, where Rg is a compact Riemann surface of genus g > 0,
dividing with respect to an anti-holomorphic involution τ , a, b are two distinct points
in Rg(R), and ka, kb denote local parameters near a and b respectively which satisfy

ka(τp) = ka(p) for any p lying in a neighbourhood of a, and kb(τp) = kb(p) for any p
lying in a neighbourhood of b. The remaining quantities satisfy the conditions: d ∈ Rg,
θ, h ∈ R, κ2 ∈ R \ {0}, and

(2.32) κ1 = −ρ κ̃21 κ2 q2(a, b) exp
{
1
2 〈BM,M〉+ 〈r + d,M〉

}
,

for some κ̃1 ∈ R, where M ∈ Zg is de�ned in (2.20). The scalar |A| is given by

|A| = |κ̃1 κ2 q2(a, b)| exp {〈d,M〉} ,

where the quantity q2 is de�ned in (2.15).
Algebro-geometric data associated to smooth solutions (2.27), (2.28) of the DS2ρ equa-

tion consist of {Rg, τ, a, b, ka, kb}, where Rg is a compact Riemann surface of genus g > 0
with an anti-holomorphic involution τ , a, b are two distinct points such that τa = b, and
ka, kb denote local parameters near a and b respectively which satisfy kb(τp) = ka(p) for
any point p lying in a neighbourhood of a. Moreover, d ∈ iRg, θ, h ∈ R, κ1, κ2 ∈ C \ {0}
satisfy κ1 = κ2, and the scalar |A| is given by

|A| = |κ1| |q2(a, b)|1/2.

Smooth solutions of the DS2+ equation are obtained when the curve Rg is an M-curve
with respect to τ , whereas solutions to DS2− are smooth if the associated Riemann surface
does not have real oval with respect to τ , and if there is no pseudo-real function of degree
g − 1 on it (i.e., function which satis�es f(τp) = −f(p)−1), see [22].

Remark 2.1. The symmetric structure of the DS equations (2.26) with respect to ξ and η
implies that a solution ψ = Ψ(ξ, η, t) to DS1+ leads to a solution Ψ(−ξ, η, t) of DS1−.
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3. Hyperelliptic case

Here we consider concrete examples for the solutions, in terms of multi-dimensional
theta functions, to DS and n-NLSs on hyperelliptic Riemann surfaces. We �rst review the
numerical methods to visualize the solutions and discuss how the accuracy is tested.

3.1. Computation on real hyperelliptic curves. The simplest example of algebraic
curves are hyperelliptic curves,

µ2 =

{ ∏2g+2
i=1 (λ− λi), without branching at in�nity∏2g+1
i=1 (λ− λi), with branching at in�nity

,

where g is the genus of the Riemann surface, and where we have for the branch points λi ∈ C
the relations λi 6= λj for i 6= j. If the number of �nite branch points is odd, the curve is
branched at in�nity. Recall that all Riemann surfaces of genus 2 are hyperelliptic, and that
the involution σ which interchanges the sheets, σ(λ, µ) = (λ,−µ), is an automorphism on
any hyperelliptic curve. A vector of holomorphic di�erentials for these surfaces is given
by (1, λ, . . . , λg−1)t dλ/µ. For a real hyperelliptic curve, the branch points are either real
or pairwise conjugate. As we saw in Example 2.1, if all branch points λi are real and
ordered such that λ1 < . . . < λ2g+2, the hyperelliptic curve is an M-curve with respect
to both anti-holomorphic involutions τ1 and τ2 de�ned in the example. The other case of
interest in the context of smooth solutions to n-NLSs and DS are real curves without real
branch point. For the involution τ1, a curve given by µ2 =

∏g+1
i=1 (λ − λi)(λ − λi), with

λi ∈ C\R, i = 1, . . . , g+1, in this case is dividing (two points whose projections onto C have
respectively a positive and a negative imaginary part cannot be connected by a contour
which does not cross a real oval), whereas a curve given by µ2 = −

∏g+1
i=1 (λ − λi)(λ − λi)

has no real oval, and vice versa for the involution τ2.
In the following, we will only consider real hyperelliptic curves without branching at

in�nity and write the de�ning equation in the form µ2 = (λ−ξ)(λ−η)
∏g
i=1(λ−Ei)(λ−Fi).

It is possible to introduce a convenient homology basis on the related surfaces, see Fig. 1
for the case η = ξ.

N

..

E1

FN+1 Eg FgEN+1

F1

EN

F

Figure 1. Homology basis on real hyperelliptic curves, contours on sheet 1
are solid, contours on sheet 2 are dashed. A-cycles are the closed contours
entirely on sheet 1.

The simple form of the algebraic relation between µ and λ for hyperelliptic curves
makes the generation of very e�cient numerical codes possible, see, for instance, [14, 15]
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for details. These codes allow the treatment of almost degenerate Riemann surfaces, i.e.,
the case where the branch points almost collide pairwise, where the distance of the branch
points is of the order of machine precision: |Ei − Fi| ∼ 10−14. The homology basis Fig. 1
is adapted to this kind of degeneration.

