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Abstract. The Gy-dichotomy due to Kechris, Solecki and Todorcevic chemarzes the analytic re-
lations having a Borel-measurable countable coloring. We g version of theG-dichotomy for
EQ—measurabIe countable colorings wheer 3. A Eg—measurable countable coloring gives a cov-
ering of the diagonal consisting of countably m@% squares. This leads to the study of countable

unions on? rectangles. We also give a Hurewicz-like dichotomy for sacbintable unions when
£<2.
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1 Introduction

The reader should see [K] for the standard descriptive sefréitic notation used in this paper.
We study a definable coloring problem. We will need some motation:

Notation. The lettersX, Y will refer to some sets. We sét(X):={(zg,z1) € X? | zo=m1}.

Definition 1.1 (1) LetAC X2. We say thatd is adigraph if A does not meeh(X).
(2) Let A be a digraph. Acountable coloring of (X, A) is a mapc: X — w such thatA does not
meet(cxc) 1 (A(w)).

In [K-S-T], the authors characterize the analytic digraphkaving a Borel countable coloring.
The characterization is given in terms of the following patof comparison between relations.

Notation. Let X, Y be Polish spacesi (resp.,B) be a relation onX (resp.,Y), andI’ be a class of
sets. We set

(X,A) =<r (Y,B) & 3f:X =Y T-measurable wittd C (f x f)~!(B).

In this case, we say thdtis al'-measurable homomorphism from (X, A) into (Y, B). This notion
essentially makes sense for digraphs (we can fakebe constant if3 is not a digraph).

We also have to introduce a minimum digraph without Borelntable coloring:

e Let : w — 2<% be a natural bijection. More specifically,(0) := () is the sequence of length
¥(1):=0, 1»(2):=1 are the sequences of lendthand so on. Note that)(n)|<nif ncw. Letncw.
As |1p(n)| < n, we can define,, := v (n)0" 1Y, The crucial properties of the sequer(eg),c.,
are the following:

- (8n)new 1S dense in 2<¥, This means that for eache 2<%, there isn € w such thats,, extends
s (denoteds C s,,).
- |sp| =n.

o We putGy := {(s,07,s,17) | n € wandy € 2¥} C 2¥ x 2¥. Note thatG, is analytic (in fact
difference of two closed sets) since the ntapy) — (s,,07, s, 1) is continuous.

The previous definitions were given, whEr= Al in [K-S-T], where the following is proved:

Theorem 1.2 (Kechris, Solecki, Tod@evic) Let X be a Polish space, and be an analytic relation
on X. Then exactly one of the following holds:

(a) There is a Borel countable coloring K, A), i.e., (X, 4) <a1 (w, "A(w)),
(b) (27, Go) =50 (X, A).

This result had several developments during the last de¢¢efe is a non-exhaustive list:

- We can characterize the potentially open sets via a Hueelie test, and in finite dimension it is
a consequence of the previous result. Let us specify thig. fdllowing definition can be found in
[Lo2] (see Definition 3.3).



Definition 1.3 (Louveau) LetX, Y be Polish spacesd be a Borel subset of xY, andT" be a Borel
class. We say that is potentially in T (denotedAe pot(I‘)) if we can find a finer Polish topology
o (resp.,7) on X (resp.,Y) such thatAeIT'((X, o) x (Y, 7)).

The potx{) sets are the countable unions of Borel rectangles. A coeseguof this is that
the Borel hierarchy built on the Borel rectangles is exatily hierarchy of the classes of the sets
potentially in some Borel class. The good notion of comperi® study the pdI’) sets is as follows
(see [L3]). LetXy, X1, Yo, Y1 be Polish spaces, antf), A7 C X, x Y, be disjoint. We set

(X07}/E)7A87A(1]) S (X17Y17A(1)7A%) -
3f: Xo— X1 Jg:Yy— Y continuous withA? C (f x g)~1(AL) for eache € 2.

The following theorem is proved in [L1], and is a consequenicEheorem 1.2:

Theorem 1.4 Let X, Y be Polish spaces, andg, A; be disjoint analytic subsets df x Y. Then
exactly one of the following holds:

(@) The setd, can be separated from; by a pot=9) = (Al x Al), set (i.e., there isS € pot(X?)
with AO - S - —|A1),
(b) (2w’ 20.)’ A(2w)’ GO) < (Xa K A0> Al)

In [L1], itis also proved that we cannot hayene-to-one in Theorem 1.2.(b) in general. Itis easy

to check that Theorem 1.2 is also an easy consequence oféfhdod. This means that the study of
the Borel countable colorings is highly related to the staflgountable unions of Borel rectangles.

- We can extend Theorem 1.2 to any finite dimension, and alsdiitite dimension if we change the
space in which lives the infinite dimensional versiorGhf (see [L2]).

- B. Miller recently developped some techniques to recovanyrdichotomy results of descriptive
set theory, but without using effective descriptive sebtlie He replaces it with some versions of
Theorem 1.2. In particular, he can prove Theorem 1.2 witkffettive descriptive set theory.

WhenA is Borel, it is natural to ask about the relation between theeBclass ofd and that of the
coloring f when Theorem 1.2.(a) holds. This leads to consiﬁ%rmeasurable countable colorings
(or equivalentlyzg—measurable countable colorings). We have the followingemiure:

Conjecture 1Let1 <¢ <wj. Then there are
- a0-dimensional Polish spac¥,,
- an analytic relationA, on X,
such that for any-dimensional Polish spack, and for any analytic relatiom on X, exactly one of
the following holds:
(8) (X, 4) Za0 (w0, ~AW)),
(b) (X, Ag) 250 (X, A).
We will prove it whenl < ¢ <2, and in these cases we do not have to assumedtimbanalytic.

We will also prove it wherg =3, which is much more difficult. We should not have to assume xha
is 0-dimensional whei§ > 2, but we have to do it whea=1.



We saw that the study of the Borel countable colorings is lifighlated to the study of count-
able unions of Borel rectangles, and gave some motivatiostiaying Zg-measurable countable

colorings. This motivates the study of countable unionE@frectangIes. Another motivation is that
(X, A) =0 (w, 7A(w)) is equivalent to the fact that (X) can be separated fromby a(Z2x%7),
set, by the generalized reduction property for the cﬁga‘zsee 22.16 in [K]).

Conjecture 2Let1 <¢ <w;. Then there ar@-dimensional Polish spacé@, Xé and disjoint analytic

subsetsA?, A; of X2 x X¢ such that for any Polish spaces, Y, and for any pair4y, A, of disjoint
analytic subsets oK x Y, exactly one of the following holds:

(a) The set4, can be separated from; by a(= x X7), set,
(b) (XZ, X¢, AL, Af) < (X, Y, Ag, Ay).

It is trivial to prove this wherg = 1. We will prove that Conjecture 2 holds whér< 2, which is
significantly more and more difficult whehincreases. We use effective descriptive set theory, and
give effective strengthenings of our results. The readeulshsee [M] for basic notions of effective
descriptive set theory. In particular, we will see that tet i@hether an analytic relation has%—
measurable countable coloring, it is enough to test colintalny partitions instead of continuum
many. We will use the topolog¥: generated by the’l N Hgg subsets of a recursively presented
Polish space (introduced in [Lo1]) whéris 2 or 3 (77 is just the basic topology). The last result can
be strengthened as follows (see [L3]).

Theorem 1.5 Let1<¢ <2. Then there ar@-dimensional Polish spacég!, X; and disjoint analytic
subsetsA?, Al of X x X} such that for any recursively presented Polish spakes’, and for any
pair Ay, A; of disjoint X} subsets o x Y, the following are equivalent:

(a) The set4, cannot be separated from; by a(X¢x ), set.

(b) The set4, cannot be separated from; by aAj N (X2 x %), set.
(c) The set4,, cannot be separated from; by aX9 (T x T¢) set.

(d) Ag N Ay € 20,

(€) (X0, X}, AL AL) < (X, Y, Ag, Ay).

2 Some general effective facts
One can hope for an effective strengthening of Conjecture 1:

Effective conjecture 1Let1 <¢{<w;. We can find @&-dimensional Polish spacé, and an analytic
relation A¢ on X, such that(Xe, A¢) 2y (w,~A(w)), and for anya € w® with 1 <& <w§, for any

0-dimensional recursively in. presented Polish spack, and for anyX («) relation A on X, one
of the following holds:

(@) (Xa A) jA%(a)ﬂAg (w’ _'A(w))’
(b) (X, Ag) =50 (X, A).



We will see that this effective conjecture is true whieg £ < 3. The following statement is a
corollary of this effective conjecture, and is in fact a trezo:

Theorem 2.1 Let1<¢ <w§:K, X be a0-dimensional recursively presented Polish space, driuk
a X! relation onX. We assume thatX, A) =0 (w,~A(w)). Then(X, A) = Alnag (w, ~A(w)).

