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ON EXOTIC AFFINE 3-SPHERES

ADRIEN DUBOULOZ AND DAVID R. FINSTON

Abstract. Every A1−bundle over A2
∗
, the complex affine plane punctured at the origin, is trivial in

the differentiable category but there are infinitely many distinct isomorphy classes of algebraic bundles.
Isomorphy types of total spaces of such algebraic bundles are considered; in particular, the complex affine
3-sphere S3

C
, given by z2

1
+ z2

2
+ z2

3
+ z2

4
= 1, admits such a structure with an additional homogeneity

property. Total spaces of nontrivial homogeneous A1-bundles over A2
∗

are classified up to Gm-equivariant
algebraic isomorphism and a criterion for nonisomorphy is given. In fact S3

C
is not isomorphic as an

abstract variety to the total space of any A1-bundle over A2
∗

of different homogeneous degree, which
gives rise to the existence of exotic spheres, a phenomenon that first arises in dimension three. As a
by product, an example is given of two biholomorphic but not algebraically isomorphic threefolds, both
with a trivial Makar-Limanov invariant, and with isomorphic cylinders.

Introduction

Exotic affine spaces emerged in the 1990’s as rather unusual objects in affine algebraic geometry. These
are smooth complex affine varieties diffeomorphic to a euclidean space but not algebraically isomorphic
to the usual affine space. Actually, the first examples were constructed by Ramanujam in a landmark
paper [24] in which he also established the non existence of exotic affine planes. Since then, many
other examples of smooth contractible affine varieties of any dimension n ≥ 3 have been discovered and
these objects have progressively become ubiquitous in affine algebraic geometry. The study of these
potential exotic An’s has been a motivation for the introduction and the development of new techniques
and "designer" invariants which in turn led to important progress in related questions, such as the
Zariski Cancellation Problem (see e.g. [25] for a survey). So far, these invariants have succeeded in
distinguishing certain of these varieties from usual affine spaces, most notably the famous Russell cubic
threefold X =

{

x2y + z2 + x+ t3 = 0
}

⊂ A4 [17, 19]. But the main difficulty still remains the lack of
effective tools to recognize exotic spaces or, equivalently, the lack of effective characterizations of affine
spaces among affine varieties.

More generally, given any smooth complex affine variety V , one can ask if there exists smooth affine
varieties W non isomorphic to V but which are biholomorphic or diffeomorphic to V when equipped
with their underlying structures of complex analytic or differentiable manifolds. When such exist, these
varieties W could be called exotic algebraic structures on V, but it makes more sense to reserve this
terminology for the case where the chosen variety V carries an algebraic structure that we consider as
the “usual” one.

In addition to affine spaces, a very natural class for which we have such “usual” algebraic structures
consists of non-degenerate smooth complex affine quadrics, i.e., varieties isomorphic to one of the form
Sn
C
=

{

x21 + · · ·+ x2n+1 = 1
}

equipped with its unique structure of a closed algebraic subvariety of An+1
C

.
So an exotic complex affine n-sphere, if it exists, will be a smooth complex affine variety diffeomorphic to
Sn
C

but not algebraically isomorphic to it. Since S1
C
≃ A1 \ {0} is the unique smooth affine curve C with

H1 (C,Z) ≃ Z, there is no exotic affine 1-sphere. Similarly, there is no exotic affine 2-sphere and the same
phenomenon as for affine spaces occurs: the algebraic structure on a smooth affine surface diffeomorphic
to S2

C
is actually uniquely determined by its topology: namely, a smooth affine surface S is algebraically

isomorphic to S
2
C

if and only if it has the same homology type and the same homotopy type at infinity
as S2

C
(see 3.3 in the appendix below).

In the context of the cancellation problem for factorial threefolds, S. Maubach and the second author
[7] studied a family of smooth affine threefolds with the homology type of S3

C
: starting from a Brieskorn

surface Sp,q,r = {xp + yq + zr = 0} ⊂ A3, they consider smooth affine threefolds Zm,n ⊂ Sp,q,r × A2

defined by equations of the form xmv − ynu = 1, m ≥ n ≥ 1. These varieties come equipped via the
first projection with the structure of a locally trivial A1-bundle ρ : Zm,n → S∗

p,q,r over the smooth locus
S∗
p,q,r = Sp,q,r \ {(0, 0, 0)} of Sp,q,r . For a fixed triple (p, q, r), they are all diffeomorphic to each other

and have the Brieskorn sphere Σ (p, q, r) as a strong deformation retract. The main result of [7] asserts in
contrast that if 1

p +
1
q +

1
r < 1, then the isomorphy type of the total space of an A1-bundle over S∗

p,q,r as
an abstract algebraic variety is uniquely determined by its isomorphy class as an A

1-bundle over S∗
p,q,r,
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ON EXOTIC AFFINE 3-SPHERES 2

up to composition by automorphisms of S∗
p,q,r

1. This enables in particular the conclusion that the Zm,n
are pairwise non isomorphic algebraic varieties, despite the isomorphy of all of the cylinders Zm,n × A1.

Noting that S3
C

∼= SL2 (C) = {xv − yu = 1} ⊂ A2
∗ × A2, where A2

∗ = Spec (C [x, y]) \ {(0, 0)}, the
previous result strongly suggests that the varieties

Xm,n = {xmv − ynu = 1} ⊂ A
2
∗ × A

2, m+ n > 2,

could be exotic affine 3-spheres. Indeed, for every m,n ≥ 1, the first projection again induces a Zariski
locally trivial A1-bundle ρ : Xm,n → A2

∗. The latter being trivial in the euclidean topology, the Xm,n are
thus all diffeomorphic to A2

∗×R2 and have the real sphere S3 as a strong deformation retract. This holds
more generally for any Zariski locally trivial A1-bundle ρ : X → A2

∗, and so all smooth affine threefolds
admitting such a structure are natural candidates for being exotic 3-spheres. But it turns out that it is
a challenging problem to distinguish these varieties from S3

C
≃ X1,1 since, in contrast with the situation

considered in [7], the isomorphy type of the total space of an A1-bundle ρ : X → A2
∗ as an abstract

variety is no longer uniquely determined by its structure as an A1-bundle; for instance, a consequence of
our main result is the following rather unexpected fact that for every pair (m,n) , (p, q) ∈ Z2

>0 such that
m+n = p+ q ≥ 4, the threefolds Xm,n and Xp,q are isomorphic as abstract algebraic varieties while they
are isomorphic as A

1-bundles over A
2
∗ only if {m,n} = {p, q}.2

While a complete and effective classification of isomorphy types of total spaces of A1- bundles over
A2

∗ seems out of reach for the moment, we obtain a satisfactory answer for a particular class of bundles
containing the varieties Xm,n that we call homogeneous Ga-bundles. These are principal Ga-bundles
ρ : X → A2

∗ equipped with a lift of the Gm-action λ · (x, y) = (λx, λy) on A2
∗ which is “locally linear” on

the fibers of ρ. This holds for instance on the Xm,n’s for the lifts λ · (x, y, u, v) = (λx, λy, λ−nu, λ−mv),
which are the analogues of the action of the maximal torus of X1,1 = SL2 (C) on SL2 (C) by multiplication
on the right. For such bundles, there is natural notion of homogeneous degree for which, in particular,
the bundle Xm,n → A

2
∗ equipped with the previous lift has homogeneous degree −m − n. Our main

classification result then reads as follows (see Theorem 2.3):

Theorem. The total spaces of two nontrivial homogeneous Ga-bundles are Gm-equivariantly isomorphic
if and only if they have the same homogeneous degree. In particular, for a fixed d ≥ 2, the total spaces
of nontrivial homogeneous Ga-bundles ρ : X → A2

∗ of degree −d are all isomorphic as abstract affine
varieties.

This implies in particular that a variety Xm,n with m+ n ≥ 3 equipped with the action above is not
Gm-equivariantly isomorphic to X1,1. We finally derive from a careful study of the effect of algebraic
isomorphisms on the algebraic de Rham cohomology of total spaces of A

1-bundles over A
2
∗ that every

variety Xm,n with m + n ≥ 3 is indeed an exotic affine 3-sphere. The criterion we give in Theorem
2.5 also provides an effective tool to construct families of pairwise non isomorphic exotic 3-spheres : for
instance, we show that the varieties X2,2 =

{

x2v − y2u = 1
}

and X̃2,2 =
{

x2v − y2u = 1 + xy
}

are non
isomorphic exotic affine 3-spheres yet they are even biholomorphic as complex analytic manifolds.