The Abel map
∫ b
a ω between two points a and b is computed in the following way: the

sheet identi�ed at the point a = (λ(a), µ(a)) (where we take for µ the root computed by
Matlab) is labeled sheet 1, and at the point (λ(a),−µ(a)), sheet 2. Then the rami�cation
point whose projection to the λ-sphere has the minimal distance to λ(a) is determined.
For simplicity we assume always that this is the point ξ in Fig. 1 (for another branch point,

this leads to the addition of half-periods, see e.g. [2]). This means we compute
∫ b
a ω as∫ b

a ω =
∫ b
ξ ω−

∫ a
ξ ω. The choice of a branch point as the base point of the Abel map has the

advantage that a change of sheet of a point a just implies a change of sign of the integral:∫ (λ(a),µ(a))
ξ ω = −

∫ (λ(a),−µ(a))
ξ ω. To compute the integral

∫ a
ξ ω, one has to analytically

continue µ on the connecting line between λ(a) and ξ onto the λ-sphere. Whereas the root
µ is not supposed to have any branching on the considered path, the square root in Matlab
is branched on the negative real axis. To analytically continue µ on the path [λ(a), ξ], we
compute the Matlab root at some λj ∈ [λ(a), ξ], j = 0, . . . , Nc and analytically continue
it starting from µ(a) by demanding that |µ(λj+1) − µ(λj)| < |µ(λj+1) + µ(λj)|. The so
de�ned sheets will be denoted here and in the following by numbers, i.e., a point on sheet
1 with projection λ(a) into the base is denoted by (λ(a))(1).

Thus the computation of the Abel map is reduced to the computation of line integrals
on the connecting line between λ(a) and ξ in the complex λ-plane. For the numerical
computation of such integrals we use Clenshaw-Curtis integration (see, for instance, [27]):

to compute an integral
∫ 1
−1 h(x) dx, this algorithm samples the integrand on the Nc + 1

Chebyshev collocation points xj = cos(jπ/Nc), j = 0, . . . , Nc. The integral is approxi-

mated as the sum:
∫ 1
−1 h(x) dx ∼

∑Nc
j=0wj h(xj) (see [27] on how to obtain the weights

wj). It can be shown that the convergence of the integral is exponential for analytic func-
tions h as the ones considered here. To compute the Abel map, one uses the transformation
λ → λ(a)(1 + x)/2 + ξ(1 − x)/2, to the Clenshaw-Curtis integration variable. The same
procedure is then carried out for the integral from ξ to b.

The theta functions are approximated as in [14] as a sum,

(3.1) ΘB[δ](z) ∼
Nθ∑

m1=−Nθ

. . .

Nθ∑
mg=−Nθ

exp
{
1
2〈B(m + δ1),m + δ1〉+ 〈m + δ1, z + 2iπδ2〉

}
.

The periodicity properties of the theta function (2.4) make it possible to write z = z0 +
2iπN + BM for some N,M ∈ Zg, where z0 = 2iπα + Bβ with αi, βi ∈ ] − 1

2 ,
1
2 ] for

i = 1, . . . , g. The value of Nθ is determined by the condition that all terms in (2.2) with
|mi| > Nθ are smaller than machine precision, which is controlled by the largest eigenvalue
of the real part of the Riemann matrix (the one with minimal absolute value since the real
part is negative de�nite), see [14, 16].

To control the accuracy of the numerical solutions, we use essentially two approaches.
First we check the theta identity (2.13), which is the underlying reason for the studied
functions being solutions to n-NLSs and DS, at each point in the spacetime. This test
requires the computation of theta derivatives not needed in the solution (which slightly
reduces the e�ciency of the code since additional quantities are computed), but provides
an immediate check whether the solution satis�es (2.13) with the required accuracy. Since
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this identity is not implemented in the code, it provides a strong test. This ensures that all
quantities entering the solution are computed with the necessary precision. In addition, the
solutions are computed on Chebyshev collocation points (see, for instance, [27]) for each
of the physical variables. This can be used for an expansion of the computed solution in
terms of Chebyshev polynomials, a so-called spectral method having in practice exponential
convergence for analytic functions as the ones considered here. Since the derivatives of the
Chebyshev polynomials can be expressed linearly in terms of Chebyshev polynomials, a
derivative acts on the space of polynomials via a so called di�erentiation matrix. With these
standard Chebyshev di�erentiation matrices (see [27]), the solution can be numerically
di�erentiated. The computed derivatives allow to check with which numerical precision
the PDE is satis�ed by a numerical solution. With these two independent tests, we ensure
that the shown solutions are correct to much better than plotting accuracy (the code
reports a warning if the above tests are not satis�ed to better than 10−6).

3.2. Solutions to the DS equations. The elliptic solutions are the well known travelling
wave solutions and will not be discussed here. The simplest examples we will consider for
the DS solutions are given on hyperelliptic curves of genus 2. As we saw in Section 2.4,
for DS1ρ reality and smoothness conditions imply that the branch points of the curve are
either all real (M-curve) or all pairwise conjugate (dividing curve). The points a and b
must project to real points on the λ-sphere and must be stable under the anti-holomorphic
involution τ (we use here τ = τ1, as de�ned in Example 2.1, except for DS2−). For
DS2ρ, we have τa = b where the projection of a onto the λ-sphere is the conjugate of the
projection of b. For DS2+ the curve must have only real branch points (M-curve), whereas
for DS2− it must have no real oval.

For DS we will mainly give plots for �xed time since for low genus, the solution is
essentially travelling in one direction. For higher genus, we show a more interesting time
dependence in Fig. 9.

We �rst consider the defocusing variants, DS1+ and DS2+ on M-curves. In genus 2
we study the family of curves with the branch points −2,−1, 0, ε, 2, 2 + ε for ε = 1 and
ε = 10−10. In the former case the solutions will be periodic in the (x, y)-plane, in the latter
almost solitonic since the Riemann surface is almost degenerate (in the limit ε → 0 the
surface degenerates to a surface of genus 0; the resulting solutions are discussed in more
detail in [20]). To obtain non-trivial solutions in the solitonic limit, we use d = 1

2 [ 1 1
0 0 ]

t
in

all examples. In Fig. 2 it can be seen that these are in fact dark solitons, i.e., the solutions
tend asymptotically to a non-zero constant and the solitons thus represent `shadows' on a
background of light. The well known features from soliton collisions for (1+1)-dimensional
integrable equations, namely, the propagation without change of shape, and the unchanged
shape and phase shift after the collision, can be seen here in the (x, y)-plane.