A consequence of this is that to test whether an analytitioeléas azg-measurable countable
coloring, it is enough to test countably many partitiongeas of continuum many. Another con-
sequence is the equivalence between Conjecture 1 and tbeti&f conjecture 1. We have in fact
preliminary results that will help us to prove also the eglénce between (a)-(d) in Theorem 1.5, in
the general case.

Lemma2.2Lletl <¢< w1CK, X,Y be recursively presented Polish spacéise Y (X) N 22,
Be X (Y)nZY, andC € X} (X xY) disjoint from A x B. Then there are!’, B’ € A} N = such
that A’ x B’ separatesA x B from C'. This also holds folT{ instead ofs;.

Proof. Note thatA and{z € X | 3y € B (z,y) € C} are disjointY} sets, separable byﬁg subset
of X. By Theorems 1.A and 1.B in [Lo1], there i € Al N 22 separating these two sets. Similarly,
Band{ycY |dxc A’ (x,y)€C} are disjointy} sets, and there B’ € Al N 22 separating these
two sets. The proof foFI{ is identical to the one foEg. a

Theorem 2.3 Let 1 §§<wch, X, Y be recursively presented Polish spaces, aadA; be disjoint
5 subsets off x Y. We assume that, is separable from4; by a (X x ) set. Thend, is
separable fromd; by aAj N ((A] N XP)x (A} NXY)) set.

Proof. By Example 2 of Chapter 3 in [L02], the famiIMV(n, X))new is regular without parameter.
By Corollary 2.10 in [Lo2],TT{(X), as well as¥{(X) = (U, IT)(X)) ., are regular without
parameter. By Theorem 2.12 in [Lon:,g(X )xZ?(Y) is also regular without parameter. By Theorem
2.8 in [Lo2], the family® := (Eg(X) X Eg(Y))o is separating, which implies the existence of
S e Al N ® separatingd, from A;.

With the notation of [Lo2], let: be an integer witli0>°, n) e W andCy , = S. Then(0>°,n) is
in Wg, which by Theorem 2.8.(ii) in [Lo2] is

{(a,n)EW | 3B Al(a) Ymew (o, B(m)) EWEQ(X)ng(Y) andC, ,, = U Ca,ﬁ(m)}-

mew

This implies thatS € A} N (A N (2 xXY)) . Itremains to check that
Al N (ZEx Y =(A1 N x (A} N ZY).

The second set is clearly a subset of the first one. So ass@nBthAx B e A} N (X xX7). We

may assume that is not empty. Then the projectiont, B are X! sinceR € Al. Lemma 2.2 gives
A’,B’eA%ﬂEQwithAngA’xB’gR:AxB. O
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Recall that ifA is a relation onX andD C X, thenD is A-discrete if AN D?=4).

Proof of Theorem 2.1.We apply Theorem 2.3 t¥ := X, Ag:=A(X) andA4;:=A. As
(X, A) jAg (w, —|A(w)),

A(X) is separable fromd by a (=2 x X7), set. Theorem 2.3 givesS,,, D,, € Aj N X such that
S:=Upew Cnx Dy € Aj separated)(X) from A. As the set of codes fad} N X subsets ofX

is 11! (see Proposition 1.4 and Theorem 1.A in [Lo1]), thé-selection theorem and the separation
theorem imply that we may assume that the sequef@gsand(D,,) areAl. Note that(C,, N D,,) is

a Al covering ofX into A-discreteAln 22 sets. AsX is 0-dimensional we can reduce this covering

into a A1 covering of X consisting ofA{ N X sets, which are in facA?. This gives the desired
partition. O

Notation. Following [Lol], we define the following topologies ondadimensional recursively in
presented Polish spacé, for anya € w*”. Let T} («) be the topology ofX, and, for2 < ¢ < wy,
T¢(«) be the topology generated by thg (a) N Hgg subsets ofX. The next proposition gives a
reformulation of the inequality.X, A) = Al(@)nAl (w, ~A(w)) of the Effective conjecture 1.

Proposition 2.4 Let1 <¢ < wFK, X be a0-dimensional recursively presented Polish space, 4nd

be aX| relation onX. Then(X, A) = Alnag (w,~A(w)) is equivalent taA (X) N 2TexTe _g

Proof. Assume first tha{ X, A) jA}mAg (w,~A(w)). Then there is a partitiofB,) of X into
A-discreteAl N Ag sets. In particular, Theorem 1.A in [Lol] implies th&}, is a countable union
of A NTIY, sets if¢ > 2. In particular, B,, is Tz-open andA(X) is disjoint from A <*"¢ (even if

£=1).
Conversely, assume that(X) N A"7€ — (). Then each element of X is contained in ad-

discreteX| N TI2, set (basic clopen set§f=1). Lemma 2.2 implies that each elementf X is in
fact contained in al-discreteAl N Hgg set if¢ > 2. It remains to apply Proposition 1.4 in [Lol] and

the Al-selection theorem to get the desired partition. O
One can also hope for an effective strengthening of Conje@weneralizing Theorem 1.5:

Effective conjecture 2Let1 <{ <w;. Then there are

- 0-dimensional Polish spacé§!, X,

- disjoint analytic subseta?, A{ of the spaceXy x X{, not separable by §=¢ x ), set,

such that for anyy € w® such thatl <¢ <wf, for any recursively inv presented Polish spaces, Y,
and for any pairAy, A; of disjoint X} («) subsets of{ x Y, the following are equivalent:

(a) The set4, cannot be separated fromt; by a(X¢x ), set.

(b) The setd, cannot be separated from; by aAj(a) N (B x XP), set.
(c) The set4, cannot be separated from; by aX{ (T¢(a) x T¢(«)) set.
(d) Ag N A ¢TIl g

(€) (X0, X¢, AL AL) < (X, Y, A, Ay).



In fact, the statements (a)-(d) are indeed equivalent:

Theorem 2.5 Let 1 §§<wch, X, Y be recursively presented Polish spaces, aadA; be disjoint
Yl subsets of x Y. The following are equivalent:

(a) The set4, cannot be separated from; by a(X¢x ), set.

(b) The setd, cannot be separated from; by aAj N (X2 x X2),, set.

(c) The set4, cannot be separated from; by aX9 (T x Ty ) set.

(d) Ag N A, e £,

Proof. Theorem 2.3 implies that (a) is indeed equivalent to (b).Idb amplies, using the proof of

Proposition 2.4, that (c) implies (a), and the converse éarcl It is also clear that (¢) and (d) are
equivalent. d

A consequence of this is that Conjecture 2 and the Effectivgecture 2 are equivalent.

3 The case& =1

(A) Continuous colorings

As in [L3], we can separate Conjecture 1 in two parts. We dhioce the following notion, that
will help us to characterize the relatiodsfor which there is a continuous homomorphism frém
into any relation without countable continuous coloring:

Definition 3.1 Let¢ be a countable ordinall1 := A?, andX be a0-dimensional Polish space. A
family F of subsets oK is £-disjoint if the elements oF are Hg and pairwise disjoint.

The first part ensures the existence of complicated examples

Lemma 3.2 (a) Assume thatCy) . ;)c2x. IS @0-disjoint family of subsets of the spaiesuch that
X\ (Ueipeaxw C5)# 0 and no clopen set meetidf\ (U iycaxe, C5) 1S (Uie,, CF x C})-discrete.
Then(X, U;e, C?xC}) 2 A0 (w, ~A(w)).

(b) There is a)-disjoint family (C5 ) (. s)e2x., Of subsets 02 satisfying the assumption (and thus the
conclusion) of (a).

Proof. (a) We argue by contradiction, which givgs X — w continuous such thaf(x) # f(y) if
(z,y) € Uiep, C?xC}. We setDy, := f~1({k}), so that(Dy)xe. is a partition ofX into clopen
sets discrete fotJ,.,, C7 x C}. Choosez € X\ (U C?), andk with z € Dg. This gives
(z,y) € (Ui, C?*xC}) N DE, which is absurd.

E2Xw

(b) We setCs := Nyai+-q, so thal J,.,, COxC}={(0%1c, 0%13) | i ew ande, B€2¥}. Note that
{00} =X\ (U(c,iye2xw CF)- If C'is aclopen neighborhood 6f°, thenNy: C C'if i is big enough.
This gives an integerwith (0%:1°°,0%+11°°) e (.., COxCH N C2. O

1EW

The second part ensures the existence of the continuousrhorpbism.
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Lemma 3.3 LetX be a0-dimensional Polish spac€(?) . ;c2x., be a0-disjoint family of subsets
of X, X be a0-dimensional Polish space, antlbe a relation onX. Then one of the following holds:
(@) (X, 4) Za0 (w,~Aw)),

®) (X, Ujew CYxCY) =50 (X, A).