The article is organized as follows. In the first section, the basic properties of A
1-bundles over the

punctured plane A2
∗ are reviewed and the notion of homogeneous Ga-bundle is developed. The second

section is devoted to the proofs of the various isomorphy criteria presented above. The third section takes
the form of an appendix, in which we give a short proof of the non existence of exotic affine 2-spheres
and establish a refined version of the so-called Danilov-Gizatullin Isomorphy Theorem [10] which is used
in the proof of the main Theorem 2.3

1. Basic facts on A1-bundles and Ga-bundles over A2
∗

1.1. Recollection on algebraic A1-bundles and Ga-bundles.

An A1-bundle over a scheme S is a morphism ρ : X → S for which every point of S has a Zariski open
neighborhood U ⊂ S with a local trivialization such that ρ−1 (U) ≃ U×A1 as schemes over U . Transition
isomorphisms over the intersections Ui ∩Uj of pairs of such open sets are given by affine transformations
of the fiber isomorphy classes of such bundles are thus in one-to-one correspondence with isomorphy
classes of Zariski locally trivial principal bundles under the affine group Aut

(

A
1
)

≃ Gm⋉Ga. Additional
properties of these bundles can be read from the exact sequence of non-abelian cohomology

0 → H0 (S,Ga) → H0 (S,Gm ⋉Ga) → H0 (S,Gm) → H1 (S,Ga) → H1 (S,Gm ⋉Ga) → H1 (S,Gm)

1In loc. cit., this property is established by algebraic methods involving the computation of the Makar-Limanov invariant
of the varieties Zm,n, but this can also be seen alternatively as consequence of the fact for 1/p+1/q+1/r < 1, the logarithmic

Kodaira dimension κ(S∗

p,q,r
) of S∗

p,q,r
is positive.

2This fact was actually already observed by the authors and P.D Metha in the unpublished paper [5].
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deduced from the short exact sequence of groups 0 → Ga → Gm⋉Ga → Gm → 0 (see e.g. [9, 3.3.1]). For
instance, if S is affine then H1(S,Ga) ≃ H1(S,OS) = {0} and so every A1-bundle over S actually carries
the structure of a line bundle. Similarly, if the Picard group Pic (S) ≃ H1(S,Gm) of S is trivial then every
A1-bundle over S can be equipped with the additional structure of a principal Ga-bundle. Furthermore,
in this case, the set H1(S,Gm ⋉ Ga) of isomorphy classes of A1-bundles over S is isomorphic to the
quotient of H1(S,Ga) by the action of H0(S,Gm) = Γ(S,O∗

S) via a multiplicative reparametrization:
a ∈ Γ(S,O∗

S) sends the isomorphy class of the Ga-bundle ρ : X → S with action Ga,S ×S X → X ,
(t, x) 7→ t · x to the isomorphy class of ρ : X → S equipped with the action (t, x) 7→ (at) · x.

1.1. It follows in particular that over the punctured affine plane A
2
∗, which has a trivial Picard group,

the notions of A1-bundle and Ga-bundle essentially coincide and that isomorphy classes of nontrivial
A1-bundles are in one-to-one correspondence with elements of the infinite dimensional projective space
PH1(A2

∗,OA2
∗

) = H1(A2
∗,OA2

∗

)/Gm.

1.2. Every cohomology class in H1(A2
∗,OA2

∗

) can be represented by a Čech 1-cocycle with value in
OA2

∗

on the the acyclic covering U0 of A2
∗ = Spec (C [x, y]) \ {0, 0} by the principal affine open subsets

Ux = Spec
(

C
[

x±1, y
])

and Uy = Spec
(

C
[

x, y±1
])

, providing an isomorphism of C-vector spaces

H1(A2
∗,OA2

∗

) ≃ Ȟ1(U0,OA2
∗

) ≃ C
[

x±1, y±1
]

/〈C
[

x±1, y
]

+ C
[

x, y±1
]

〉.

It follows in particular from this description that H1(A2
∗,OA2

∗

) is nonzero, which implies in turn that
there exists nontrivial algebraic Ga-bundles over A2

∗. In contrast, in the differentiable category, all these
bundles are globally trivial smooth fibrations with fibers R2 over A2

∗ ≃ R4 \ {0} equipped with its
euclidean structure of differentiable manifold. Indeed, since the sheaf F = C∞(A2

∗,C) of complex valued
C∞-functions on A

2
∗ is soft (see e.g. [11, Theorem 5, p.25]), every algebraic Čech 1-cocycle g ∈ C1(U0,OA2

∗

)

representing a nontrivial class in H1(A2
∗,OA2

∗

) is a coboundary when considered as a 1-cocycle in with
values in F . This implies in particular that every algebraic Ga-bundle ρ : X → A2

∗ admits the real sphere
S3 as a C∞-strong deformation retract.

Example 1.1. A well known example of nontrivial algebraic Ga-bundle over A2
∗ is given by the morphism

ρ : SL2 (C) =

{(

x u
y v

)

∈ M2 (C) , xv − yu = 1

}

→ A
2
∗,

(

x u
y v

)

7→ (x, y)

which identifies A2
∗ with the quotient of SL2 (C) by the right action of its subgroup T ≃ Ga of upper

triangular matrices with 1’s on the diagonal. The local trivializations of ρ given by the Ga-equivariant
isomorphisms SL2 (C) |Ux

≃ Ux × Spec
(

C
[

x−1u
])

and SL2 (C) |Uy
≃ Uy × Spec

(

C
[

y−1v
])

differ over
Ux ∩Uy by the nontrivial Čech 1-cocycle (xy)−1 ∈ C1(U0,OA2

∗

) = C
[

x±1, y±1
]

. In contrast, the identity
(xy)−1 = δ(x, y)−1(xy−1 + x−1y), where δ (x, y) = |x|2 + |y|2 ∈ C∞(A2

∗,R
∗
+), shows that (xy)−1 ∈

C1(U0, C
∞(A2

∗,C)) is a coboundary.

1.2. Algebraic Ga-bundles with affine total spaces.

Since A2
∗ is strictly quasi-affine, the total space of a Ga-bundle over it need not be an affine variety

in general. However, we have the following handsome characterization of Ga-bundles with affine total
spaces.

Proposition 1.2. A Ga-bundle ρ : X → A2
∗ has affine total space X if and only if it is nontrivial.

Proof. See also [5] for an alternative argument. The condition is necessary since the total space of
the trivial A1-bundle A2

∗ × A1 is again strictly quasi-affine. Conversely, it is equivalent to show that if
ρ : X → A2

∗ is a nontrivial Ga-bundle then the composition

i ◦ ρ : X → A
2
∗ →֒ A

2 = Spec(Γ(A2
∗,OA2

∗

))

is an affine morphism. Let o = (0, 0) be the origin of A2 and S = Spec(OA2,o) → A2 be the natural
morphism. Since ρ : X → A2

∗ is an affine morphism, i ◦ ρ is affine if and only if the base extension
p1 : S ×A2 X → S is as well. It follows from a characterization due to Miyanishi [21] that either the
restriction of p1 over the complement of the closed point o of S is a trivial A1-bundle or S ×A2 X is
isomorphic to a closed subscheme of S × Spec (C [u, v]) defined by an equation of the form fv − gu = 1,
where f, g ∈ OA2,o is a regular sequence. In the second case, p−1

1 (S) = p−1
1 (S \ {o}) is an affine scheme,

and so p1 is an affine morphism. Otherwise, if p−1
1 (S \ {o}) → S \ {o} is the trivial A1-bundle, then

there exists an open subset U of A2 containing o such that ρ−1(U \ {o}) → U \ {o} is a trivial Ga-bundle.
Therefore, ρ : X → A

2
∗ can be extended to a Ga-bundle ρ : X → A

2 over A
2. But A

2 is affine, so
ρ : X → A2 is a trivial Ga-bundle, and as would be ρ : X → A2

∗, contradicting our hypothesis. �



ON EXOTIC AFFINE 3-SPHERES 4

Example 1.3. Every non trivial class in H1(A2
∗,OA2

∗

) can be represented by a Čech 1-cocycle of the
form x−my−np (x, y) ∈ C1(U0,OA2

∗

) = C
[

x±1, y±1
]

, where m,n ∈ N \ {0} and p (x, y) ∈ C [x, y] is a
polynomial divisible neither by x nor by y and satisfying degx p < m and degy p < n. A corresponding
A1-bundle ρ : X (m,n, p) → A2

∗ is obtained as the complement in the variety

Zm,n,p = {xmv − ynu = p (x, y)} ⊂ A
2
∗ × Spec (C [u, v])

of the fiber prx,y |
−1
Zm,n,p

(0, 0). The latter is a Ga-bundle when equipped for instance with the restriction
of the Ga-action t ·(x, y, u, v) = (x, y, u+ xmt, v + ynv) on Zm,n,p. Indeed, by construction of X (m,n, p),
with respect to the local Ga-equivariant trivializations

X (m,n, p) |Ux
≃ Ux×Spec

(

C
[

x−mu
])

≃ Ux×Ga and X (m,n, p) |Uy
≃ Uy×Spec

(

C
[

y−nv
])

≃ Uy×Ga

the fiber coordinates differ precisely by the Čech 1-cocycle x−my−np (x, y) ∈ C1(U0,OA2
∗

).