The corresponding solutions to DS2+ can be seen in Fig. 3. We only show the square
modulus of the solution here for simplicity. For the real and the imaginary part of such a
solution for the DS1−-case, see Fig. 6. Because of remark 2.1 all solutions shown for DS1+

on M-curves are after the change of coordinate ξ → −ξ solutions to DS1−. For this reason
DS1− solutions on M-curves will not be presented here.

In the same way one can study, on a genus 4 hyperelliptic curve, the formation of
the dark 4-soliton for these two equations. We consider the curve with branch points
−4,−3,−2,−2 + ε, 0, ε, 2, 2 + ε, 4, 4 + ε for ε = 1 and ε = 10−10, and use d = 1

2 [ 1 1 1 1
0 0 0 0 ]

t
.

The DS1+ solutions for this curve can be seen in Fig. 4. The corresponding solutions to
DS2+ is shown in Fig. 5.
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Figure 2. Solution (2.27) to the DS1+ equation at t = 0 on a hyperelliptic

curve of genus 2 with branch points −2,−1, 0, ε, 2, 2 + ε and a = (−1.9)(1),

b = (−1.1)(2) for ε = 1 on the left and ε = 10−10, the almost solitonic limit,
on the right.

Figure 3. Solution (2.27) to the DS2+ equation at t = 0 on a hyperelliptic
curve of genus 2 with branch points −2,−1, 0, ε, 2, 2 + ε and a = (−1.5 +

2i)(1), b = (−1.5 − 2i)(2) for ε = 1 on the left and ε = 10−10, the almost
solitonic limit, on the right.

Solutions to the focusing variants of these equations can be obtained on hyperelliptic
curves with pairwise conjugate branch points. For such solutions the solitonic limit cannot
be obtained as above since the quotient of theta functions in (2.27) tends to a constant
in this case. To obtain the well-known bright solitons (solutions tend to zero at spatial
in�nity) in this way, the hyperelliptic curve has to be completely degenerated (all branch
points must collide pairwise to double points) which leads to limits of the form '0/0' in
the expression for the solution (2.27) which are not convenient for a numerical treatment;
see [20] for an analytic discussion. Therefore we only consider non-degenerate hyperelliptic
curves here. To obtain smooth solutions, we use d = 0. A solution in genus 2 of the DS1−

equation is studied on the curve with the branch points −2± i,−1± i, 1± i in Fig. 6.
A typical example of a DS1− solution on a hyperelliptic curve of genus 4 with branch

points −2± i,−1± i,±i, 1± i, 2± i is shown in Fig. 7.
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Figure 4. Solution (2.27) to the DS1+ equation at t = 0 on a hyperelliptic
curve of genus 4 with branch points −4,−3,−2,−2 + ε, 0, ε, 2, 2 + ε, 4, 4 + ε
and a = (−3.9)(1), b = (−3.1)(2) for ε = 1 on the left and ε = 10−10, the
almost solitonic limit, on the right.

Figure 5. Solution (2.27) to the DS2+ equation at t = 0 on a hyperelliptic
curve of genus 4 with branch points −4,−3,−2,−2 + ε, 0, ε, 2, 2 + ε, 4, 4 + ε
and a = (−1.5+2i)(1), b = (−1.5−2i)(1) for ε = 1 on the left and ε = 10−10,
the almost solitonic limit, on the right.

Smooth solutions to DS2− can be obtained on Riemann surfaces without real oval for
points a and b satisfying τa = b. As mentioned above, hyperelliptic curves of the form
µ2 = −

∏2g+2
i=1 (λ − λi) with pairwise conjugate branch points have no real oval for the

standard involution τ1 as de�ned in Example 2.1. On the other hand, surfaces de�ned
by the algebraic equation µ2 =

∏2g+2
i=1 (λ− λi) have no real oval for the involution τ2 (see

Example 2.1). We will consider here τ2 for the same curves as for DS1−. An example for
genus 2 can be seen in Fig. 8. An example for a DS2− solution of genus 4 can be seen in
Fig. 9.

3.3. Solutions to the n-NLSs equation. A straightforward way to obtain solutions
(2.22) to the n-NLSs equation is given on an (n + 1)-sheeted branched covering of the
complex plane, an approach that will be studied in more detail in the next section. As can
be seen from the proof of Theorem 4.1 in [19], the crucial point in the construction of these
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Figure 6. Solution (2.27) to the DS1− equation at t = 0 on a hyperelliptic

curve of genus 2 with branch points −2± i, −1± i, 1± i and a = (−4)(1),

b = (−3)(2). The square modulus of the solution is shown on the left, real
and imaginary parts on the right.

Figure 7. Solution (2.27) to the DS1− equation at t = 0 on a hyperelliptic
curve of genus 4 with branch points −2 ± i, −1 ± i, ±i, 1 ± i, 2 ± i and
a = (−4)(1), b = (−3)(2).

solutions is the fact that
∑n+1

k=1 Vak = 0. This implies that it is also possible to construct
theta-functional n-NLSs solutions on hyperelliptic surfaces by introducing constants γk via∑n+1

k=1 γkVak = 0 in the following corollary of Theorem 4.1 in [19]:

Corollary 3.1. Let Rg be a real hyperelliptic curve of genus g > 0 and denote by τ an
anti-holomorphic involution. Choose the canonical homology basis which satis�es (2.19).
Take n ≥ g and let a1, . . . , an+1 ∈ Rg(R) not rami�cation points having distinct projection
λ(aj), j = 1, . . . , n+ 1, onto the λ-sphere. Denote by `j an oriented contour between an+1

and aj which does not intersect cycles of the canonical homology basis. Let dR ∈ Rg,
T ∈ Zg, and de�ne d = dR + iπ

2 (diag(H) − 2T). Take θ ∈ R and let γg+1, . . . , γn ∈ R
be arbitrary constants with γn+1 = 1. Put ŝ = (sign(γ1) s1, . . . , sign(γn) sn) where sj is
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Figure 8. Solution to the DS2− equation at t = 0 on a hyperelliptic curve
of genus 2 with branch points −2± i, −1± i, 1± i and a = (−1.5 + 2i)(1),

b = (−1.5− 2i)(2).