Proof. Assume that (a) does not hold. Let us fix a compatible comphetizsic onX. In the sequel,
the diameter will refer to this metric (this will also be thase in all the proofs where diameters are

involved to come). We enumerate a ba(s(hé(p, X))p@; for the topology ofX made of clopen sets.

¢ We build

- an increasing sequence of integérs);c.,
- a sequencéry)re of points of X.

We want these objects to satisfy the following conditions:

(1) (xQZ’ x21+1) €AN N(pu X)2

(2) N(pi+1, X) SN (pi, X)

(3) diam(N (p;, X)) <27°

(4) There is no covering oV (p;, X) consisting ofA-discrete clopen subsets &f

e Assume that this is done. Then we can define a poioit X by {z} = ﬂz@u N(p;, X). Note that
(k) kew tends taz. We definef : X — X by f(2):=z if 2¢ U jyecaxw Cfs f(2) =224 if 2€CF.
Note thatf is continuous. Moreovel,f(y), f(z)) = (z2;, z2i11) € A if (y, z) € CYx C}, so that (b)
holds.

e Let us prove that the construction is possible. Weéét_,, X) := X. Assume thatp;);; and
(22, x2i41)i<; Satisfying (1)-(4) have been constructed, which is the ¢dasé= 0. We choose a
covering of N'(p;_1, X) with basic clopen sets of diameter at mast, contained inN (p;_;, X).
Then one of these basic sets, S8yp;, X), satisfies (4). It remains to choo&ey;, z4;11) in the set
AN N(p, X)2. O

We setX; :=2% andA; := {(0%1a, 0**113) | icw anda, €29} =, C?xC}, so thatd,

is aX! relation onX;.

1EW

Corollary 3.4 Let X be a0-dimensional Polish space, amdlbe a relation onX. Then exactly one
of the following holds:

(a-) (Xv A) jA? (wv _'A(w))’

(b) (X1, A1) =50 (X, A).

Moreover, there are a notrdimensional Polish spac®, and a closed relatiom on X, for which
neither (a), nor (b) holds (with this couplé&, A;) or any other). There are also @dimensional
Polish spaceX, and a relationA on X (a difference of two closed sets), for which it is not possibl
to havef one-to-one in (b) (with this couplé,, A ) or any other).



Proof. Note first that (a) and (b) cannot hold simultaneously, by ren3.2. Lemma 3.3 implies that
(a) or (b) holds.

e Consider nowX :=R andA:={(0,1)}. Then (a) does not hold sinéis connected. If (b) holds,
then we must haveg(0%1a) =0 and f (0% +113) =1. By continuity of f, we getf(0>°)=0=1.

This would be the same with ani, A1). Indeed, agXi, A1) Zao (w,~A(w)), we have

IIp[A1] N II;[A4] # 0, since otherwise there would be a clopen sulésef the 0-dimensional space
X; separatindIy[A] from IT;[A;], and we would have\(X;) € C? U (-C)? C -A;. So we can
chooser € I1p[A1] N II;1[Aq], z9; € ITp[A1] such tha(xy;) tends tar, yo;11 € 111[A4] such thatyz;11)
tends tar, Y2 with (xgl', yzi) €A, andxm-“ with (.I2i+1, ngl) €A Thenf(:ngi) =0, f(yglurl) =1
and we conclude as before.

e ConsiderX :=2% andA:={0>} x (2¢\{0>}). Then (a) does not hold since if a clopen suliset
of 2¢ contains0*°, then it contains also some+ 0°°, so that(0>°, ) € A N C2. If (b) holds, then
f(0%1a) =0 for each integei and f is not one-to-one.

This argument works as soon Hg[A] has at least two elements. If we argue in the other factor,
then we see that an exampl¥;, A;) with injectivity must satisfy that\, is a singletor{(«, 8)}.
As (X1,A1) =250 (2¢,Go), a# 8. So take a clopen subsetof X; containinga but not3. Then

A(Xl)QCQU(—'C)QQ—'Al. O
The notion of a)-disjoint family is essential in the following sense:

Proposition 3.5 LetX be a0-dimensional Polish space, ardbe a relation orX. The following are
equivalent:

(a) For any0-dimensional Polish spac¥, and any relation4d on X,
(X7 A) ﬁA? (QJ,_'A(W)) = (XvA) jE? (X7 A)

(b) There is a)-disjoint family (C¥) . ;)c2x., Of subsets oK such thatA C | J,., C? xC}.

S
Proof. (a) = (b) We setX := X; and A := A;. By Lemma 3.2, we gef : X — 2“ such that
AC(fxf)71(A1). We setCs := f1(Nyziteq).

(b) = (a) By Lemma 3.3 we g&fX, | ., CYxC}) =50 (X, A4), sothat(X, A) <50 (X,4). O

1EW
(B) Countable unions of open rectangles (i.e., open sets)

The content here is completely trivial. It is just the fadtth subset of a metric space is not open
exactly when it contains a point that we can approximate bguntble sequence contained in its
complement. We give some statements since the situatibbewihore complicated in the case-2.

As in (A) we can characterize the tuples®, X!, AY, A1) <-below any tuplg X, Y, Ag, A1) with Ag
not separable fromt; by a (2! x 39),, set.



Lemma 3.6 (a) Assume tha{Cy);c., is a 0-disjoint family of subsets of the spa&€ such that
(XN Usew D)X (XN\(Use, C1) #0 and no open set meetif\(U, .., C))x(X"\(U;e, C1)

is disjoint from(J,., C? xC}. Then(X°\ (U;c., CF)) x (X*\(U,e,, C})) is not separable from
Uiew C2xC} by a(39x 29), set.

(b) There ared-disjoint families of subsets @f satisfying the assumption (and thus the conclusion)
of (a).

Proof. (a) is obvious.

(b) We setCf := Ny, so thatl ., CP x C} = {(071c,0'18) | i € wande, 8 € 2*}. Note that
{0} =X\ (U, C5)- If O'is an open neighborhood >, 0°°), then N, C O if i is big enough.

This gives an integerwith (091°°,01°°) € (., C2xCHNO. O

i€w
Lemma 3.7 LetX", X! be0-dimensional Polish space&’s);c,, be a0-disjoint family of subsets of
X¢, X, Y be Polish spaces, andj, A; be disjoint subsets of xY". Then one of the following holds:
(@) Ag is separable from1; by a(Z? x 2Y), set,

() (X%, X, (XN (Ujew C)) x XN\ (Uiew C1)): Usew CF7xC) < (X,Y, A, Ar).

Proof. Assume that (a) does not hold. Pigk y) € Ag N Ay, and(z;, y;) in A; tending to(z, y). We
definef:X%— X by f(z):=xz if 2¢ ., C?, z; if z€CY. Note thatf is continuous. Similarly, we
defineg: X! =Y, so that (b) holds. O

We defineXs := 2¢, AY := {(0=,0°)} = (X9\ (U
Al :={(0°1,0'1B) | i €wanda, B €2¥} =
consequences:

) x (X{\ (Usew C1)) and also

=) 7 7

CYxCl. Asin (A) we get the two following

1EW

Corollary 3.8 LetX,Y be Polish spaces, andy, A; be disjoint subsets of xY . Then exactly one
of the following holds:

(@) Ag is separable from1; by a(Z? x XY), set,
(b) (X(l)v X%v A?? A%) < (X7 Y, Ao, Al)'

Proposition 3.9 LetX?, X! be 0-dimensional Polish spaces, add, A' C X" x X! be disjoint. The
following are equivalent:

(a) For any Polish spaceX, Y, and anyA4,, A1 C X xY disjoint,
Ay is not separable from; by a(Z{x X9), set = (X°, x1, A% Al) < (X,Y, 4p, 4)).

(b) There is a)-disjoint family (C%);c., of subsets ak¢ such that the inclusiona® C | J
and A% C (XN (U, C) x (X' (U;eo, C1)) hold.

CoxC}

1EW
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4 The case =2

(A) Baire class one colorings

Lemma 4.1 (a) Assume thatCy) . i) cax. is @ 1-disjoint family of subsets af such that no non-
empty clopen subset &fis (U,,, C; x C})-discrete. ThertX, ¢, C7xC}) Zag (w, ~A(w)).

(b) There is al-disjoint family (C7 ) . ;)e2x., Of subsets ab* satisfying the assumption (and thus the
conclusion) of (a).

Proof. (a) We argue by contradiction, which give\-measurable magp: X —w with f(z)# f(y)

if (z,y) €U, CYxC}. We setDy, := f~({k}), so that(Dy,) ., is a partition ofX into A§ sets
discrete for J,,, C?x C}. By Baire’s theorem, there are an integeand a nonempty clopen subset
C of X such thatD, containsC. This gives(z,y) € (U,c, COxCHNC?C(U,e, COxCH) N D2,
which is absurd.

1EW =)

(b) Letb:w—w=* be a bijection. We sefs := {b(i)(2[b(i)|+¢) ™}, so that

U P < ={(u@lu))®, u(2lul+1)*) | ucw<}.