1.3. A consequence of Proposition 1.2 above is that the cylinders X×A1 over the total spaces of nontrivial
Ga-bundles ρ : X → A2

∗ are not only all diffeomorphic in the euclidean topology but even all isomorphic
as algebraic varieties. Indeed, given to such bundles X and X ′, the fiber product X×A2

∗

X ′ is a Ga-bundle
over both X and X ′ via the first and the second projections respectively. Since X and X ′ are affine,
the latter are both trivial as bundles over X and X ′ respectively providing isomorphisms X × A1 ≃
X ×A2

∗

X ′ ≃ X ′ × A1. This implies in turn that most of the “standard” invariants of algebraic varieties
which are either of topologico-differentiable nature or stable under taking cylinders fail to distinguish total
spaces of nontrivial Ga-bundles X → A2

∗ considered as abstract affine varieties. For instance, algebraic
vector bundles on the total space of a nontrivial A1-bundle ρ : X → A

2
∗ are all trivial. Indeed, this holds

for SL2 (C) by virtue of [23] and the fact that vector bundles on X×A1 ≃ SL2 (C)×A1 are simultaneously
extended from vector bundles on SL2 (C) and X [18] implies that this holds for arbitrary affine X too.

Remark 1.4. In the context of affine varieties V with Ga-actions, the Makar-Limanov invariant ML(V ),
defined as the algebra of regular functions on V that are invariant under all algebraic Ga-actions on V ,
has been introduced and used by Makar-Limanov [19] to distinguish certain exotic algebraic structures
on the affine 3-space. Clearly, ML(SL2 (C)) = C, and since this invariant is known to be unstable
under taking cylinders [2] [4], it is a natural candidate for distinguishing certain A

1-bundles ρ : X → A
2
∗

from SL2 (C). However, one checks easily using the explicit description in 1.3 above that ML(X) = C

for every non trivial A1-bundle ρ : X → A2
∗. Actually, if X = X (m,n, p), where p ∈ C [x, y] is a

homogeneous polynomial, then Theorem 2.3 below implies that the total space of X is isomorphic to
X1,r = {xv − yru = 1}, where r+1 = m+n−deg p ≥ 2, which is even a flexible variety, i.e., the tangent
space at every point of x is spanned by the tangent vectors to the orbits of the Ga-actions on X [1]. We
do not know if this additional property holds for general A1-bundles ρ : X → A2

∗.

1.3. Homogeneous Ga-bundles.

Here we develop the notion of homogeneous Ga-bundle over A2
∗ that will be used in the rest of the article.

1.4. Let σ : Gm×A2
∗ → A2

∗ denote the linear Gm-action on A2
∗ with quotient π : A2

∗ → P1 = Proj (C [x, y]).
Since π is an affine morphism and π∗OA2

∗

≃
⊕

d∈Z
OP1 (−d), we have a decomposition

H1(A2
∗,OA2

∗

) ≃ H1(P1, π∗OA2
∗

) ≃
⊕

d∈Z

H1(P1,OP1 (−d)) ≃
⊕

d≥2

H1(P1,OP1 (−d)),

where for every d, H1(P1,OP1 (−d)) can be identified with the vector space of the semi-invariants of weight
−d for the representation of Gm onH1(A2

∗,OA2
∗

) induced by σ. Via the one-to-one correspondence between
coverings V = (Vi)i∈I of P1 = A2

∗/Gm by affine open subsets Vi, i ∈ I and coverings U = (Ui)i∈I of A2
∗

by Gm-stable affine open subsets Ui = π−1 (Vi), i ∈ I, a cohomology class in H1(P1, π∗OA2
∗

) belongs to
H1(P1,OP1 (−d)) if and only if it can be represented by a Čech 1-cocycle {hij}i,j∈I ∈ C1(V ,OP1 (−d)) ⊂

C1(V , π∗OA2
∗

) ≃ C1(U ,OA2
∗

) consisting of rational functions hij ∈ Γ(Ui ∩ Uj ,OA2
∗

) ⊂ C (x, y) that are
homogeneous of degree −d. These cocycles correspond precisely to Ga-bundles ρ̃ : X̃ → A2

∗ with local
trivializations τi : X̃ |Ui

∼
→ Ui ×Ga for which the isomorphisms τi ◦ τ−1

j |Ui∩Uj
, (u, tj) 7→ (u, tj + hij (u)),

i, j ∈ I, are equivariant for the actions of Gm on Ui × Ga and Uj × Ga by λ · (u, t) = (σ (λ, u) , λ−dt).
This leads to the following interpretation of the above decomposition in terms of Ga-bundles over A2

∗.

Proposition 1.5. For a Ga-bundle ρ : X → A2
∗, the following are equivalent:

a) The isomorphy class of ρ : X → A
2
∗ belongs to H1(P1,OP1 (−d)) ⊂ H1(A2

∗,OA2
∗

),

b) ρ : X → A2
∗ is isomorphic to a Ga-bundle ρ̃ : X̃ → A2

∗ admitting a lift σ̃ : Gm × X̃ → X̃ of σ for

which there exists a collection of Ga-equivariant local trivializations τi : X̃ |Ui

∼
→ Ui ×Ga over a covering

of A2
∗ by Gm-stable affine open subsets (Ui)i∈I such that for every i ∈ I, τi is Gm-equivariant for the

action of Gm on Ui ×Ga defined by λ · (u, t) =
(

σ (λ, u) , λ−dt
)

.
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Definition 1.6. A nontrivial Ga-bundle ρ : X → A2
∗ satisfying one of the above equivalent properties

for a certain d ≥ 2 is said to be −d-homogeneous.

Example 1.7. By specializing to the covering U0 of A2
∗ by the Gm-stable principal open subsets Ux and

Uy, we obtain a more explicit decomposition:

H1(A2
∗,OA2

∗

) ≃ Ȟ1(U0,OA2
∗

) ≃
⊕

d≥2

W−d

where, for every d ≥ 2, W−d ≃ H1(P1,OP1 (−d)) denotes the sub-C-vector space of C
[

x±1, y±1
]

with
basis Bd consisting of rational monomials x−my−n where m,n ∈ N \ {0} and m + n = d. Note that
letting Vd−2 ≃ H0(P1,OP1(d − 2)) be the space of binary forms of degree d − 2, Serre duality for P1

takes the form of a perfect pairing W−d × Vd−2 → W−2 for which the basis Bd is simply the dual of
the usual basis of Vd−2 consisting of monomials xpyq with p + q = d − 2. Therefore, every non trivial
class in H1(P1,OP1(−d)) is represented by a Čech 1-cocycle of the form x−my−np (x, y) ∈ C1(U0,OA2

∗

),
where p (x, y) ∈ C [x, y] is a homogeneous polynomial of degree r = m + n − d ≥ 0. The corresponding
Ga-bundle X̃ = X (m,n, p) = {xmv − ynu = p (x, y)} \ {x = y = 0} as in 1.3 admits an obvious lift
σ̃ (λ, (x, y, u, v)) =

(

λx, λy, λm−du, λn−dv
)

of the Gm-action σ on A2
∗ which satisfies b) in Proposition 1.5

above.

1.5. Proposition 1.5 can be interpreted from another point of view as a correspondence between −d-
homogeneous Ga-bundles ρ : X → A2

∗ and principal homogeneous bundles ν : Y → P1 under the line
bundle p : OP1 (−d) → P1. Here we consider the line bundle p : OP1 (−d) → P1 as equipped with the
structure of a locally constant group scheme over P1, with group law induced by the diagonal homomor-
phism of sheaves OP1 (d) → OP1 (d) ⊕OP1 (d). A principal homogeneous OP1 (−d)-bundle (or simply an
OP1 (−d)-bundle) is a scheme ν : Y → P1 equipped with an action of OP1 (−d) such that every point
of P

1 has a Zariski open neighborhood U such that Y |U is equivariantly isomorphic to OP1 (−d) |U
acting on itself by translations. Isomorphy classes of OP1 (−d)-bundles are in one-to-one correspon-
dence with elements of the group H1(P1,OP1 (−d)). Example 1.8 below shows that for a Ga-bundle
ρ̃ : X̃ → A2

∗ equipped with a lift σ̃ of σ as in b), the quotient A1-bundle ν : X̃/Gm → P1 = A2
∗/Gm comes

naturally equipped with the structure of principal homogeneous OP1 (−d)-bundle with isomorphy class
γ = [X̃] ∈ H1(P1,OP1 (−d)) ⊂ H1(A2

∗,OA2
∗

).

Example 1.8. By virtue of example 1.7 above, every nontrivial −d-homogeneous Ga-bundle is isomorphic
to one of the form X̃ = X (m,n, p), where p (x, y) ∈ C [x, y] is homogeneous of degree r = m+n− d ≥ 0.
The latter is equipped with the lift σ̃ (λ, (x, y, u, v)) =

(

λx, λy, λm−du, λn−dv
)

of σ for which we have
local Gm-equivariant trivializations

X̃ |Ux
≃ Spec

(

C
[

x−1y, xd−mu
])

×Gm = Spec (C [z, w])×Gm

X̃ |Uy
≃ Spec

(

C
[

xy−1, yd−nv
])

×Gm = Spec (C [z′, w′])×Gm.

