Baire-class $\xi$ colorings: the first three levels - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2011

Baire-class $\xi$ colorings: the first three levels

Résumé

The $\mathbb{G}_0$-dichotomy due to Kechris, Solecki and Todor\v cević characterizes the analytic relations having a Borel-measurable countable coloring. We give a version of the $\mathbb{G}_0$-dichotomy for $\boraxi$-measurable countable colorings when $\xi\!\leq\! 3$. A $\boraxi$-measurable countable coloring gives a covering of the diagonal consisting of countably many $\boraxi$ squares. This leads to the study of countable unions of $\boraxi$ rectangles. We also give a Hurewicz-like dichotomy for such countable unions when $\xi\!\leq\! 2$.
Fichier principal
Vignette du fichier
BaireColorings.pdf (317.33 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00586487 , version 1 (17-04-2011)

Identifiants

Citer

Dominique Lecomte, Miroslav Zeleny. Baire-class $\xi$ colorings: the first three levels. 2011. ⟨hal-00586487⟩
279 Consultations
111 Téléchargements

Altmetric

Partager

More