1€w
If £ C € AY(w), thenC contains some basic clopen $€f, and (u(2|u|)>, u(2lu|+1)>) is in
(Usew C2xCH N C2 O

Remark. There are d-disjoint family (C5) . ;cax., Of subsets ofv”, and a relatiom on w* such
that(w”, A) Zag (v, ~A(w)) and(w*,U;e,, CxC}) A0 (w*, A), so that Lemma 3.3 cannot be
extended t&)-measurable countable colorings.

Indeed, we se€ := {u(2i+¢)>® | u€w'} and A := {(u(2[u])™, w(2lu|+1)>®) | uew=<}.
Then(C5) (.5 e2xw IS Clearly al-disjoint family. Lemma 4.1 gives the first assertion. Fa second
assertion, assume, towards a contradiction, fhat” — w* is continuous and satisfies the inclusion
Uiew COxCHC(f x f)~HA). If icw, then there is; € w<* with

FICPT < FICH S { (wa(2lui] ) wi(2|ui | +1)%) }.
In particular, for any, 5 € w® we get

(/(@). J(8)) =limi oo (F((@li)(20)°), F((B10)2i+1)))

But this implies thatf is constant, which is absurd. To fix this, we refine the notiba &-disjoint
family.

Definition 4.2 Let1<{ <w;. A¢-disjoint family (C7) (. ;)e2x., Of subsets of &-dimensional Polish
spaceX is said to becomparing if for each integery there is a partition(O%),.c,, of X into A‘g sets
such that, for eache w,

(a) if g<i, then there i/l €w such thatC? U C! C O},
(b) if ¢>i ande €2, thenCs C 02 <.

11



Lemma 4.3 There is a comparing-disjoint family (C?) . ;jcax., Of subsets ofv“ satisfying the
assumption (and thus the conclusion) of Lemma 4.1.(a).

Proof. Letb:w— w<* be a bijection satisfying~!(s) <b~1(¢) if s Ct. It can be built as follows. Let

Do )oew, be the sequence of prime numbers, dnd < — w defined byl (s) :=p5 1. polsI=DF1 i
a)q 0 Is|—1

s#(, andl(0):=1. Note thatl is one-to-one, so that there is an increasing bijectiohjw <] — w.
We seth:= (oo I)~!:w—w<v. We define(Cy )z i)e2xw @s in the proof of Lemma 4.1.(b), so that
(C5)(e,i)e2xw 1S al-disjoint family. It remains to see thal’s) . ;)c2x., iS comparing. We set

Ny @byl o) Mi<q - If p=2i+e<2¢+1,

07:=9 w\(Uy<sgr1 OF) if p=2q+2,

0if p>2q+3,

so that(O?}),c., is a partition ofw® into A? sets. Note that (b) is fulfilled. 1§ < i, then there is at
most one couplgj, €) € (g+1)x2 such thab(;)(2]b(j)| + ) M*Xi<q (PO+D-1bG)] is compatible with
b(4). If it exists and if|b(i)| > max<, (|b(1)| + 1), thenC? U C} C 07" and we sep), := 2j +«.
OtherwiseC? U C} C 0;%* and we sepi :=2q+2. O

We have a stronger result than Conjecture 1, in the sensevihalo not need any regularity
assumption o, neither thatX is 0-dimensional.

Lemma 4.4 LetX be a0-dimensional Polish space(s) . ;c2x., b€ a comparingl-disjoint family
of subsets oK, X be a Polish space, and be a relation onX. Then one of the following holds:

(@) (X, 4) Zag (w,~Aw)),
0) (X, Uje €7 %) =50 (X, A).

Proof. If Ais not a digraph, then choosg with (z¢, z¢) € A, and putf (z) :=z,. SO we may assume
that A is a digraph. We set

U::U{VEZJ?(X) |IDem(wxX) V| D,andvpew Ang:(z)},

peEw

Case lU=X.

There is a countable covering &f into A-discreteX) sets. We just have to reduce them to get a
partition showing that (a) holds.

Case 2.U # X.
ThenY := X \U is a nonempty closed subset &t
Claim If V € 29(X) meetsy, thenV N'Y is not A-discrete.
We argue by contradiction. AB N U can be covered with somg,.,, Dy’s, so isV. Thus

V CU, sothatV N Y CU\U =), which is the desired contradiction. o

12



e We construct a familyz,, ),c., <~ Of points of Y, and a family(X,),c.,<~ Of open subsets df .
We want these objects to satisfy the following conditions:

e Assume that this is done. We defifieX —Y C X by

{f(x)}: ﬂ Xp0~~~pq—1 = ﬂ Xpo---pq—u

qew qEW
wherep; satisfiesz € O witnessing comparability, so thgtis continuous. Note thaf(x) is the
limit of Tpo...pg-17 and thate,,(g)u|+e) = L2l +e)? = o = Lu(2ful o)+t for each(u, ) €w<“x2. Thus
f(.%') :Ilmq_m Tou(2lu|+¢)a+1 = Ty (2]u|+e) if .%'ECZE andu::pé...pg_l, and

(f(@), F(W)) = (Tuul) Tu@u/+1)) €A
if (z,y) € COx C?. So (b) holds.

e Let us prove that the construction is possible. We chagseY and an open neighborhoaoxi, of
xp in Y, of diameter at most. Assume thatz,),c. < and(Xy,),c,< satisfying (1)-(5) have been
constructed, which is the case for 0.

An application of the claim give§e,, (o), Ty (2141)) €A N X2 if uew'. We satisfy (5), so that the
definition of thex,,’s is complete. Note that, € X, if ue Wit

We choose an open neighborhod of z, in Y, of diameter at mos2—'~!, ensuring the inclu-
sionX, C X O

ull*

We setXy:=w* andAy:= { (u(2/u])>®, u(2u|+1)®) | uew<*} ={J;e, CYxC}, sothath, is
aXxy relation onX,. As in Section 3.(A) we get the two following consequences:

Corollary 4.5 Let X be a Polish space, and be a relation onX. Then exactly one of the following
holds:

(@) (X, 4) Zay (w, ~AW)),
(b) (X2, Ag) =50 (X, A).
Proposition 4.6 LetX be a0-dimensional Polish space, ardbe a relation orX. The following are

equivalent:
(a) For any Polish spac&, and any relationd on X,

(Xv A) ﬁAg (w7_'A(w)) = (X,A) jE? (Xv A).

(b) There is a comparing-disjoint family (C¥) . ;)e2x., Of subsets ok such thatd C | J,., C?xC;.

1EW
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(B) Countable unions ofx{ rectangles

Lemma 4.7 (a) Assume thatCy ) . i e2x. 1S @ 1-disjoint family of meager subsets Kfsuch that
no nonempty clopen subset®fis (U, Cf x G} )-discrete. Them (X\ (U,. ecax., Cf)) is not
e COxCloy a(ZY(X\(Uie, €1) xZ8(X\Use, CF)) set.

(b) There is a comparing-disjoint family (C¥) . ;e2x., Of subsets ob* satisfying the assumption
(and thus the conclusion) of (a).

separable front J

Proof. (a) We argue by contradiction, which givés, € I} (X\(UZ_EM C})) on one side, and also
Dn € H(l) (X\(UZEUJ CZO)) with A(X\(Lj(e,i)ebau Cze)) c Unew (Cn X Dn) - _‘(Uiew Czo X Czl)
In particular, X\ (U ., e2xw Cf) =Unew Cn N Dn, and Baire's theorem gives and a nonempty
clopen subsef’ of X such thatC'\ (U ;ycax., CF) € Cn N Dy Note thatC\ (U, C}) € C, and
C\ (Ujen, C?) C D, since theCt's are meager ang\ (U Cs) is dense i\ (U, C5)-

€,1)E2Xw i
The assumption givegr,y) € (U, CY xC}) N C2. Then(z,y) € (U, CYxC}H N (Cyx Dy,),
which is absurd.

(b) Let(C5 ) (c,iye2x. be the family given by Lemmas 4.1.(b) and 4.3. Asdlfes are singletons, they
are meager. O

Remark. Note thatA (X\ (U . yeaxe CF)) =AX) N <(X\(Ui€w ChH) x (X\ (Ujeu C?))) is a
closed subset ofX\(U,c,, C1)) % (X\(U;e, C?)). This shows that the spack$, X} of Conjecture

2 cannot be both compact, which is quite unusual in this kirdiahotomy (even if it was already the
case in [L2]). Indeed, our example shows thgt Al must be separable by a closed SetandC, A}
must have disjoint projections. X9, X4 are compact, thed’ and its projections are compact too.
The product of these compact projections i$3 x 29), set separating\y from A}, which cannot
be. We will meet an example wheke= 3“. This fact implies that we cannot extend the continuous
maps of Theorem 1.5.(e) 8% in general.