These induce trivializations τx : ν−1 (Ux/Gm)
∼
→ Spec (C [z] [w]) and τy : ν−1 (Uy/Gm)

∼
→ Spec (C [z′] [w′])

of the quotient bundle ν : X̃/Gm → P1 for which the transition isomorphism τy ◦ τ−1
x |Ux∩Ux/Gm

has
the form (z, w) 7→

(

z−1, zdw + zmp
(

z−1, 1
))

. To see explicitly the structure of an OP1(−d) bundle on
X̃/Gm, choose coordinates for the local trivializations of the total space of OP1(−d) as follows :

OP1 (−d) |Ux/Gm
≃ Spec

(

C
[

x−1y, xdt
])

= Spec (C [z, ℓ])

OP1 (−d) |Uy/Gm
≃ Spec

(

C
[

xy−1, ydt
])

= Spec (C [z′, ℓ′]) .

Then we see that the Ga-action t · (x, y, u, v) = (x, y, u+ xmt, v + ynv) on X̃ descends to the action of
OP1 (−d) on X̃/Gm defined locally by ℓ · w = w + ℓ and ℓ′ · w′ = w′ + ℓ′, which equips X̃/Gm with
the structure of an OP1 (−d)-bundle. Finally, with our choice of coordinate, the natural isomorphism of
C-vectorspaces

φ : C1({Ux, Uy},OA2
∗

) = C
[

x±1, y±1
] ∼
→ C1({Ux/Gm, Uy/Gm}, π∗OA2

∗

) = C
[

z±1
]

maps a Laurent monomial xiyj to z−i, whence sends the Čech cocycle x−my−np (x, y) representing the
isomorphy class of the Ga-bundle ρ̃ : X̃ → A2

∗ to the one zmp
(

z−1, 1
)

representing the isomorphy class
of the OP1 (−d)-bundle ν : X̃/Gm → P1.

Remark 1.9. The precise correspondence between −d-homogeneous Ga-bundles over A2
∗ and principal

OP1 (−d)-bundles takes the form of an equivalence of categories extending the one between Gm-linearized
line bundles on A2

∗ with respect to the action σ : Gm × A2
∗ → A2

∗ and line bundles over P1 = A2
∗/Gm.

Recall that a Gm-linearized line bundle is a pair (L,Φ) consisting of a line bundle p : L → A
2
∗ and an

isomorphism
Φ : σ∗L = (Gm × A

2
∗)×σ,A2

∗

L
∼
−→ p∗2L = (Gm × A

2
∗)×p2,A2

∗

L
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of line bundles over Gm × A2
∗ satisfying the cocycle condition (µ × idA2

∗

)∗Φ = p∗23Φ ◦ (idGm
× σ)∗Φ over

Gm × Gm × A2
∗, where µ : Gm × Gm → Gm denotes the group law of Gm (see e.g. [22, §3, p.30]). A

standard argument of faithfully flat descent for the quotient morphism π : A2
∗ → P1 = A2

∗/Gm shows
that the category of Gm-linearized line bundles over A2

∗ is equivalent to category of line bundles over
P1. Noting that Φ : σ∗L

∼
→ p∗2L is an isomorphism of group schemes over Gm × A2

∗, we can define a
category Ṽ whose objects are pairs {(L,Φ), (X̃,Ψ)} consisting of a Gm-linearized line bundle (L,Φ), a
principal L-bundle ρ̃ : X̃ → A2

∗, and a Φ-equivariant isomorphism Ψ : σ∗X̃
∼
→ p∗2X̃ of principal bundles

under σ∗L and p∗2L respectively, satisfying the cocycle condition (µ × idA2
∗

)∗Ψ = p∗23Ψ ◦ (idGm
× σ)∗Ψ

over Gm × Gm × A2
∗. Then one checks that the previous equivalence extends to a one between Ṽ and

the category V whose objects are pairs (M,Y ) consisting of a line bundle q : M → P1 and a principal
M -bundle ν : Y → P1.

Recall that for a Gm-linearized line bundle (L,Φ) over A2
∗ the morphism σ = p2◦Φ

−1 : Gm×L ≃ σ∗L→
L defines a lift to L of the Gm-action σ on A2

∗ which is “linear on the fibers” of p : L → A2
∗. Similarly,

for (X̃,Ψ) as above, the morphism σ̃ = p2 ◦Ψ
−1 : Gm × X̃ ≃ σ∗X̃ → X̃ is a lift to X̃ of σ for which X̃

“locally looks like L equipped with the action σ”. By specializing to the case of the trivial line bundle
A2

∗×Spec (C [t]) over A2
∗ equipped with the Gm-linearization given by the lift λ · (x, y, ℓ) =

(

λx, λy, λ−dt
)

of σ, which corresponds to the line bundle OP1 (−d) → P1, the previous equivalence boils down to a one-
to-one correspondence between isomorphy classes of principal OP1 (−d)-bundles over P1 and isomorphy
classes of Ga-bundles ρ̃ : X̃ → A2

∗ equipped with a lift σ̃ : Gm × X̃ → X̃ of σ as in b) in Proposition 1.5.

2. Isomorphy types of total spaces of A1-bundles over A2
∗

In this section, we give partial answers to the problem of classifying total spaces of nontrivial A1-
bundles over A2

∗ considered as abstract affine varieties.

2.1. Base change under the action of Aut
(

A2
∗

)

.

Since we are interested in isomorphy types of total spaces of A1-bundles over A2
∗ as abstract varieties,

regardless of the particular A1-bundle structure, a natural step is to consider these bundles up to a weaker
notion of bundle isomorphism which consists in identifying two nontrivial A1-bundles ρ : X → A2

∗ and
ρ′ : X ′ → A2

∗ if there exists a commutative diagram

X ′

ρ′

��

Ψ
// X

ρ

��

A2
∗

ψ
// A2

∗

where ψ and Ψ are isomorphisms. This means equivalently that the isomorphy classes of X and X ′ in
PH1(A2

∗,OA2
∗

) belong to the same orbit of the action of the group Aut
(

A2
∗

)

of automorphisms of A2
∗ on

PH1(A2
∗,OA2

∗

) induced by the linear representation

η : Aut
(

A
2
∗

)

→ GL(H1(A2
∗,OA2

∗

)), ψ 7→ η (ψ) = ψ∗ : H1(A2
∗,OA2

∗

)
∼
→ H1(A2

∗,OA2
∗

)

of Aut
(

A2
∗

)

on H1(A2
∗,OA2

∗

), where ψ∗ maps the isomorphy class of Ga-bundle ρ : X → A2
∗ to that of

the Ga-bundle pr2 : X ×ρ,A2
∗
,ψ A

2
∗ → A

2
∗.

2.1. The group of automorphisms of A2
∗ can be identified with the subgroup of Aut

(

A2
)

consisting of
automorphisms of the plane A2 that preserve the origin o. As a consequence of Jung’s Theorem [16],
Aut

(

A2
∗

)

is generated by the general linear group GL2 (C) and the subgroup U ⊂ Aut
(

A2
∗

)

consisting
of automorphisms of the form (x, y) 7→ (x, y + p (x)) where p (x) ∈ x2C [x]. Since the representation
of Gm on H1(A2

∗,OA2
∗

) induced by the action σ : Gm × A
2
∗ → A

2
∗ commutes with that of GL2 (C), the

decomposition
H1(A2

∗,OA2
∗

) ≃
⊕

d≥2

H1(P1,OP1 (−d))

provides a splitting of the induced representation GL2 (C) → GL(H1(A2
∗,OA2

∗

)) into a direct sum of
representations on the finite dimensional vector spaces H1(P1,OP1 (−d)), d ≥ 2. Using the identifications
H1(P1,OP1 (−d)) ≃ W−d and H0(P1,OP1 (d− 2)) ≃ Vd−2 as in example 1.7, the perfect pairing W−d ×
Vd−2 →W−2 given by Serre duality for P1 yields an isomorphism of representations W−d ≃ V ∗

d−2 ⊗W−2,
where GL2 (C) acts on the vector space Vd−2 of binary forms of degree d−2 via the standard representation
and on W−2 ≃ H1(P1,OP1 (−2)) ≃ C by the inverse of the determinant.

2.2. Since triangular automorphisms in U do not preserve the usual degree on C [x, y], the induced
representation U → GL(H1(A2

∗,OA2
∗

)) does not preserve the above decomposition of H1(A2
∗,OA2

∗

) into a
direct sum. However, letting F−d =

⊕d
i=2W−i ⊂ H1(A2

∗,OA2
∗

), d ≥ 2, we have the following description.
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Lemma 2.1. For every d ≥ 2, the subspace F−d is U -stable and the quotient representation on F−(d+1)/F−d ≃
W−(d+1) is the trivial one.