Figure 9. Solution to the DS2− equation for several values of t on a hy-
perelliptic curve of genus 4 with branch points −2± i, −1± i, ±i, 1± i, 2± i
and a = (−1.5 + 2i)(1), b = (−1.5− 2i)(2).
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given in (2.24), and the scalars γj , j = 1, . . . , g, are de�ned by
∑n+1

k=1 γkVak = 0. Then

the following functions ψj , j = 1, . . . , n, give solutions of the n-NLSŝ equation (1.2)

(3.2) ψj(x, t) = |γj |1/2 |Aj | eiθ
Θ(Z− d + rj)

Θ(Z− d)
exp{−i (Ej x− Fj t)},

where |Aj | = |q2(an+1, aj)|1/2 exp
{
1
2 〈d,Mj〉

}
. Here Z = iVan+1 x+ iWan+1 t, where the

vectors Van+1 and Wan+1 were introduced in (2.11), and rj =
∫
`j
ω. The scalars Ej , Fj

are given by

Ej = K1(an+1, aj), Fj = K2(an+1, aj)− 2
n∑
k=1

γk q1(an+1, ak),

where qi,Ki for i = 1, 2 are de�ned in (2.14)-(2.17). If Rg is dividing and if d ∈ Rg,
functions (3.2) give smooth solutions of n-NLSŝ.

As an example we consider, as for DS in genus 2, the family of curves with the branch
points −2,−1, 0, ε, 2, 2 + ε for ε = 1 and ε = 10−10. In the former case the solutions will be
periodic in the (x, t)-plane, in the latter almost solitonic. To obtain non-trivial solutions

in the solitonic limit, we use d = 1
2 [ 1 1

0 0 ]
t
in all examples.

In Fig. 10 we show the case a1 = (−1.9)(1), a2 = (−1.1)(1) and a3 = (−1.8)(1), which
leads to a solution of 2-NLSŝ with ŝ = (−1,−1). Interchanging a2 and a3 in the above
example, we obtain a solution to 2-NLSŝ with ŝ = (1,−1) in Fig. 11.
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Figure 10. Solution (3.2) to the 2-NLSŝ equation with ŝ = (−1,−1) on
a hyperelliptic curve of genus 2 with branch points −2,−1, 0, ε, 2, 2 + ε and
a1 = (−1.9)(1), a2 = (−1.1)(1) and a3 = (−1.8)(1) for ε = 1 on the left and
ε = 10−10, the almost solitonic limit, on the right.

Solutions of 4-NLSŝ can be studied in the same way on the hyperelliptic curve of genus 4
with branch points −4,−3,−2,−2 + ε, 0, ε, 2, 2 + ε, 4, 4 + ε. We use d = 1

2 [ 1 1 1 1
0 0 0 0 ]

t
and the

points a1 = (−3.9)(1), a2 = (−3.7)(1), a3 = (−3.5)(1), a4 = (−3.3)(1) and a5 = (−3.1)(1).
Since the vectors Vaj and Waj are very similar in this case, the same is true for the
functions ψj . Therefore, we will only show the square modulus of the �rst component ψ1

in Fig. 12 for ŝ = (1,−1, 1,−1) on the left. Interchanging a4 and a5 in this case, one gets
a solution to 4-NLSŝ with ŝ = (−1, 1,−1,−1) which can be seen on the right of Fig. 12.
The almost solitonic limit ε = 10−10 produces well known solitonic patterns as shown for
instance for the DS equation in the previous subsection.
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Figure 11. Solution (3.2) to the 2-NLSŝ equation with ŝ = (1,−1) on a
hyperelliptic curve of genus 2 with branch points −2,−1, 0, ε, 2, 2 + ε and
a1 = (−1.9)(1), a2 = (−1.8)(1) and a3 = (−1.1)(1) for ε = 1 on the left and
ε = 10−10, the almost solitonic limit, on the right.
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Figure 12. Solution to the 4-NLSŝ equation on a hyperelliptic curve of
genus 4 with branch points −4,−3,−2,−2 + ε, 0, ε, 2, 2 + ε, 4, 4 + ε and
ε = 1 for a1 = (−3.9)(1), a2 = (−3.7)(1), a3 = (−3.5)(1), a4 = (−3.3)(1)

and a5 = (−3.1)(1), which leads to ŝ = (1,−1, 1,−1), on the left, and

for a1 = (−3.9)(1), a2 = (−3.7)(1), a3 = (−3.5)(1), a4 = (−3.1)(1) and

a5 = (−3.3)(1), which leads to ŝ = (−1, 1,−1,−1) on the right.

Hyperelliptic solutions to the n-NLSŝ equation with all signs ŝj satisfying ŝj = 1, can
be constructed on a curve without real branch points. To obtain smooth solutions, we use
d = 0. A solution of the 2-NLSŝ equation is studied on the curve of genus 2 with the
branch points −2± i,−1± i, 1± i in Fig. 13.