To ensure the possibility of the reduction, we introduceftiewing notion:

Definition 4.8 Let1<¢{ <w;. A¢-disjoint family (C7 ). ;)e2x., Of subsets of &-dimensional Polish
spaceX is said to bevery comparing if for each integer there is a partition(O% )., of X into Ag
sets such that, for eacke w,

(a) if g< i, then there ig), € w such thatC? U G} € OF",

(b) if ¢>i ande €2, thenCs C 02,

(c) if (e,i) €2xw, then{,»; N>, O =C5.

Lemma 4.9 There is a very comparingrdisjoint family (Cf) . ;)c2x., Of subsets af* satisfying the
assumptions (and thus the conclusion) of Lemma 4.7.(a).

Proof. Let (C5)(c,i)e2x b€ the family given by Lemmas 4.1.(b), 4.3, and 4.7.(b). tha@s to
check Condition (c). Note first that the inclusiff).., -, 02" 2 Cs holds for any comparing
¢-disjoint family. B

q=>r
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Conversely,

UrZi ﬂqu OZ"“:U@- ﬂqu Nb(i)(z‘b(i)‘ﬁ)mangq (6D +1)— b))
={0(1)(2[b(2)| +£)>*}=C5.

This finishes the proof. O

Notation. We now recall some facts about the Gandy-Harrington topgolsge [L2]). LetZ be a
recursively presented Polish space. Taevdy-H arrington topology GH on Z is generated by the
5! subsets ofZ. We set := {z€ Z | w?=wCK}. ThenQy is 2}, dense in(Z, GH), andW N,
is a clopen subset df2,, GH) for eachiV € X} (Z). Moreover, (27, GH) is a0-dimensional Polish
space. So we fix a complete compatible mefigy on (27, GH).

The following notion is important for the next proof.

Definition 4.10 Let a be a countable sef < wy, and F := (S5) . ;)c2x. b€ ag-disjoint family of
subsets of“. We say that € a~* is F-suitable if there is(a, 8) € U,¢,, S? xS} such thats=a A 3
is the longest common initial segmentolnd 3.

Example. In the next proof, we will take: := 3, £ := 1, and s will be suitable whens is empty
or finishes with2. If §:w — {s € 3<% | s is suitablg is a bijection such thaf|6(i)|),__ is non-
decreasing, then we can defing-disjoint family 7 of subsets 08“ by S¢ :={0(i)ca | « €2“}, and
s is suitable exactly whenis F-suitable.

In particular, a non suitable sequence is of the feem wheres is suitablegs € 2 andt € 2<% (we
will use this notation in the next proof). ff+£ s is suitable, then we set

s :=s|max{l<|s| | s|l is suitablg-.

Lemma 4.11 LetX be a0-dimensional Polish space€(?) . ;)c2x., be a very comparing-disjoint
family of subsets df, X, Y be Polish spaces, and, A; be disjoint analytic subsets &f xY". Then
one of the following holds:

(@) Ay is separable from¥; by a(X§x X9), set,

(b) (X\(Uzew Cz‘l)? X\(Uzew Czo)a A(X\(U(a,i)EQXw Cza)) ’ UzEw Czo X Czl) < (X’ Y, AO? Al)
Proof. We may assume tha¥, Y are recursively presented and thf, A; are ¥l. Assume that (a)
does not hold. By Theorem 2.5 we gt= Ao N A; "> (. Lemma 2.2 implies that

—T2 X T2

(,9)¢ A & 3C,De X NIy (z,y)eCxDC—4

&30, De Al NI (z,y)€CxDC—A;.
This and Proposition 1.4 in [Lo1] show thatis Y. We construct
- A sequencéx,, ), c3<~ Of points of X,
- A sequencéy,, ),c3<« Of points ofY’,
- A sequencé X, ), c3<« of X} subsets ofX,
- A sequenceY, ), c3<« of XV subsets ot,
- A sequencd V), ;<. suitable®f 1 Subsets of{ x V.
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We want these objects to satisfy the following conditions:

1) (2, yu) € Xu XYy,

(zs,ys) EVsCN N Qxxy if sis suitable

3) X, C X, if uis suitable or = s0t, and X142 C X
4) Y, CY,, if uis suitable o= s1t, andY;p;2 C Y,

(1)
(2)
(3)
(4)
(5) Vs CV,- if 0#s is suitable
(6)
(7)
()
(9)

6) diam(X,,), diam(Y, ) <214

7) diamg (Vi) <27l if s is suitable
(250, Ys1) € (To[(Xs x Ys) N V] X I [( X x Ys) NV;]) N Ay if s is suitable
(xs0t, Ysit) = (x50, ys1) If s is suitable and € 2<%

e Assume that this is done. We defipew =<« — 3<% by ¢(0):=0 and

. ¢(s)2e if n=2|s|+e or (s£0 andn#£s(|s|—1)),
PN)=9 4o)e if (n=2g-+e andg £ |s|) and <s=® or (s #0 andn:s(|s|—1))>.

This map allows us to defing:w” — 3“ by ®(v)(p) :=¢(v|(p+1)) (p), and® is continuous.

As (CF) (c,ic2xw 1S Very comparing, there are some witnesge$),c.,. Letz € X. As in the
proof of Lemma 4.4, we associate the sequegg,c., € w* defined byr € 077, As (CF)(ei)e2xw
is very comparing(p,)qc., is not eventually constant if ¢ (. ;cox. C5- Thus®((pg)qew) has
infinitely many2’s in this case. Itz € C;, then

®((pg)gew) =P (Ph.--pi_1(2i+€)>) =d(ph...p_1)2e™.

If 2 €X\(U;e,, Ci). then the increasing sequer(ed) )., of integers such thak ((pg) gew ) |2 is suit-
able or of the forms0t is infinite. Condition (3) implies tha(th) ((pa) q@)‘nk)kéw is non-increasing.
Moreover,(Xq)((pq)q@)‘nk)kew is a sequence of nonempty closed subsets @fhose diameters tend
to 0, so that we can defingf ()} ==y, Xo( (Pa)acw)n? = =Mhew X B((pg)gcw)ng - This defines a
continuous mag’ : X\ (U;e,, CF) — X with f(z) = limj_ Lo((pg)qee)lnd - Similarly, we define

9:X\ (Use,, C7)—Y continuous withy(z) =lim o Y

Pa)acw)Ing”

If = ¢ Uiyeaxw Cf then the sequenci;); of integers such thad ((pg)qew) |k; is suitable
is an infinite subsequence of both}))ic., and (ny)re.. Note that(Ve((p,).c.)ik;)jcw 1S @ NON-
increasing sequence of nonempty closed subsetsgfi- whose GH-diameters tend @ so that we
can deflneF(I') by {F(I’)} = njEw V@((pq)qu”kj CNCAp. As F(.%') is the limit (In (X XY, GH),
and thus iINX xY) 0 (Za((p,)ycu)lk; » Y((pg)gcw)Ik; Jicws WE QELF () = (f(2),g(x)). Therefore
A\ U ieaxe C) S (Fx9)7 (4o).

Note thatrsy =492 =... = x4+ fOr eachs suitable. Thus

f(z)=1imge0 Z(pi...pi_)200+1 = Ly(pi pi )20

if x€C?. Similarly,g(y):y¢(p6mp§71)21 if ye C} andJ,c,, CYxC}C(f xg)~ 1 (A).
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e Let us prove that the construction is possible.)As: (), we can chooséry, yp) € N N Qxxy, a X}
subset/; of XxY with (zg, yg) € Vy € NNQx «y of GH-diameter at most, and a%? neighborhood
Xy (resp..Yp) of zy (resp.,yp) of diameter at most. Assume thatz,,),cs<t, (Vu)yes<ts (Xu)ues<t,
(Yu)yes<t and(Vs), cs<i suitableSatisfying (1)-(9) have been constructed, which is the tase=0.

Let s € 3<% be suitable. Note thatc,, ) € (X, xY;) NV CA; 2™ We chooseX’,Y' e 29
with (z4,ys) € X' xY' C X' xY' C X x Y. ASTL[(X'xY") N V] is ZF, TIL[(X' xY') N V] is
2N, In particular,IT.[(X’ x Y') N V] is T,-open. This shows the existence of

(250, ¥s1) € (To[(X' xY") N V] I (X' xY') N V;]) N Ay

Note that(x, ys1) € X' XY’ C X xY,. We setry; :=x,, ys0:=ys. We definedr,,, i, whenu € 3!+1
is not suitable but|l is suitable.