Proof. It is equivalent to show that the subspace Q∗
−d of the dual of H1(A2

∗,OA2
∗

) that is orthogonal to
F−d is stable under the dual representation, and that the quotient representation on Q∗

−d/Q
∗
−(d+1) is the

trivial one. By Serre duality again, we have
(

H1(A2
∗,OA2

∗

)
)∗

≃ (
⊕

i≥2

W−i)
∗ ≃

∏

i≥2

W ∗
−i ≃

∏

i≥2

Vi−2,

the dual representation on
∏

i≥2 Vi−2 being induced by the action of U on C [x, y] defined by u ·p (x, y) =
p
(

u−1 (x, y)
)

. For an element u =
(

x, y + x2s (x)
)

∈ U and a homogeneous polynomial pn (x, y) ∈ Vn
of degree n ≥ 0, one has u · pn (x, y) = pn (x, y) + R (x, y), where R is a finite sum of homogeneous
polynomials of degrees > n. This implies that

Q∗
−d =

∏

i>d

Vi−2 ⊂
∏

i≥2

Vi−2

is U -stable and that the quotient representation on Q∗
−d/Q

∗
−(d+1) ≃ Vd−2 is the trivial one, as desired. �

2.3. One cannot expect to have a general effective criterion to decide which isomorphy classes of Ga-
bundles or A1-bundles over A2

∗ belong to the same orbit of the actions of Aut
(

A2
∗

)

on H1(A2
∗,OA2

∗

) and
PH1(A2

∗,OA2
∗

) respectively. But the above description provides at least strong restrictions for certain
homogeneous Ga-bundles to be obtained as pull-backs of other ones by an automorphism of A2

∗. For
instance, the isomorphy class of the A1-bundle prx,y : SL2 (C) = {xv − yu = 1} → A2

∗ is a fixed point of
the projective representation of Aut

(

A2
∗

)

on PH1(A2
∗,OA2

∗

), whence is stable under arbitrary base change
by an automorphism of A2

∗. In the same spirit, for the isomorphy classes of the homogeneous Ga-bundles

prx,y : Xm,n = X (m,n, 1) = {xmv − ynu = 1} → A
2
∗,

we have following result (compare with Theorem 2.3 and example 2.4 below).

Proposition 2.2. The A
1-bundles Xm,n → A

2
∗ and Xp,q → A

2
∗ can be obtained from each other by a

base change ψ : A2
∗

∼
→ A2

∗ if and only if {m,n} = {p, q}.

Proof. It is equivalent to show that for a ∈ C∗ the isomorphy classes in H1(A2
∗,OA2

∗

) of Xp,q and
Xm,n (a) = X (m,n, a) belong to the same orbit of the action of Aut

(

A2
∗

)

if and only if {m,n} = {p, q}.
Since Xm,n (a) and Xp,q are homogeneous of degree −m− n and −p− q, it follows from Proposition 1.5
and Lemma 2.1 that their isomorphy classes [Xm,n(a)] ∈ W−(m+n) and [Xp,q] ∈ W−(p+q) belong to the
same orbit of Aut

(

A
2
∗

)

if and only m+ n = p+ q = d and they belong to the same orbit of the action of
GL2 (C) on W−d. By duality, this holds if and only if the homogeneous polynomials a−1xm−1yn−1 and
xp−1yq−1 belong to the same orbit of the standard representation of GL2 (C) on Vd−2, which is the case
if and only if {m− 1, n− 1} = {p− 1, q − 1}. �

2.2. Isomorphy types of homogeneous Ga-bundles.

Recall 1.3 that a nontrivial Ga-bundle ρ : X → A2
∗ is called −d-homogeneous if it represents a cohomology

class in H1(P1,OP1 (−d)) ⊂ H1(A2
∗,OA2

∗

) for a certain d ≥ 2. All these bundles come equipped with a lift
of the Gm-action σ : Gm × A2

∗ → A2
∗ as in Proposition 1.5, and we have the following characterization:

Theorem 2.3. The total spaces of two nontrivial homogeneous Ga-bundles are Gm-equivariantly iso-
morphic if and only if they have the same homogeneous degree. In particular, for a fixed d ≥ 2, the
total spaces of nontrivial −d-homogeneous Ga-bundles ρ : X → A2

∗ are all isomorphic as abstract affine
varieties.

Proof. Suppose that ρ : X → A2
∗ and ρ′ : X ′ → A2

∗ are homogeneous of degrees −d and −d′ respectively.
A Gm-equivariant isomorphism between X ′ and X descends to an isomorphism f : X ′/Gm

∼
→ X/Gm

between the total space of the principal OP1 (−d)-bundle ρ : X/Gm → P1 and that of the principal
OP1 (−d′)-bundle ρ′ : X ′/Gm → P1 (see 1.5). The Picard group of a principal OP1 (−i)-bundle ν : Y → P1

is isomorphic to Z, generated for instance by the pull-back ν∗OP1 (−1) of OP1 (−1). Furthermore it follows
from the exact sequence

0 → ν∗Ω1
P1 → Ω1

Y → Ω1
Y/P1 ≃ ν∗OP1 (i) → 0

that ωY = Λ2Ω1
Y ≃ ν∗OP1 (i− 2). Since the isomorphism f∗ : Pic(X/Gm)

∼
→ Pic(X ′/Gm) induced by

f sends ωX/Gm
to ωX′/Gm

, we conclude that d = d′ necessarily. Suppose conversely that ρ : X → A2
∗

and ρ′ : X ′ → A2
∗ are homogeneous of the same degree −d ≤ −2. The existence of a Gm-equivariant

isomorphism between X ′ and X is equivalent to the existence of an isomorphism f : X ′/Gm
∼
→ X/Gm
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for which π′ : X ′ → X ′/Gm and p2 : X ×X/Gm
X ′/Gm → X ′/Gm are isomorphic as Gm-bundles over

X ′/Gm. Since the diagram

X

ρ

��

// X/Gm

ρ

��

A2
∗

// P
1 = A

2
∗/Gm,

is Cartesian, the isomorphy class of the Gm-bundle X → X/Gm in H1(X/Gm,Gm) ≃ Pic(X/Gm)
coincides with ρ∗OP1 (−1), and similarly for X ′ → X ′/Gm. So the Gm-equivariant isomorphy of X
and X ′ reduces to the existence of an isomorphism f : X ′/Gm

∼
→ X/Gm such that f∗ρ∗OP1 (−1) =

ρ′
∗
OP1 (−1). Since ρ : X/Gm → P

1 and ρ′ : X ′/Gm → P
1 are both nontrivial OP1 (−d)-bundles, the

Danilov-Gizatullin Theorem [10, Theorem 5.8.1 and Remark 4.8.6] implies directly the existence of an
isomorphism f : X ′/Gm

∼
→ X/Gm. Moreover, since f∗ maps generators of Pic(X/Gm) to generators of

Pic(X ′/Gm), it follows that X ′ and X ×X/Gm
X ′/Gm are isomorphic as locally trivial A1

∗-bundles over
X ′/Gm, which implies the second assertion of the theorem. Finally, the existence of an isomorphism f
with the required additional property is guaranteed by Theorem 3.1 in the Appendix. �

Example 2.4. As a consequence of Theorem 2.3 above, we get in particular that if m + n = m′ + n′,
then the varieties Xm,n and Xm′,n′ are isomorphic. While it appears to be rather difficult to construct
an explicit isomorphism between even the first interesting examples X2,2 and X3,1, one can check that
the morphism

π : X2,2 =
{

x2v − y2u = 1
}

→ A
2
∗ = Spec (C [a, b])\ {(0, 0)} , (x, y, u, v) 7→ (x−

1

2
y,

6x− y

8
v−

3y − 2x

2
u)

is A1-bundle isomorphic to the one ρ : X3,1 ≃
{

a3v′ − bu′ = 1
}

→ A2
∗. More precisely, letting

w =
5

16
v2x+ u2x+

5

2
vux−

1

32
v2y −

5

2
u2y −

5

4
vuy ∈ Γ(X2,2,OX2,2

),

a direct computation shows that π−1(Ua) ≃ Ua×Spec(C
[

a−3(y + a+ ab)
]

), π−1 (Ub) ≃ Ub×Spec(C
[

b−1w
]

)

and that a−3 (y + a+ ab)−b−1w = a−3b−1 ∈ Γ(π−1(Ua∩Ub),OX2,2
). Thus π : X2,2 → A2

∗ is an A1-bundle
with the same associated Čech cocycle a−3b−1 ∈ C1({Ua, Ub},OA2

∗

) as ρ : X3,1 → A2
∗.

2.3. Existence of exotic affine spheres.

Here we show that exotic affine spheres occur among the total spaces of non trivial A1-bundles over A2
∗.

2.4. To illustrate the idea behind the proof of Theorem 2.5 below, let us first consider the varieties
Xm,1 = {xmv − yu = 1}, m ≥ 1. Because Xm,1 is smooth, the canonical sheaf ωm = ωXm,1

of Xm,1 is a
free OXm,1

-module generated for instance by the global nowhere vanishing 3-form

αm = x−mdx ∧ dy ∧ du |Xm,1
= −y−1dx ∧ dy ∧ dv |Xm,1

.

The pull back of α1 by an isomorphism ϕ : Xm,1
∼
→ X1,1 would be a nowhere vanishing algebraic 3-

form on Xm,1 whence a nonzero scalar multiple of αm since nonzero constants are the only invertible
functions Xm,1. On the other hand, since Xm,1 has the real sphere S3 as a strong deformation retract,
the de Rham cohomology group H3

dR(Xm,1,C) is one dimensional over C. Using the fact that the de
Rham cohomology of a smooth complex affine variety equals the cohomology of its algebraic de Rham
complex [12], it can be checked directly that H3

dR(Xm,1,C) ≃ Ω3
Xm,1

/dΩ2
Xm,1

is spanned by the class of
xm−1αm = x−1dx∧ dy ∧ du |Xm,1

. The isomorphism ϕ would induce an isomorphism in cohomology and
since H3

dR(X1,1,C) is spanned by the class of α1 it would follow that H3
dR(Xm,1,C) is spanned by the

class of αm too. This is absurd since for every m ≥ 2, αm is an exact form, having for instance the global
2-form

dy ∧ du

(1−m)xm−1
|Xm,1

=
xdy ∧ dv −mvdx ∧ dy

(1−m)y
|Xm,1

as a primitive.