A typical example for a hyperelliptic 4-NLSŝ solution with ŝ = (1, 1, 1, 1) can be obtained
on a curve of genus 4 with branch points −2± i,−1± i,±i, 1± i, 2± i, as shown in Fig. 14.

4. General real algebraic curves

The quantities entering theta-functional solutions of the DS and n-NLSs equations are
related to compact Riemann surfaces. Since all compact Riemann surfaces can be de�ned
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Figure 13. Solution to the 2-NLSŝ equation with ŝ = (1, 1) on a hyperellip-

tic curve of genus 2 with branch points −2±i, −1±i, 1±i and a1 = (−1.9)(1),

a2 = (−1.8)(2) and a3 = (−1.1)(1).
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Figure 14. Solution to the 4-NLSŝ equation with ŝ = (1, 1, 1, 1) on a hy-
perelliptic curve of genus 4 with branch points −2± i, −1± i, ±i, 1± i, 2± i
and a1 = (−3.9)(1), a2 = (−3.7)(2), a3 = (−3.5)(1), a4 = (−3.3)(2) and

a5 = (−3.1)(1).

via compacti�ed non-singular algebraic curves, convenient computational approaches as
[6, 7] and [16] are based on algebraic curves: di�erentials, homology basis and periods of
the Riemann surface can be obtained in an algorithmic way. We refer the reader to the
cited literature for details. The identi�cation of the sheets of the covering de�ned by the
algebraic curve (1.1) via the projection map (x, y) 7→ x, is done, as in the hyperelliptic
case, by analytic continuation of the roots yi, i = 1, . . . , N for some non-critical point xb
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on the x-sphere, along a set of contours speci�ed in [16]. In the context of real algebraic
curves for which solutions of n-NLSs and DS are discussed here, an additional problem is
to establish the action of the anti-holomorphic involution τ on points on di�erent sheets.
A typical problem is to �nd points a ∈ Rg and b ∈ Rg with the same projection onto the
x-sphere such that τa = b; here τ is de�ned via τa = (x(a), y(a)). To this end, the roots
yi, i = 1, . . . , N, identi�ed at x = xb, are analytically continued to the points projecting
to x(a) on the x-sphere. It is then established which pairs of points in the di�erent sheets
satisfy τa = b.

In contrast to the hyperelliptic curves of the previous section, it is not possible for
general curves to introduce a priori a basis of the homology. Thus the cited codes use
an algorithm by Tretko� and Tretko� [28] which produces a homology basis for a given
branching structure of the covering which is in general not adapted to possible automor-
phisms of the curve. In the context of theta-functional solutions to integrable PDEs one
is often interested in real curves. As discussed in [19], the Vinnikov basis (i.e., the canon-
ical homology basis which satis�es (2.19)) is convenient in this context. Since solutions
and smoothness conditions for n-NLSs and DS equations are formulated in this basis, a
symplectic transformation relating the computed basis to the Vinnikov basis needs to be
worked out. This transformation is discussed in the present section and will be applied to
examples of real algebraic curves.

4.1. Symplectic transformation. Let Rg be a real compact Riemann surface of genus
g and τ an anti-holomorphic involution de�ned on it. Let (ν1, . . . , νg) be a basis of holo-
morphic di�erentials such that

(4.1) τ∗νj = νj , j = 1, . . . , g,

where τ∗ is the action of τ lifted to the space of holomorphic di�erentials: τ∗ω(p) = ω(τp)
for any p ∈ Rg. For an arbitrary canonical homology basis (A,B), let us denote by PA
and PB the matrices of A and B-periods of the di�erentials νj :

(4.2) (PA)ij =

∫
Ai
νj , (PB)ij =

∫
Bi
νj , i, j = 1, . . . , g.

In what follows (A,B) denotes the Vinnikov basis. From (4.1) and (2.19) we deduce the
action of the complex conjugation on the matrices PA and PB:

(4.3) (PA)ij ∈ R,

(4.4) PB = −PB + HPA.

Denote by (Ã, B̃) the homology basis on Rg produced by the Tretko�-Tretko� algo-
rithm. From the symplectic transformation (2.5) we obtain the following transformation
law between the matrices PÃ, PB̃ and PA, PB de�ned in (4.2):

(4.5)

(
A B
C D

)(
PÃ
PB̃

)
=

(
PA
PB

)
.

Therefore, by (4.3) one gets

ARe
(
PÃ
)

+BRe
(
PB̃
)

= PA(4.6)

A Im
(
PÃ
)

+B Im
(
PB̃
)

= 0,(4.7)
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and by (4.4)

C Re
(
PÃ
)

+DRe
(
PB̃
)

=
1

2
HPA(4.8)

C Im
(
PÃ
)

+D Im
(
PB̃
)

= Im (PB) .(4.9)

According to (4.6), the matrix ARe
(
PÃ
)
+BRe

(
PB̃
)
is invertible, since the matrix PA of

A-periods of a basis of holomorphic di�erentials is always invertible (see, for instance, [3]).
Moreover, it is well known that the Riemann matrix B = 2iπ PB (PA)−1 has a (negative)
de�nite real part, which is equal to −2π Im(PB) Im((PA)−1) for the real matrix PA here.
Then, by (4.9) the matrix C Im

(
PÃ
)

+D Im
(
PB̃
)
is also invertible.