Assume now that: € 3+ is suitable, but not|l. This gives(s, ¢, ) such that: = st2. Assume
first thate =0. Note thatro; =50 € Xs0¢ N p[(Xs X Ys) N V. This gives

Ty € Xsotr N HO[(XS XY;) N Vs]’

and alsay,, With (., y.,) € (X0t N Xs) xYs) N V= (Xg0:xYs) N V. If e=1, then similarly we get
(xU7 yu) S (Xs X Yslt) N ‘/s

If « andu|l are both suitable, or both non suitable, then we(sgty.) := (T, Yu)- SO We
definedz,, y, in any case. Note that Conditions (8) and (9) are fulfilled] #rat(z,ys) € V,- if s
is suitable. Moreovery, € X,,; if u|l is suitable on|l = s0t, andz,, € X, if u=s1t2, and similarly
in Y. We choose?? setsX,, Y, of diameter at mos2—!~! with

X x Yy if wis not suitable ow|l is suitable,
(T, yu) E Xy x Yy, C Xy x Y, C X X Ys if u=s0t2,
X x Yy if u=s1t2.

It remains to choose, whenis suitable,V; € Ell(X xY) of GH-diameter at mos2—!~! such that
(wsﬁgs)evsgvsf- Ol

Ci e

We setX5 :=w“\ {u(2u|+1-6)>* |ucw<“} =X\ (U;co, C; %),

AO::A(ww\{u(2|u|+€)°° | (u,6)€W<wX2}):A(X\( U Cie))’

(,9)E2xw
andAj:= { (u(2/u])®, u(2lu|+1)®) [uew<} =;e, CIxC}.

Corollary 4.12 Let X, Y be Polish spaces, and,, A; be disjoint analytic subsets & x Y. Then
exactly one of the following holds:

(@) Ag is separable fromi; by a(Z9x 29),, set,
(b) (Xg’X%’Ag’A%) < (X, Ya AOaAl)'
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Remark. In the remark after Lemma 4.7 we announced an exampleXvith3“. In fact, we already
met it after Definition 4.10. Recall that the formud := {A(i)ca | a € 2} defines al-disjoint
family of subsets 08“, which are clearly meager. It is also clear that no nonemiafyen subset of
391is (Uje,, S?xS})-discrete. One can check that the formula

Useato@i-tean Noyer if p=2i+e<2q+1,
Og:: 3w\(Up’§2q+1 Og) pr:2q+2!
0if p>2¢+3,
defines witnesses for the fact tha&t) . ;c2x. IS very comparing.

To close this section, we notice that the notion of a very canmg 1-disjoint family gives only a
sufficient condition, and not a characterization like in,33 or 4.6:

Proposition 4.13 Let X be a0-dimensional Polish spacé();c., be a very comparing-disjoint
family of subsets af, X* CX\(U,e,, C; %), A° CA(X\(U e iycaxw CF))s @ndAT e, CI<C}
be as in the definition of. Then for any Polish space$, Y, and any disjoint analytic subsetk,, A,
of X xY,

Ay is not separable fromi; by a(Z{x X9), set = (X0, x1, A% A1) < (XY, 4p, Ay).

5 The cas& =3: Baire class two colorings

Remark. Unlike when¢ € {1, 2}, we cannot havé s of the form( J,,., CIxC;1, where(Cg) (. n)eaxw

is a 2-disjoint family. Indeed, we will see that there is a Borehpghh G C 2¢ x 2 of a partial
injection such tha(2”,G) Zag (w,~A(w)). We would getf : X3 — 2% continuous such that
A3 C(fxf)~YG), andf[CY) x f[C}] would be a singleton. The séf x f)[A3] would be countable,
and (2, (f x f)[As]) Zag (v, 7AW)), (X5,A3) <ag (w,~A(w)) would hold, which is absurd.
However, the following result holds.

Theorem 5.1 There are a)-dimensional Polish spacKs; and an analytic relationA3 on X3 such
that for any Polish spac&, and for any analytic relatiomd on X, exactly one of the following holds:

@) (X, 4) 2ag (w, 7A()),
(b) (X3, A3) =59 (X, A).

We can takeX3 = w*, but this is not the most natural thing to do. Note that we aplace
X3 with any copy of it. Our spac&s will be a dense’s subset of2“, in fact a copy ofw“. This
G5 subset is not necessary to see ¥, A3) satisfies the “exactly” part of Theorem 5.1 (i.e., that
(X3,A3) Zag (v, 7A(w))), but itis useful to build and ensure the continuity of therfesnorphism
of Statement (b). The definition 6f3 and A3 is based on the construction of the following basic
objects.
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Recall the sequendg,, ),.c. defined in the introduction. Ifsy, we puts,,, i.e., a finite sequence
of elements of2, before the changed coordinate. Ag, we will put a finite sequence of elements
of 2<¥, together with a way to recover them after concatenatiofgrbe¢he changed coordinate. In
order to do that, we identify with w?.

Notation. Let < .,. >:w? — w be a natural bijection. More precisely,n,p >:= (Xk<ntp k) +p.
Note that the inverse bijectiop— ((¢)o, (¢)1) is build as follows. We set, foyew,

M(q):=max{mew | Xp<m k<q}.
Then we defing(¢)o, (9)1) := (M (q) —q+(Zp<rr(q) k), 4— (Sk<n(q) k). More concretely,
w={<0,0>,<1,0>,<0,1>,...,< M(q),0 > < M(q)—1,1 >,..., < 0,M(q) >,...}.

If u € 2<% andn € w, then we defingu),, € 2= by (u),(p) := u(< n,p >) if < n,p ><|ul.
Here also we define: ag, ag,... >€2¥ by < ap, aq,... > (< n,p >):=ay(p), for any sequence
(atn)new Of elements oB“. In particular,a— (o)), and(am )new —< ag, a1, ... > are inverse
bijections.

ne

Lemma5.2 Letu,ve2<Y,

() uCwv implies that(u),, C (v),, for eachn € w.
(b) [(w)o| < [u.

©) [(wn|<|u|+1—nif n<|u|+1.

Proof. (a) If < n,p ><|ul, then(u),(p) = u(< n,p >) =v(< n,p >) = (v),(p) because of the
inequality < n,p ><|v|, so that(u),, C (v)y.

(b) We set, forn,q € w, cj :== Card{p € w |< n,p ><gq}). As< .,. > is a bijection, we get
cyr1 <cg+1. Ascp =0, ¢y <q. We are done sincgu), | =l
(c) Note first that< n, p >= (Sp<pip k) +0 < (Zp<p1p k)+p =< n',p' > if n4+p<n/+p/, and
that(¢)o+(q)1 =M (q) <g<q+1. Thisimplies thag =< (¢)o, (9)1 ><< n,q+1-n > if n<qg+1.
It remains to apply this tq:=|u| since|(u),| =l O

We can viewGy as the countable unidn,,.,, Gr(v,), whereyp,, is the homeomorphism defined
on the basic clopen sé{; ( onto the clopen seV;, ; defined byy,, (s,07) :=s,1v. The setAs will
also be the countable union of the graphs of some homeonsonghindexed byw<“ instead ofw.
Their domain and range will b&; subsets oR“ instead of clopen sets. We first define the closures
of theseGs's. They will be copies oR“. In fact, our homeomorphims will also be defined on the
closure of these final domains. We will fix the coordinates sehoumber is in one of the verticals
before that of the number of the changed coordinate. Thésl&athe following notation.

Notation. If t €w=“ andk < |¢|, then we seE! :=%; ;. (¢(j)+2), and
Sei=< Bjapy (6()+2),0 >=< %},;,0 >
(3; will be the number of the unique changed coordinate). Wevset s,,0, so thatjw,|=n+1 and

(wn)new is dense (we wanb,, to be nonempty).
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We define the following objects fare w<v.
o We first define a copyk; of 2¢ by
K= {ae2? | VE<|t] (a)g = (wy(y )00 I H1=I (Wi o102 and
VO<i<t(k)+2 ()5t ;= (i), 0°}-

This is well defined sincéw, )| =t(k) +1, so that we can apply Lemma 5.2.(b)#o= w;;, and
t(k)+1—|(wy(k))o| > 0. In particular, the last in (a)y is at the positiort(k)+1. Here is the picture
of K; whent=(4,2):

#0) +1 1
o)+ 0 0
0 0 0 1
2 0 0 0 0 0 0
1 T wy)(2) wy(o) (t(0)) 0 0 0 wy(r) (4(1)) 0 0
0 T wyp)(0) wy) (1) wio)(t(0) — 1) 0 0 0 wy(1)(0) wy(1)(1) 0 0

(') 1 z “i 4 ; 1(0)'+2 ' ' t((})+24lrt(1)+1
I I
t(0) t(0) +1

¢ We define a non-trivial partitiofk?, K!) of K, into clopen sets bk? :={ac K; | a(Z;)=¢}.
e We define a homeomorphisg : K — K} by i (a)(m):=1if m=3%;, a(m) otherwise.