2.5. More generally, recall that every non trivial A1-bundle ρ : X → A2
∗ is isomorphic to one of the form

X (m,n, p) = {xmv − ynu = p (x, y)} \ {x = y = 0} ⊂ A
2
∗ × Spec (C [u, v])

where p (x, y) ∈ C [x, y] is a polynomial divisible neither by x nor by y and satisfying degx p < m and
degy p < n. It turns out that varieties X (m,n, p) corresponding to a polynomial p of maximum possible
degree m+ n− 2 form a distinguished class. Namely, we have the following result:

Theorem 2.5. Let X1 = X (m1, n1, p1) and X2 = X (m2, n2, p2) be A
1-bundles as above. If deg p1 =

m1 + n1 − 2 but deg p2 < m2 + n2 − 2 then X1 and X2 are not isomorphic as algebraic varieties.
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Proof. We will show that the cohomology class in H3
dR (X,C) ≃ C of an arbitrary nowhere vanishing

algebraic 3-form ω on X = X (m,n, p) is trivial if deg p < m + n − 2 and a generator otherwise. This
prevents in particular the existence of an isomorphism f : X2

∼
→ X1 : indeed, otherwise, similarly as

in the particular case above, the pull-back of a nowhere vanishing algebraic 3-form ω on X1 would be a
nowhere vanishing algebraic 3-form f∗ω on X2 whose cohomology class [f∗ω] = f∗ [ω] ∈ H3

dR(X2,C) ≃
H3
dR(X1,C) would generate H3

dR(X2,C), a contradiction. Recall 1.3 that X = X (m,n, p) is covered by
two principal affine open subsets Xx ≃ Ux × Spec (C [tx]) and Xy ≃ Uy × Spec (C [ty]), where tx = x−mu
and ty = y−nv. Since every invertible function on X is constant, a nowhere vanishing algebraic 3-
form ω on X is uniquely determined locally by a pair of 3-forms ω |Xx

= λdx ∧ dy ∧ dtx ∈ Ω3
Ux×A1 and

ω |Xy
= λdx∧dy∧dty ∈ Ω3

Uy×A1 , where λ ∈ C∗. Let (αx, αy) = (λtxdx∧dy, λtydx∧dy) ∈ Ω2
Ux×A1×Ω2

Uy×A1

be local primitives of ω |Xx
and ω |Xy

respectively. By definition of the connecting homomorphism

δ : H2
dR(Xx ∩Xy,C) ≃ H2

dR(Ux ∩ Uy,C)
∼
−→ H3

dR (X,C)

in the Mayer-Vietoris long exact sequence for the covering of X by Xx and Xy, the cohomology class
of ω ∈ Ω3

X in H3
dR (X,C) ≃ Ω3

X/dΩ
2
X coincides with the image by δ of the cohomology class α ∈

H2
dR(Xx ∩Xy,C) of the 2-form

(αy − αx) |Xx∩Xy
= (λtydx ∧ dy − λtxdx ∧ dy) |Xx∩Xy

= λ(tx + x−my−np (x, y))dx ∧ dy − λtxdx ∧ dy

= λx−my−np (x, y) dx ∧ dy ∈ Ω2
Xx∩Xy/C

.

Such a form is exact if and only if x−my−np (x, y) does not contain a term of the form ax−1y−1, where
a ∈ C∗, that is, if and only if deg p < m + n − 2. Thus [ω] = δ (α) ∈ H3

dR (X,C) is either trivial if
deg p < m+ n− 2 or a generator otherwise. �

Corollary 2.6. The total space of a nontrivial homogeneous Ga-bundle ρ : X → A
2
∗ of degree −d < −2

is not isomorphic to X1,1 ≃ SL2 (C).

Proof. The variety X1,1 = X (1, 1, 1) = {xv − yu = 1} belongs to the class X (m,n, p) with deg p =
m + n − 2. On the other hand, by virtue of Theorem 2.3, we may assume that X ≃ X (d− 1, 1, 1) =
{

xd−1v − yu = 1
}

. Since 0 = deg p < d − 2 by hypothesis, the assertion follows from Theorem 2.5
above. �

Example 2.7. Theorem 2.5 implies that the total spaces of the Ga-bundles

X =
{

x2v − y2u = 1
}

→ A
2
∗ and X ′ =

{

x2v − y2u = 1 + xy
}

→ A
2
∗

are not isomorphic as algebraic varieties. However, X and X ′ are biholomorphic A1-bundles over A2
∗. In-

deed, the Čech 1-cocycle (xy)−2 (1 + xy) ∈ C1({Ux, Uy},HolA2
∗

) defining X ′ is analytically cohomologous
to the one (xy)

−2
exp (xy), obtained by multiplying the Čech 1-cocyle (xy)

−2 defining X by the nowhere
vanishing holomorphic function exp (xy) on A2

∗. In contrast with the algebraic situation considered in the
proof of Theorem 2.5, the pull back by the corresponding biholomorphism X

∼
→ X ′ of the nowhere van-

ishing algebraic 3-form ω = x−2dx∧dy∧du |X′ on X ′, whose class generates H3
dR (X ′,C), is the nowhere

vanishing holomorphic 3-form x−2 exp (−xy) dx ∧ dy ∧ du |X . The later is analytically cohomologous to
the algebraic 3-form −x−1ydx ∧ dy ∧ du |X , whose class generates H3

dR (X,C).

Remark 2.8. Since the cylinders X × A
1 and X ′ × A

1 are algebraically isomorphic (see 1.3), X and X ′

above provide a new example of biholomorphic complex algebraic varieties for which algebraic cancellation
fails. Of course, X and X ′ are remote from affine spaces from a topological point of view. But, in contrast
with other families of 3-dimensional counter-examples constructed so far [6] [7], X and X ′ have a trivial
Makar-Limanov invariant (see 1.4 above). It is interesting to relate the existing counter-examples to
Miyanishi’s characterization of the affine 3-space A3 [21], which can be equivalently formulated as the
fact that a smooth affine threefold X is algebraically isomorphic to A3 if and only is satisfies the following
conditions :

(i) There exists a regular function f : X → A
1 and a Zariski open subset U ⊂ A

1 such that f−1 (U) ≃
U × A2,

(ii) All scheme theoretic fibers of f are UFDs (i.e. Γ (Xc,OXc
) is a UFD for every fiber Xc = f−1 (c),

c ∈ A1),
(iii) H3 (X,Z) = 0.

The counter-examples obtained in [6] for contractible affine threefolds satisfy (i) and (iii) but not (ii).
On the other hand, X and X ′ above satisfy (i) and (ii) (by choosing for instance the projection prx for
f) but not (iii). The Cancellation Problem for A3 itself is still open but we see that cancellation fails
whenever one of the necessary conditions (ii) or (iii) above is relaxed.
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3. Appendix

3.1. The Danilov-Gizatullin Isomorphism Theorem.

This subsection is devoted to the proof of the following result, which is a slight refinement of the so-called
Danilov-Gizatullin Isomorphism Theorem.

Theorem 3.1. Let ν : Y → P1 and ν′ : Y ′ → P1 be non trivial principal OP1 (−d)-bundles for a

certain d ≥ 2. Then there exists an isomorphism f : Y ′ ∼
→ Y such that f∗(ν∗OP1 (1)) ≃ (ν′)

∗
OP1 (1).

In particular, for a fixed d ≥ 2, the total spaces of non trivial OP1 (−d)-bundles are all isomorphic as
abstract algebraic varieties.

3.1. The Danilov-Gizatullin Theorem [10, Theorem 5.8.1 ] is actually stated as the fact that the isomorphy
type of the complement of an ample section C in a Hirzebruch surface πn : Fn = P (OP1 ⊕OP1 (−n)) → P1,
n ≥ 0, (see e.g. [15, V.2]) depends only on the self-intersection C2 of C, whence, in particular, depends
neither on the ambient surface nor on the choice of a particular section. The relation with Theorem 3.1
above is given by the observation that a non trivial OP1 (−d)-bundle ν : Y → P1 always arises as the
complement of an ample section C with self-intersection C2 = d in a suitable Hirzebruch surface [10,
Remark 4.8.6]. Indeed, letting 0 → OP1 → E → OP1 (d) → 0 be an extension of locally free sheaves on
P1 representing the isomorphy class of Y in H1(P1,OP1 (−d)) ≃ Ext1P1 (OP1 (d) ,OP1), Y is isomorphic
to the complement in the P1-bundle π : S = ProjP1 (Sym (E)) → P1 of the section C determined by the
surjection E → OP1 (d). Since E is a decomposable locally free sheaf of rank 2, degree −d, equipped with a
surjection onto OP1 (d), it is isomorphic OP1 (a)⊕OP1 (d− a) for a certain a ∈ Z such that, up to replacing
a by d− a, we have either a = 0 or d− a ≥ a > 0. Therefore, S ≃ ProjP1 (Sym (E ⊗ OP1 (a− d))) ≃ Fn,
where n = d− 2a ≥ 0, with the section C determined by a surjection OP1 ⊕OP1 (−n) → OP1 (a). Letting
C0 be a section with self-intersection −n ≤ 0 and ℓ be a fiber of πn, we have C ∼ C0 + (d− a) ℓ, which
implies that C2 = d. Furthermore, a = 0 if and only if the above extension splits, that is, if and only if
ν : Y → P1 is the trivial OP1 (−d)-bundle. Otherwise, d − a > n, and so, C is the support of an ample
divisor on S [15, 2.20 p. 382 ].

