Local-Meta-Model CMA-ES for Partially Separable Functions - Archive ouverte HAL
Communication Dans Un Congrès Année : 2011

Local-Meta-Model CMA-ES for Partially Separable Functions

Anne Auger
  • Fonction : Auteur
  • PersonId : 751513
  • IdHAL : anne-auger
Didier Yu Ding
  • Fonction : Auteur
  • PersonId : 900082

Résumé

In this paper, we propose a new variant of the covariance matrix adaptation evolution strategy with local meta-models (lmm-CMA) for optimizing partially separable functions. We propose to exploit partial separability by building at each iteration a meta-model for each element function (or sub-function) using a full quadratic local model. After introducing the approach we present some first experiments using element functions with dimensions 2 and 4. Our results demonstrate that, as expected, exploiting partial separability leads to an important speedup compared to the standard CMA-ES. We show on the tested functions that the speedup increases with increasing dimensions for a fixed dimension of the element function. On the standard Rosenbrock function the maximum speedup of lambda is reached in dimension 40 using element functions of dimension 2. We show also that higher speedups can be achieved by increasing the population size. The choice of the number of points used to build the meta-model is also described and the computational cost is discussed.
Fichier principal
Vignette du fichier
GECCO2011_paper.pdf (202.41 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-00588977 , version 1 (27-04-2011)
hal-00588977 , version 2 (02-05-2011)

Identifiants

  • HAL Id : hal-00588977 , version 1

Citer

Zyed Bouzarkouna, Anne Auger, Didier Yu Ding. Local-Meta-Model CMA-ES for Partially Separable Functions. Genetic and Evolutionary Computation Conference (GECCO 2011), Jul 2011, Dublin, Ireland. pp.xxx-xxx. ⟨hal-00588977v1⟩
531 Consultations
493 Téléchargements

Partager

More