On exotic affine 3-spheres - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2011

On exotic affine 3-spheres

David R. Finston
  • Fonction : Auteur
  • PersonId : 858301

Résumé

Every $\mathbb{A}^{1}-$bundle over the complex affine plane punctured at the origin, is trivial in the differentiable category but there are infinitely many distinct isomorphy classes of algebraic bundles. Isomorphy types of total spaces of such algebraic bundles are considered; in particular, the complex affine 3-sphere admitts such a structure with an additional homogeneity property. Total spaces of nontrivial homogeneous $\mathbb{A}^{1}$-bundles over the punctured plane are classified up to $\mathbb{G}_{m}$-equivariant algebraic isomorphism and a criterion for nonisomorphy is given. In fact the affine 3-sphere is not isomorphic as an abstract variety to the total space of any $\mathbb{A}^{1}$-bundle over the punctured plane of different homogeneous degree, which gives rise to the existence of exotic spheres, a phenomenon that first arises in dimension three. As a by product, an example is given of two biholomorphic but not algebraically isomorphic threefolds, both with a trivial Makar-Limanov invariant, and with isomorphic cylinders.
Fichier principal
Vignette du fichier
Exotic-3-Spheres.pdf (295.27 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00600542 , version 1 (15-06-2011)

Identifiants

Citer

Adrien Dubouloz, David R. Finston. On exotic affine 3-spheres. 2011. ⟨hal-00600542⟩
84 Consultations
96 Téléchargements

Altmetric

Partager

More