We can view the construction df;, K; andy, inductively. Indeed Ky = 2, Kg is the basic
clopen setV., andgy(«)(m) is 1 whenm =0, a(m) otherwise. Then
= wn(0) — n+1=[(wn)olq e ; — 0
Ky :={a€K, | (Q)Ew‘tt‘ = (wp,)o0 10> andvV0<i<n+2 (a)z‘tt‘ﬂ = (wy,);0°°},
K;, ={ae Ky | a(< Eft|+n+2,0 >)=c}, andpy, (o) (m) is 1 whenm is equal to< Eft‘+n+2, 0>,
a(m) otherwise.

The setS3 :={a€2¥ | Imew Vn€w Ip>n (p)o=manda(p) =1} is a standard=?-
complete set (see 23.A in [K]). We will more or less recovés gxample, but thé's have to be well
placed. This leads to the following technical but crucidiom.

Definition 5.3 We say thau, € 2<% is placed if v # () and there ist € w<“ such thatN, N K; # (),
(Jlu|—1)o :Efﬂ, andu(|u|—1)=1f (Jju|—1); >0. We also say thatis awitness for the fact thatu
is placed.

This means that the last coordinatewohas a number on the verticSI‘tt , on which the coordi-
nates of the elements @, are left free byt, and which is the first vertical with this property. The
coordinates of; whose number is on one of the verticals before the previoesaom determined by
t. Finally, the last coordinate af is 1, except maybe if this coordinate has the numbgrwhich is

at the bottom of the verticéﬂft‘.
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Examples.Leta€ K,,j =K, j). Then
e a|l, a|(<0,n+1>+1) are placed with witnesg.
o of(<n+2,0>+1), af(<n+2,j+1>+1) are placed with witnes§).
o af(<n+2+j+2,0 > +1) is placed with witnesgn, j). If a(< n+2+j+2,¢ >) =1, then
al(<n+2+j42,9>+1) is placed with witnessn, j).
We are now ready to defiré; andAgs.

Notation. We setXs:={a€2¥ | Vnew Ip>n apis placed. Lett €w=. We set
Hy:={ae K |V¥new Ip>n (p)O:Eft‘ anda(p)=1},

andAsz:={;c <o Gr(¢ry,)- Inthis sense, we recovig. More concretely,

As= U {(uO%uly) | |u|=%; anduly e K; andvnew Ip>n (u0y)(< Efﬂ,p >):1}.
tEw<w
Lemmab5.4 Lettew<* ande € 2.
(@) (Ktn)new,w, (0)=< 1S @ sequence of pairwise disjoint meager subsefs;of
(b) Any nonempty open subsetZof contains one of thé(;,,’s.

Proof. (a) This comes from the fact that the lasnh («)y: is at the positiom+1 if a € Ky,.

It
(b) A nonempty open subset &f; contains a basic clopen sétof the form

{aeKj | euC< (Q)Ew‘tt‘7 (@)t 41, >}

I¢]
whereu € 2<%. We choosen € w such thatsu C w,,. It remains to see thak;,, C C. So let
m=<14,p >< |u|. Note first thatM (¢) <min(q, M (q+1)). Thus, agu| < |w,|=n+1,

i=(m)o<(m)o+(m)1=M(m)<M(Ju|) <M(n+1)<n+1<n+2.

Lemma 5.2.(a) allows us to write

(eu)(m) = (eu)(< i,p >) = (eu)i(p) = (wn)i(p) = ()5 _14(p)

(< (@t (@t s 3)i(D) = (< @51+ (@)t 110 >)(m).

[t] [t] [t] [t]

This finishes the proof. 0
We now start to prove the required propertieXgfandA ;.

Lemma 5.5 (a) The sefX3 is a densdlj subset oR“. In particular, X3 is a 0-dimensional Polish
space.

(b) Lett cw=«. The setH, is a densdl$ subset of<}.

(c) The set\; is aX} subset oi3. In particular, Az is an analytic relation orX.
(d) Letgew®. Thenﬂnew K/B‘(n+1) CXs.

(e) (Xg, Ag) ﬁAg (w, —\A(w)) .
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Proof. (a) X3 is clearly aIlj subset of2. So let us prove its density. We just have to prove that
{a€2¥ | Ip>n a|pis placed is dense ire* for each integen. So let) # w € 2<“. Note that
a:=wl> € Ny, = K w(0) . Letp>max(n, |w|) with (p)o=0. Thena|(p+1) is placed with witness
t:=0.

(b) H, is clearly aITI9 subset ofK?. So let us prove its density We just have to prove the density
in K of the set{a € K | 3p>n (p)o = = ¥{, anda(p) = = 1}, for each integen. If |t| =0,
then Ky = K. As in the proof of (a), we see (with(0 ) :=0) thata := wl1® € N, N K} and
p>max(n, \w\) with (p)o =0 are suitable. Ift| > 1, then we argue similarly. We put again >, in

the coordinates not determined by

(c) By (b), A3 is aX{ subset 02 x 2*. So we just have to see that C X3, which is clear.

(d) Leta€(,,c, Kp|(n+1)- Note that the sequencﬁ@ﬁ‘ﬁﬂ))ne is strictly increasing. In particular,

pi=< S0 Bni1)+1 > +1>< 200 o 5 41> 200D 1> 0 andi = 8l(n + 1) are
witnesses for the fact faete X3.

(e) We argue by contradiction, which gives a partiti@#), ),,c., of X3 into As-discretell) sets. Fix
n€w andt ew<*. Let us prove that there iss w such thatC,, N K;; =(. We argue by contradiction.
By Lemma5.4(,, N K; is dense inK§ for eache €2. As C,, N K§ isT1Y, it is comeager ink;. By
(b), H, is also comeager if?, so that this is also the case @f, N H;. In particular,;[C,, N Hy]
is comeager ik}, andC,, N ¢;[C,, N Hy] too. In particularC,, N ¢;[C,, N Hy] is not empty, which
contradicts the\z-discreteness af’,,.

Applying this inductively, we construgt € w* such thaiC;, N Kg(,11) = () for eachn € w. By
compactness, theredsc(,,c,, Kg|n+1), anda ¢, o, Cn=Xs. Butthis contradicts (d). O

The following uniqueness properties will be important ie gequel.

Lemmab5.6 Lettcw<¥ anda € K;.

(a) Assume that € 2<% is placed with witness. ThenX; < |u|, the lastl in u strictly before the
position < EkH,O > is at the position< Xt ¢(k)+1 > for eachk < [t|, andt is unique.

(b) Letp >, be such thatv|p is placed with witness. Thent C¢'.

Proof. (&) As(|u|—1)p= we may assume thatf > 1. Letae N, N K. Then

It\
t(k)+1—|(wer))ol 100
(@)t = (wi(k))oO 170110
for eachk < [t].

In particular,a(< X%, t(k)+1 >)=1. AS< n+p+1,0 >>< n,p > and(|u|—1)0:2ft‘, we get

Ju > u| —1>< %}, 0 >=%, >< 51,0 >>< X ¢(k)+1 >. Thusu(< X, t(k)+1 >)=1.

e Let us prove that the last in u strictly before the position< Ek+170 > is at the position
< X}, t(k)+1 >. The consecutive integers between the vakies], t(k)+1 > and< X} ;,0 >
are< X, t(k)+1 >, <X} —1,t(k)+2 >, ..., < 0,5} +t(k)+1 > and< X} ;,0 >. So we have to
see that(< X! —j, t(k)+1+j >)=0if 0<j<Xl.
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There arek’ < k andi <t(k')+2 such thats! — j =%, +i. In particular,
t(k)+14+7=} 1 —1-%}, —i>t(K')+2—i.
Lemma 5.2.(c) applied ta . implies that|(wy)):| <t(k')+2—i. Thus
a(< St +i, t(k)+ 145 >)=0,
and we are done.

e As the lastl in u strictly before the positior: zft‘,o > is at the position< Eft‘_l, t(jt|—1)+1 >,

t(]t|—1) is determined. It remains to iterate this argument to seenigueness of.

(b) We argue by induction oh:= |t|, and we may assume that our property is proved fdo let
tewt!, a€ K, andp > X, be such that|p is placed with witnesg. Note that € Ky andp >3y,
By the induction assumption, we ggtC¢'.

Let us prove that|l # t’. We argue by contradiction, so thgi— 1), = Ef' = X! Note that
<YEt)+1 ><X;<p. Thus(p—1); >t()+1>0anda(p—1)=1=a(< X, (p—1); >). As
a€ Ky, the lastl of (a)zf is at the positiori(/)+1, which is absurd.

This shows the existence 8{l). Let 3€ N, K. The lastl of (8)y is at the positiort’(1)+1.
As < XL (1)+1 ><p-1=< Ef;,‘, (p—1); >, itis also the last of (ﬂ]p)zf :(a]p)zf. But the last
1 of (alp)s; is at the positiort(l)+1, so thatt’(1)=t(l) andt C¢'. O

Definition 5.7 Letue2<“ andlew.