Lemma 4.1. The matrices A,B,C,D ∈Mg(Z) solving (4.6)-(4.9) satisfy:

At = Im
(
PB̃
) [
C Im

(
PÃ
)

+D Im
(
PB̃
)]−1

(4.10)

Bt = −Im
(
PÃ
) [
C Im

(
PÃ
)

+D Im
(
PB̃
)]−1

(4.11)

Ct =
1

2
AtH− Re

(
PB̃
) [
ARe

(
PÃ
)

+BRe
(
PB̃
)]−1

(4.12)

Dt =
1

2
BtH + Re

(
PÃ
) [
ARe

(
PÃ
)

+BRe
(
PB̃
)]−1

.(4.13)

Proof. Recall that symplectic matrices M =

(
A B
C D

)
∈ Sp(2g,Z) are characterized by

AtD−CtB = Ig,(4.14)

AtC = CtA,(4.15)

DtB = BtD.(4.16)

Multiplying equality (4.7) from the left by the matrix Ct, we deduce from (4.14) and (4.15)
that:

CtA Im
(
PÃ
)

+ CtB Im
(
PB̃
)

= 0

CtA Im
(
PÃ
)

+ (AtD − Ig) Im
(
PB̃
)

= 0

AtC Im
(
PÃ
)

+AtD Im
(
PB̃
)

= Im
(
PB̃
)
,

which leads to (4.10). Equality (4.11) can be checked analogously with (4.14) and (4.16).
To prove (4.12), multiply equality (4.8) from the left by the matrix At. Using (4.14) and
(4.15) one gets:

AtC Re
(
PÃ
)

+AtDRe
(
PB̃
)

=
1

2
AtHPA

CtARe
(
PÃ
)

+ (Ig + CtB)Re
(
PB̃
)

=
1

2
AtHPA

Ct
(
ARe

(
PÃ
)

+BRe
(
PB̃
))

=
1

2
AtHPA − Re

(
PB̃
)
,

which by (4.6) leads to (4.12). Identity (4.13) can be proved analogously. �

Remark 4.1. Lemma 4.1 implies that it is su�cient to know the matrices A and B (or
C and D) to determine the symplectic matrix in (4.5). In practice, this means that a
convenient ansatz for one of the matrices has to be found. The others then follow from the
relations in Lemma 4.1.
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Thus to construct these matrices one �rst checks which of the matrices Re
(
PÃ
)
, Re

(
PB̃
)
,

Im
(
PÃ
)
, Im

(
PB̃
)
are invertible. This way a matrix can be identi�ed (e.g. A) in terms of

which the others can be expressed. The task is thus reduced to provide an ansatz for this
matrix such that the others will have entire components. We illustrate this approach at
the example of the Trott curve below.

Proposition 4.1. Let (Ã, B̃) be the canonical homology basis obtained with the Tretko�-
Tretko� algorithm; we denote with a tilde the quantities expressed in this basis. Under the
change of homology basis (2.5), solutions of n-NLSs and DS equations given in (2.22) and
(2.27), respectively, which are expressed in the basis satisfying (2.19), transform as follows:

the vector d appearing in the solutions becomes (2iπ)−1 K̃d where K̃ = 2iπA + B B̃, and
the theta function Θ = ΘB with zero characteristic, transforms to the theta function ΘB̃[δ̃]

with characteristic δ̃ = [δ̃1, δ̃2] given by

δ̃1 =
1

4
diag

(
BtHB − 2Re

(
PÃ
)
M̃−1Im

(
P tÃ

))
,(4.17)

δ̃2 =
1

4
diag

(
AtHA− 2Re

(
PB̃
)
M̃−1Im

(
P tB̃

))
,(4.18)

where

(4.19) M̃ = Im
(
P tB̃

)
Re
(
PÃ
)
− Im

(
P tÃ

)
Re
(
PB̃
)
.

Moreover, the vectors N,M de�ned in (2.20) become AtN+CtM and BtN+DtM respec-
tively.

Proof. Under the change of the canonical homology basis (2.5), the vector ω = (ω1, . . . , ωg)
t

of normalized holomorphic di�erentials transforms as

(4.20) ω = 2iπ K̃−1 ω̃,

where K̃ = 2iπA+B B̃. After straightforward calculations, according to the transformation
law (2.6) of theta functions, it can be checked that under this change of homology basis,
Fay's identity [13] expressed in the Vinnikov basis transforms as

(4.21) Ẽ(a, b)Ẽ(c, d) ΘB̃[δ̃]

(
z̃ +

∫ a

c
ω̃

)
ΘB̃[δ̃]

(
z̃ +

∫ d

b
ω̃

)
+ Ẽ(a, c)Ẽ(d, b) ΘB̃[δ̃]

(
z̃ +

∫ a

b
ω̃

)
ΘB̃[δ̃]

(
z̃ +

∫ d

c
ω̃

)
= Ẽ(a, d)Ẽ(c, b) ΘB̃[δ̃](z̃) ΘB̃[δ̃]

(
z̃ +

∫ a

c
ω̃ +

∫ d

b
ω̃

)
,

where z̃ = (2iπ)−1 K̃ z, for any z ∈ Cg and for any a, b, c, d ∈ Rg. Here we used the fact
that the transformation law (2.6)-(2.9) does not change the parity of the characteristic in

theta functions. Now let us compute the vectors of the characteristic δ̃. Inversion of the
symplectic matrix in (2.5) leads to(

Ã
B̃

)
=

(
Dt −Bt

−Ct At

)(
A
B

)
.
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Moreover, since the characteristic in Fay's identity used in [19] to construct solutions (2.22),
(2.27) of n-NLSs and DS is zero, from (2.9) we deduce that(

δ̃1
δ̃2

)
=

1

2
Diag

(
DtB
CtA

)
(note that DtB and CtA are symmetric matrices). Substituting (4.10) and (4.11) in (4.12)
(resp. (4.13)), it can be checked that

CtA =
1

2

(
AtHA− 2Re

(
PB̃
)
M̃−1 Im

(
P tB̃

))
,

DtB =
1

2

(
BtHB − 2Re

(
PÃ
)
M̃−1 Im

(
P tÃ

))
,

with
M̃ = Im

(
P tB̃

)
Re
(
PÃ
)
− Im

(
P tÃ

)
Re
(
PB̃
)
.