3.2. The existence of an isomorphism f with the required property can actually be derived from a careful
reading of the recent proof of the Danilov-Gizatullin Theorem given in [8]. However, for the convenience
of the reader, we provide a complete argument. Our strategy is very similar to the one in loc. cit.: we
establish that the total space of a non trivial OP1 (−d)-bundle ν : Y → P1 is equipped with a certain type
of smooth fibration θ : Y → A

1 with general fibers isomorphic to A
1 which, for a fixed d ≥ 2, admits a

unique model θd : S (d) → A1 up to isomorphism of fibrations. Since Pic (Y ) ≃ CaCl (Y ) is generated
by the class of a fiber of ν, Theorem 3.1 will then follows from the additional observation that one can
always choose a special isomorphism of fibrations ψ : Y

∼
→ S (d) which maps a suitable fiber of ν onto a

fixed irreducible component ∆ of a fiber of θd.

3.3. The fibration θ : Y → A1 is constructed as follows. We may suppose that the non trivial OP1 (−d)-
bundle ν : Y → P1 is embedded in a Hirzebruch surface πn : Fn → P1 for a certain n ≥ 0 as the
complement of an ample section C with C2 = d ≥ 2. Now suppose that there exists another section C̃
of πn intersecting C in a unique point q, with multiplicity C · C̃ = d − 1. Letting ℓ = π−1

n (πn (q)), the
divisors C and C̃ + ℓ are linearly equivalent and define a pencil of rational curves g : Fn 99K P1 with q
as a unique proper base point. This pencil restricts on Y = Fn \ C to a smooth surjective morphism
θ : Y → B = P1 \ {g (C)} ≃ A1 with general fibers isomorphic to A1 and with a unique degenerate
fiber, say θ−1 (0) up to the choice of a suitable coordinate x on B ≃ A1, consisting of the disjoint union
of C̃0 = C̃ \ {q} ≃ A1 and ℓ0 = ℓ \ {q} ≃ A1. A minimal resolution g : W → P1 of g : Fn 99K P1 is
obtained from Fn by blowing up d times the point q, with successive exceptional divisors E1, . . . , Ed, the
last exceptional divisor Ed being a section of g. The proper transform of C in W is a full fiber of g,
whereas the proper transforms of C̃ and ℓ are both −1-curves contained in the unique degenerate fiber
g−1 (0) = E1 + · · ·+ Ed−1 + C̃ + ℓ of g. Since E1 ∪ · · · ∪ Ed−1 is a chain of (−2)-curves, by contracting
successively ℓ, E1, . . . , Ed−2 and C̃ we obtain a birational morphism τ :W → F1. The later restricts to a
morphism τ : Y ≃W \C ∪

⋃d
i=1Ei → F1 \C ∪Ed ≃ B×A1 of schemes over B, inducing an isomorphism

Y \ C̃0 ∪ ℓ0
∼
→ B \ {0}×A1 and contracting C̃0 and ℓ0 to distinct points supported on {0}×A1 ⊂ B×A1

(see Figure 3.1 below).

3.4. Up to a suitable choice of coordinate on the second factor of B ×A1, we may assume that τ(C̃0) =
(0, 1) and τ(ℓ0) = (0, 0). It then follows from the construction of τ that there exists isomorphisms
Y \ ℓ0 ≃ B × Spec (C [u1]) and Y \ C̃0 ≃ B × Spec (C [u2]) for which the restrictions of τ : Y → B × A1

to Y \ ℓ0 and Y \ C̃0 coincide respectively with the birational morphisms

Y \ ℓ0 → B × A
1, (x, u1) 7→ (x, xu1 + 1) and Y \ C̃0 → B × A

1, (x, u2) 7→ (x, xd−1u2 +

d−2
∑

i=1

aix
i),
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Fn

C̃

qC

ℓ

P1
πn

WEd -1

C

0

Ed−1 -2

Ed−2

-2

E1

-2

C̃

-1

ℓ

-1

P1

g

F1Ed -1

C
0

Ed−1

0

•τ(C̃)

•τ(ℓ)

P1

π1

τ

Figure 3.1. Resolution of the pencil g : Fn 99K P1 and the contraction τ :W → F1.

where the complex numbers a1, . . . , ad−1 depend on the successive centers of τ : W → F1. Replacing
u1 by v1 = u1 −

∑d−2
i=1 aix

i−1 yields a new isomorphism Y \ ℓ0 ≃ B × Spec (C [v1]). Letting v2 = u2,
we can eventually identify θ : Y → B with the surface θd : S (d) → B obtained by gluing two copies
S1 = B × Spec (C [v1]) and S2 = B × Spec (C [v2]) of B × A1 along (B \ {0})× A1 by the isomorphism

S1 ⊃ (B \ {0})× A
1 ∋ (x, v1) 7→

(

x, x2−dv1 + x1−d
)

∈ (B \ {0})× A
1 ⊂ S2.

3.5. Summing up, starting from a section C̃ of πn intersecting C in a unique point q with multiplicity
d− 1, we constructed an isomorphism Y = Fn \ C

∼
→ S (d) which maps ν−1(πn(q)) = ℓ0 isomorphically

onto the curve ∆ = {x = 0} ⊂ S2. So Theorem 3.1 eventually follows from the next lemma (see also [10,
Prop. 4.8.11]), which guarantees the existence of sections C̃ with the required property.

Lemma 3.2. Let πn : Fn → P1, n ≥ 0, be a Hirzebruch surface and let C ⊂ Fn be an ample section
with self-intersection d ≥ 2. Then given a general point q ∈ C, there exists a section C̃ such that
C · C̃ = (d− 1) q.

Proof. The existence of a section C̃ such that C · C̃ = (d− 1) q for a certain q ∈ C is equivalent to the
existence of a rational section of the induced A1-bundle ν = πn |Y : Y = Fn \C → P1 with a pole of order
d− 1 at the point πn (q). Since ν : Y → P1 = Proj (C [w0, w1]) is a non trivial OP1 (−d)-bundle, we can
find local trivializations τ1 : ν−1 (Uw1

)
∼
→ Uw1

×Spec (C [u]) and τ0 : ν−1 (Uw0
)

∼
→ Uw0

×Spec (C [v]) such
that, letting z = w0/w1, the isomorphism τ0 ◦ τ

−1
1 |Uw1

∩Uw0
has the form (z, v) 7→

(

z−1, zdu+ p (z)
)

for
a nonzero polynomial p (z) ∈ zC [z] of degree deg p < d. In these trivializations, a rational section of ν
with pole of order d− 1 at a point λ = πn (q) ∈ Uw1

∩Uw0
is uniquely determined by a rational function

f1 : Uw1
99K A1, z 7→ (z − λ)1−d s (z) such that λ 6= 0, s (z) ∈ C [z] does not vanish at λ, and such that

zds (z) + (z − λ)
d−1

p (z) ∈ O∞

(

zd−1
)

. Indeed, the last condition guarantees that zdf1 + p (z) extends
to a rational function f0 : Uw0

99K A
1 regular at the origin, whence that the local rational sections f1

and f0 of ν glue to a global one σ : P1
99K Y with a unique pole at λ ∈ Uw1

∩ Uw0
, of order d − 1.

Writing (z − λ)d−1p (z) = αλ (z) + zdβλ (z) where αλ (z) ∈ C [z] is a non zero polynomial of degree
degαλ ≤ d − 1, we have necessarily s (z) = −βλ (z), which forces in turn s (λ) = λ−dαλ (λ). Letting
p (z) = a1z + · · ·+ ad−1z

d−1, a direct computation shows that

s (λ) =

d−2
∑

i=0

(−1)
i+1 (d−2

i

)

ai+1λ
i.

Since r (z) =
∑d−2

i=0 (−1)
i+1 (d−2

i

)

ai+1z
i is a nonzero polynomial, it follows that for every λ ∈ (Uw1

∩

Uw0
) \ V (r (z)) there exists a (unique) rational section σ : P1

99K Y with pole of order d− 1 at λ. �

3.2. A topological characterization of the affine 2-sphere.

The fact that a smooth affine surface X diffeomorphic to S2
C
=

{

z21 + z22 + z23 = 1
}

⊂ A3
C

is algebraically
isomorphic to S2

C
is probably folklore. We provide a proof because of the lack of an appropriate reference.