This completes the proof since solutions (2.22) and (2.27) are derived from Fay's identity
expressed in the Vinnikov basis. �

Remark 4.2. In the case where the spectral curve is an M-curve, i.e. H = 0, the vectors of
characteristic (4.17) and (4.18) do not depend explicitly on the symplectic matrix appearing
in the change of homology basis and are uniquely de�ned by:

δ̃1 =
1

2
diag

(
Re
(
PÃ
) [

Im
(
P tB̃

)
Re
(
PÃ
)
− Im

(
P tÃ

)
Re
(
PB̃
)]−1

Im
(
P tÃ

))
,(4.22)

δ̃2 =
1

2
diag

(
Re
(
PB̃
) [

Im
(
P tB̃

)
Re
(
PÃ
)
− Im

(
P tÃ

)
Re
(
PB̃
)]−1

Im
(
P tB̃

))
.(4.23)

It would be possible to compute the theta-functional solutions in the Vinnikov basis
once the symplectic transformation between this basis and the basis determined by the
code is known. However, since this symplectic transformation is not unique, the found
Vinnikov basis leads in general to a Riemann matrix for which the theta series converges
only slowly, i.e., the value Nθ in (3.1) has to be chosen very large. To avoid this problem,
we compute the theta function always in the typically more convenient Tretko�-Tretko�
basis with the characteristic of the theta functions given by (4.17)-(4.19).

4.2. Trott curve. The Trott curve [29] given by the algebraic equation

(4.24) 144 (x4 + y4)− 225 (x2 + y2) + 350x2y2 + 81 = 0

is an M-curve with respect to the anti-holomorphic involution τ de�ned by τ(x, y) = (x, y),
and is of genus 3. Moreover, this curve has real branch points only (and 28 real bitangents,

namely, tangents to the curve in two places). Our computed matrices of Ã and B̃-periods
read2

PÃ =

 0.0235i 0.0138i 0.0138i
0 0.0277i 0

−0.0315 0 0.0250

 ,

PB̃ =

 −0.0315 + 0.0235i 0.0138i −0.0250 + 0.0138i
0 −0.025 + 0.0277i 0.0250

−0.0235i 0.0138i 0.0138i

 .

2For the ease of representation we only give 4 digits here, though at least 12 digits are known for these
quantities.
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The Trott curve being an M-curve, the vectors of the characteristic δ̃ satisfy (4.22) and

(4.23), which leads to δ̃ = 1
2 [ 0 0 0

1 1 0 ]t.
A possible choice of a symplectic transformation bringing the computed basis to the

Vinnikov basis is:

A =

 1 0 0
0 1 0
0 0 1

 , B =

 −1 0 0
0 −1 0
0 0 0

 , C =

 1 0 0
0 1 0
0 0 0

 , D =

 0 0 0
0 0 0
0 0 1

 .

Note that the matrices A,B,C,D are not unique since the action (2.19) of the anti-
holomorphic involution on the basic cycles allows for permutations of Aj-cycles for in-
stance. These matrices can be computed as follows. Since the Trott curve is an M-curve,
one has H = 0. Moreover, the matrix Im(PB̃) being invertible here, by (4.7) one gets:

(4.25) B = −A Im
(
PÃ
) (

Im
(
PB̃
))−1

.

With (4.14) and (4.15) it follows that

(4.26) At
(
D + C Im

(
PÃ
) (

Im
(
PB̃
))−1)

= I3.

The computed matrix Im
(
PÃ
) (

Im
(
PB̃
))−1

being (within numerical precision) equal to

Im
(
PÃ
) (

Im
(
PB̃
))−1

=

 −1 0 0
0 −1 0
0 0 0

 ,

and with C,D ∈ M3(Z), we get from (4.26) that detA = 1. Since A ∈ M3(Z), the
condition detA = 1 implies A ∈ Gl3(Z). For any A ∈ Gl3(Z), one can see from (4.25),
(4.12) and (4.13) that B,C,D ∈ M3(Z), and therefore that the matrices A,B,C,D give
a solution of (4.6)-(4.9). The choice A = I3 leads to the above matrices.

The Trott curve has real �bers and can thus be used to construct solutions to the 3-NLS
equation via the projection map f : (x, y) 7→ x, which is a real meromorphic function of
degree 4 on the curve. We consider the points on the curve stable with respect to τ and
projecting to the point with x = 0.1 in the x-sphere, and choose d = 0. The corresponding
solution to the 3-NLS equation can be seen in Fig. 15.

A solution to the DS1+ equation on this curve can be constructed for points a and b
stable with respect to the involution τ . The solution for a = (−0.2)(1), b = (0.2)(2) and
the choice d = 0 can be seen in Fig. 16. Note that in accordance with Remark 2.1, one
would obtain a solution of DS1− for the choice a = (−0.2)(1) and b = (0.2)(1).

Similarly, a solution to the DS2+ equation can be obtained for points a and b subject
to τa = b. For a = (0.1 + i)(1) and b = (0.1− i)(1) we get Fig. 17.

4.3. Dividing curves without real branch point. We consider
the curve given by the equation

(4.27) 30x4 − 61x3y + 41y2x2 − 43x2 − 11y3x+ 42xy + y4 − 11y2 + 9 = 0

which was studied in [10] and [30]. It is a genus 3 curve, dividing with respect to the anti-
holomorphic involution τ , without real branch point. This curve admits two real ovals. In
this case the matrix H has the form

H =

0 1 0
1 0 0
0 0 0

 .
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Figure 15. Solution (2.22) to the 3-NLSs equation on the Trott curve
for the points with x = 0.1 on the x-sphere. The sheets are identi�ed at
the points projecting to x = −1.0129, (0.9582i,−0.9582i, 0.1146i,−0.1146i).
The vector of signs equals s = (1,−1,−1) from top to bottom.

Figure 16. Solution to the DS1+ equation on the Trott curve for the points
a = (−0.2)(1) and b = (0.2)(2) at t = 0.

The period matrices computed by the code read

PÃ =

 −0.2721− 0.0977i −0.3193 + 0.1914i −1.0668 + 0.4293i
0.2721 + 0.0977i −0.3193− 0.3341i −1.0668− 0.4316i
0.2721− 0.0977i 0.4676− 0.3341i 0.7992− 0.4316i

 ,
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Figure 17. Solution to the DS2+ equation on the Trott curve for the points
a = (0.1 + i)(1) and b = (0.1− i)(1) at t = 0.

PB̃ =

 −0.2721− 0.2932i −0.3193 + 0.3341i −1.0668 + 0.4316i
0.2721 + 0.2932i −0.3193− 0.7169i −1.0668− 1.2903i
0.2721− 0.0977i 0.4676 + 0.1914i 0.7992 + 0.4293i

 .

After some calculations, one �nds that the following matrices A,B,C,D provide a solution
of (4.6)-(4.9):

A =

 −1 2 −1
2 −1 0
0 2 −1

 , B =

 1 0 1
0 1 0
1 0 0

 , C =

 1 −1 −1
−1 1 −1

0 0 1

 , D =

 0 1 1
1 0 1
0 0 −1

 .

From (4.17) and (4.18) one gets for the characteristic: δ̃ = 1
2 [ 0 0 1

1 1 0 ]t.
The curve (4.27) has real �bers and can thus be used to construct solutions to the

focusing 3-NLS equation. We consider the points on the curve with x = 2.5 and stable
with respect to τ , and we choose d = 0. The corresponding solution to the focusing 3-NLS
equation can be seen in Fig. 18.

A solution to the DS1− equation can be constructed by choosing the points a = (−4)(1)

and b = (−3)(2) see Fig. 19.

4.4. Fermat curve. The Fermat curves

(4.28) yn + xn + 1 = 0, n > 2, n even,

are real curves without real oval with respect to τ . We consider here the curve with n = 4
that has genus 3. The matrix H has the form

H =

0 1 0
1 0 0
0 0 0

 ,
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Figure 18. Solution to the 3-NLSs equation on the dividing curve (4.27)
of genus 3 for the points with x = 2.5 on the x-sphere. The sheets are
identi�ed at the �ber over −2.1404+0.4404i, (−12.2492+2.0113i,−5.1634+
1.3519i,−4.5915 + 0.9380i,−1.5405 + 0.5429i). The vector of signs is s =
(1, 1, 1).

Figure 19. Solution to the DS1− equation on the dividing curve (4.27) of

genus 3 for the points a = (−4)(1) and b = (−3)(2) at t = 0.

and we �nd

PÃ =

 0.9270 0 0.9270i
−0.9270i 0 −0.9270
−0.9270i −1.8541i −0.9270i

 ,
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PB̃ =

 0.9270 + 0.9270i 0 −0.9270
0.9270− 0.9270i −0.9270 + 0.9270i −0.9270i

0 0.9270− 0.9270i −0.9270i

 .

The following matrices A,B,C,D provide a solution of (4.6)-(4.9):

A =

 0 1 1
1 0 0
0 0 1

 , B =

 −1 −2 −1
0 0 −1
−1 −1 0

 , C =

 0 1 0
0 0 1
1 −1 0

 , D =

 0 0 −1
0 −1 0
0 0 1

 ,

which leads to the characteristic: δ̃ = 1
2 [ 0 0 1

0 1 0 ]t.
To construct a solution of the DS2− equation on the Fermat curve, we choose the points

a = (−1.5 + i)(1) and b = (−1.5− i)(3). The resulting solution for the choice d = 0 can be
seen in Fig. 20.

Figure 20. Solution to the DS2− equation on the Fermat curve (4.28) of

genus 3 for the points a = (−1.5 + i)(1) and b = (−1.5− i)(3) at t = 0.

5. Conclusion

In this paper we have presented the state of the art of the numerical evaluation of
solutions to integrable equations in terms of multi-dimensional theta functions associated
to real Riemann surfaces by using an approach via real algebraic curves. It was shown that
real hyperelliptic curves parametrized by the branch points can be treated with machine
precision for a wide range of the parameters. Even almost degenerate situations where the
branch points coincide pairwise can be handled as long as at least one cut stays �nite. This
approach to real hyperelliptic curves [14, 15] is being generalized to arbitrary hyperelliptic
curves.

As discussed in [16], the main di�culty for general algebraic curves is the correct numer-
ical identi�cation of the branch points. The case of degenerations for given branch points
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has not yet been studied numerically, but is planned for the future. In what concerns the
solutions (2.22) to n-NLSs and similar solutions to the DS and the Kadomtsev-Petviashvili
equations, the main problem in the context of real Riemann surfaces is to �nd the symplec-
tic transformation leading to the homology basis introduced in [30], for which the solutions
of the studied equations, with regularity conditions, can be conveniently formulated. This
problem has been reduced to �nd a single g×g-matrix for given periods and real ovals, the
latter encoded by the matrix H. For M-curves, where the matrix H vanishes, a general for-
mula for the characteristic (4.17)-(4.19) could be given. In the general case, an algorithm
along the lines indicated in the previous section to �nd the transformation will be based on
a su�ciently general ansatz for one of the matrices entering the symplectic transformation
which is the subject of future work.
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