3.6. Let F0 = P1 × P1 with bi-homogeneous coordinates ([u0 : u1] , [v0 : v1]). Via the open immersion

j : S2C → F0, (z1, z2, z3) 7→ ([z1 + iz2 : z3 + 1] , [z1 + iz2 : 1− z3])
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we may identify S2
C

with the complement in F0 of the diagonal ∆ = {u0v1 + u1v0 = 0}. The restriction
to S2

C
of the first projection F0 → P1 is a locally trivial A1-bundle, whence a trivial R2-bundle in the

euclidean topology. Thus

Hi

(

S
2
C,Z

)

=

{

Z if i = 0, 2

0 otherwise.

Furthermore, since ∆2 = 2, the fundamental group at infinity π∞
1

(

S2
C

)

of S2
C

(see e.g. [14, 24]) is
isomorphic to Z2. It turns out that these topological invariants provide a characterization of S2

C
among

all smooth affine surfaces, namely:

Theorem 3.3. A smooth affine surface X with the homology type and the homotopy type at infinity of
S2
C

is isomorphic to S2
C
.

Proof. The finiteness of π∞
1 (X) implies that X has logarithmic Kodaira dimension κ̄(X) = −∞ [13]

whence thatX is affine ruled. It follows thatX admits a completion into a smooth, projective, birationally
ruled surface p : V → C, where C is a smooth projective curve. One can further assume that the
boundary D := V \X is a connected divisor with simple normal crossings that can be written as D = B∪
G0 ∪ G1 ∪ · · · ∪ Gs, where B is a section of p and the Gi are disjoint trees of smooth rational curves
contained in the fibers of p [20, I.2]. In particular, the dual graph of D is a tree.

The hypotheses imply that Hi (X,Z) = 0 for i = 1, 3, 4 and so Hi (X,Z) = 0 for i = 1, 3, 4, whereas
H2 (X,Z) ≃ H2 (X,Z) ≃ Z by the universal coefficient Theorem. By Poincaré -Lefschetz duality, we have
Hi ((V,D) ,Z) ≃ H4−i (X,Z) and Hi ((V,D) ,Z) ≃ H4−i (X,Z), and so, these groups are zero for i = 0, 1
and 3, and isomorphic to Z for i = 2, 4. From the long exact sequences of (co)homology of pairs

· · · → H∗ (D)
∂∗→ H∗ (V ) → H∗ (V,D) → H∗−1 (D) → · · ·

· · · → H∗−1 (D)
∂∗

→ H∗ (V,D) → H∗ (V ) → H∗ (D) → · · ·

we get H3 (D,Z) ≃ H3 (V,Z) ≃ 0 and so H1 (V,Z) = 0 by Poincaré duality. Similarly, H3 (D,Z) ≃
H3 (V,Z) = 0 and H1 (V,Z) = 0. It follows that H1 (D,Z) and H1 (D,Z) are either simultaneously 0 or
isomorphic to Z. In the latter case D would contain a cycle of rational curves, which is impossible from
the above description of D. Thus H1 (D,Z) = 0 and so D is a tree of nonsingular rational curves. This
implies in turn that H1 (V,OV ) = {0} for otherwise D would be contained in a fiber of the Albanese
morphism q : V → Alb(V ), in contradiction with the fact that D is the support of an ample divisor as X
is affine. Since π∞

1 (X) ≃ π1
(

S2
C

)

≃ Z2 by hypothesis, Theorem 1 in [14] and its proof imply that D is a
chain. Therefore, up to replacing V by another minimal completion of X obtained from V by a sequence
of blow-ups and blow-downs with centers outside X , we may assume that D = D0 ∪D1 ∪ · · · ∪Ds, where
Di · Dj = 1 if |i− j| = 1 and 0 otherwise, D2

0 = D2
1 = 0 and D2

i ≤ −2 for every i = 2, . . . , s (see
e.g. [3, Lemma 2.7 and 2.9]). With this description, one checks easily that π∞

1 (X) ≃ Z2 if and only if
s = 2 and D2

2 = −2. By blowing-up the point D0 ∩ D1 and contracting the proper transforms of D0,
D1 and D2, we reach a completion V0 of X by a smooth rational curve B with self-intersection 2. It
follows from Danilov-Gizatullin’s classification [10] that V0 ≃ F0 and that B is of type (1, 1). Since the
automorphism group of F0 acts transitively on the set of smooth curves of type (1, 1), we finally obtain
that X ≃ F0 \∆ ≃ S

2
C
.

�

References

1. I.V. Arzhantsev, K. Kuyumzhiyan, and M. Zaidenberg, Flag varieties, toric varieties, and suspensions: three instances
of infinite transitivity, preprint arXiv:1003.3164 (2010).

2. T. Bandman and L. Makar-Limanov, Non-stability of AK-invariant, Michigan Math. J. 53 (2005), no. 2, 263–281.
3. A. Dubouloz, Completions of normal affine surfaces with a trivial makar-limanov invariant, Michigan Mathematical

Journal 52 (2004), no. 2, 289–308.
4. A. Dubouloz, The cylinder over the Koras-Russell cubic threefold has a trivial Makar-Limanov invariant, Transforma-

tion Groups 14 (2009), no. 3, 531–539.
5. A. Dubouloz, D. Finston, and P. D. Metha, Factorial threefolds with Ga-actions, preprint arXiv:0902.3873v1 (2009).
6. A. Dubouloz, L. Moser-Jauslin, and P.M. Poloni, Non cancellation for smooth contractible affine threefolds, To appear

in Proc. of the AMS (2011), preprint arXiv 1004.4723.
7. D.R. Finston and S. Maubach, The automorphism group of certain factorial threefolds and a cancellation problem,

Israel J. Math. 163 (2008), 369–381.
8. H. Flenner, S. Kaliman, and M. Zaidenberg, On the Danilov-Gizatullin isomorphism theorem, L’Enseignement Mathé-

matique 55 (2009), no. 2, 1–9.
9. J. Giraud, Cohomologie non abelienne, Springer Verlag, 1971.

10. M. H. Gizatullin and V. I. Danilov, Automorphisms of affine surfaces II, Izv. Akad. Nauk SSSR Ser. Mat. 41 (1977),
no. 1, 54–103.

11. H. Grauert and R. Remmert, Theory of Stein spaces, Springer Verlarg, 1979.
12. A. Grothendieck, On the de Rham cohomology of algebraic varieties, Publ. Math. IHES 29 (1966), 95–103.



ON EXOTIC AFFINE 3-SPHERES 13

13. R. V. Gurjar and M. Miyanishi, Affine surfaces with κ̄ ≤ 1, Algebraic Geometry and Commutative Algebra, Vol. I
(M. Maruyama H. Matsumura M. Miyanishi T. Oda H. Hijikata, H. Hironaka and K. Ueno, eds.), Kinokuniya, Tokyo,

1988, pp. 99–124.
14. R.V. Gurjar and A.R. Shastri, The fundamental goup at infinity of affine surfaces, Comment. Math. Helv. 59 (1984),

459–484.
15. R. Hartshorne, Algebraic geometry, Grad. Texts in Math., vol. 52, Springer, New York, 1977.
16. H. Jung, Über ganze birationale Transformationen der Ebene, J. Reine Angew. Math. 184 (1942), 161–174.
17. S. Kaliman and M. Zaidenberg, Affine modifications and affine varieties with a very transitive automorphism group,

Transformation Groups 4 (1999), 53–95.
18. H. Lindel, On the Bass-Quillen conjecture concerning projective modules over polynomial rings, Invent. Math. 65

(1981/82), 319–323.
19. L. Makar-Limanov, On the hypersurface x+ x2y + z2 + t3 = 0 in C4 or a C3-like threefold which is not C3, Israel J.

Math. 96 (1996), 419–429.
20. M. Miyanishi, Noncomplete algebraic surfaces, Lecture Notes in Mathematics, vol. 857, Springer-Verlag, Berlin-New

York, 1981.
21. M. Miyanishi, Algebraic characterizations of the affine 3-space, Proceedings of the Algebraic Geometry Seminar (Sin-

gapore), 1988, pp. 53–67.
22. D. Mumford, J. Fogarty, and F. Kirwan, Geometric Invariant Theory, Ergeb. Math, vol. 34, Springer-Verlag, Berlin,

1994.
23. M.P. Murthy, Cancellation problem for projective modules over certain affine algebras, Proceedings of the International

Colloquium on Algebra, Arithmetic and Geometry Mumbai, Narosa Publishing House, 2000, pp. 493–507.
24. C.P. Ramanujam, A topological characterization of the affine plane as an algebraic variety, Ann. of Maths. 94 (1971),

69–88.
25. M. Zaidenberg, Exotic algebraic structures on affine spaces, Algebra i Analiz 11 (1999), no. 5, 3–73.

Adrien Dubouloz, Institut de Mathématiques de Bourgogne, Université de Bourgogne, 9 avenue Alain

Savary - BP 47870, 21078 Dijon cedex, France

E-mail address: Adrien.Dubouloz@u-bourgogne.fr

Department of Mathematical Sciences, New Mexico State University, Las Cruces, New Mexico 88003

E-mail address: dfinston@nmsu.edu