(a) If u is placed, then let € w<* be the unique witness given by Lemma 5.6.(b). We will conside
e the lengthl(u) :=|¢|

o the sequence!™ e 2“1\ {u} defined by!™) (m) :=1—u(m) if m=%;, u(m) otherwise. Note that
u!™) is placed with witness, so thatl (u/(*)) =1(u) and (u(*)){(®) =y

o the digite(u) :=u(X;). Note thats (u(W) =1—¢(u).

(b) We say thatu is I-placed if u is placed and/(u) = I. We say that is (< [)-placed (resp.,
(<1)-placed, (>1)-placed) if there isl’ <I (resp.,l’ <1, ' >1) such thatu is I’-placed.

The following lemma will be crucial in the construction ofetthomomorphism. We construct
some finite approximations of the homomorphism. The lemrya 8wt these finite approximations
can be constructed independently.

Lemma 5.8 Letu#v e 2<“ be placed withe(u) =& (v). Then{u, u!(¥} N {v, 2!} =0,

Proof. Note first thate (u!(W) = 1 —e(u) = 1 —e(v) = £(v!®)). Thusu ¢ {v,v'®)} andu!®) #£ v, If
w0 =l theny = (ul@)'™) = (uHE') =4 which is absurd. O
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When we consider the finite approximations of an elemendnfwe have to guess the finite
sequence. We usually make some mistakes. In this case, we have to be@ibme back to an
earlier position. This is the role of the following predeses.

Notation. Let u € 2<“. Note that< ¢ > is 0-placed. This allows us to define

_0if ju<1,
ulmax{n < |u| | u|n is placed if |u|>2.

and, forl e w,

i [0 Jul <1,
ulmax{n < |u| | u|nis (<1)-placed if |u|>2,
Before proving our main theorem, we study the relation betwdhese predecessors and the placed
sequences.

Lemma 5.9 Let! € w andu € 2<* bel-placed with|u| > 2.

(@) Assume that~ is/-placed. Ther(u~)=¢(u). If moreover(u!)~ isi-placed, ther{u!)~ = (u™)".
(b) u~"is I-placed if and only i{u!)~! is I-placed. In this case;(u!) =¢(u) and (u!)~! = (u )",
(c) Assume that~ or (u!)~ is (<i)-placed. Them~ =u~! = (u')~ = (u!) ! is (I—1)-placed.

(d) Assume that~ or (u')~ is (> [)-placed. Then exactly one of those two sequencés i&-
placed, and the other one isplaced. Ifu~ (resp.,(u!)™) is (>1)-placed, therm ' = ((ul)—)l (resp.,
ut=u") andg(u*l) =e(u) (resp.,a((ul)*l) :a(ul)).

e iue{i-1,1}.

Proof. Lett € w! (resp.t’ € w<*) be a witness for the fact that(resp.,u™) is placed, and € N, N K.
Claim. Assume that|u|—1); =0. Thenu™ =u~'= (u')~ = (u!) " is (I—1)-placed.

Proof. Note thatl > 1 since|u| > 2. The consecutive integers between the vakaes] ,,t(I-1)+1 >
and¥; are< X t(I-1)+1 >, < Xf [ —1,t(1-1)+2 >, .., < 0, +t((—1)+1 > andX,.
By Lemma 5.6.(b),2; < |u| and the lastl in u strictly before the positiork; is at the position
< X! ,,t(l-=1)41 >. This shows that|(2;+1) andu|(< X}_;,t({—1)+1 > +1) are placed and
(u|(B4+1))  =ul(< B}_;, t(1-1)+1 > +1) sincet(I-1)+5 > 0if 1< <¥! | +1. As(Ju|-1); =0,
lu|=3%;+1 and the sequenae” =u|(< X! |, t(I—1)+1 >+1) is (I—1)-placed, which implies that
u=u"l= ()" =(uh)7 o

(a) By the claim,(ju|—1); > 0. Thusu|(3;+1) G u is I-placed,u|(3;+1) Cu~ andX; < [u~|. As
u~ C a, we can apply Lemma 5.6.(c) andC ¢'. Thust = t’ sincelt| = || =, and the equalities
e(u”)=w")(Ey)=u(X;)=¢(u) hold.

Assume now thatu!)~ is I-placed. Asu! is I-placed with witness, there is some € N,; N K.
Asu|(Si+1)Cu” Su, we get(u|(2t+1))l C (u)~ c B. Thus|(u!)~| >¥;. Lemma 5.6.(c) implies
thatt is the witness for the fact that!)~ is I-placed. Ifu™ = u|(< %, jo > +1), then there is no
Jo<j<(lul—=1); with u(< 2,7 >)=1, and(u!)~ =ul|(< 2, jo >+1)=(u")".
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(b) Assume that~! is I-placed. As in (a) we getu|—1); >0 andj; with u=!=u|(< 3L, j; >+1),
and (u!) "' = u!|(< 51 > +1) = (u7!)! is [-placed. The equivalence comes from the fact that
(ul)! =u. We argue as in (a) to see thai~') = (u) if v is I-placed.

(c) Assume first that.~ is (< [)-placed. The proof of (a) shows that| > [ if (ju|—1); > 0. Thus
(|lu|—1); =0 and the claim gives the result. (')~ is (< I)-placed, then we apply this td, using
the facts that/! is I-placed andu!)! = u.

(d) Assume first that,~ is (>1)-placed. As in (a) we getG t'. In particular, the last in (u*)zf is at
the positiont/(I)}+1. Let us prove that ~' =u|(< ¢, #/ (141 >+1). Note thatu|(< 3¢, ¢/ (I > +1)
is [-placed, so that|(< X, #(1)+1 > +1) Cu~' Cu~. Lemma 5.6.(c) shows that! is /-placed
with witnesst. As the lastl in (u_)zf is at the positiort’(l)+1, we are done.

Note thatu!|(< X¢,¢/(1)+1 > +1) C (u!)~. We argue by contradiction to see tifat)~ is not
(>1)-placed. This gives a witneg$, which is a strict extension dgfby Lemma 5.6.(c). We saw that
the lastl in ((u')7),, is at the positiort’(I)+1. But it is also at the positiorf’(I)+ 1, which shows

1
that t”(l) = t/(l) ThUSul(Et) = Wyr(p (0) = wt/(l)(O). But u‘(Et) = Wy () (0) This ImpIIeS that
u'(3¢) =1—wy(;)(0), which is absurd. This shows that')~ =u'|(< S}, #/(1)+1 >+1)=(u"")"is
I-placed, so that~' = ((ul)*)l. Moreover,e(u=") = (u=")(Z;) =u(X;) =¢(u).

Assume now thatu!)~ is (> 1)-placed. Asu' is I-placed andu')! =1, the previous arguments
show thatu~ is I-placed. In particulan, ' =u".

(e) If u™ isI-placed, then, ™' =~ is I-placed. Ifu~ is (< 1)-placed, then by (e} is (I—1)-placed.
If u~ is (>1)-placed, then by (dju!)~ is I-placed and: ! = ((ul)—)l is [-placed too. O

Proof of Theorem 5.1.X5 andA3 have been defined before. The “exactly” part comes from Lemma
5.5.(e). So we just have to prove that (a) or (b) holds. We rsayrae thafl is recursively presented
and A is a X relation. We set

U::U{Veﬂf(X)ﬂH? |3IDeA NMYwxX) VC| ] D,andvpew Ang:@}.
pEW
Case1U=X.

There is a countable covering &f into A-discreteX} sets. We just have to reduce them to get a
partition showing that (a) holds.

Case 2.U # X.

Note that ifV is as in the definition of/, thenlV and— Upew D, are disjointEl1 sets, separable
by aII set. By Theorems 1.A and 1.B in [Lo1], therelis € Al N TI{ separating these two sets.
This shows that we can replace the conditidn ¢ X} (X) N I1Y” with “ V € A}(X) N IIY” in the
definition of U. ThusU is I1;} (X) N XY since the set of codes fakj N ITY sets is/l} if £ < wCK
(see [Lo1]). This shows that := X \U is a nonemptyZ! N II9 subset ofX .
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Claim If V € X1 (X) NI meetsY, thenV N'Y is not A-discrete.

We argue by contradiction. Note thetnY € X! N IIJ. Lemma 2.2 gives a\] (X) N II9 set
containingV’ N'Y" and A-discrete. Asi’ N U can be covered with somg,,, D,’s, so isV. Thus
V CU, by Al-selection. Therefor& N'Y CU\U =), which is absurd. o

e We construct, whem is placed, some points, of Y, someX? subsetsX, of X, and someX}
subsetd/, of X2. We want these objects to satisfy the following conditions:

(@, T yiuy) €U If e(u) =0
(1) z, € X, and
(@), Ty) €U If e(u) =1
(2) Xu C X if |u|>2
(3) Uu=Uy CANY?2 N Qx2, andU, CU, . if wandu~! arel-placed
(4) diam(X,,) <271l and diangy (U )<22‘“|
o[(Xy - X X, yiuty) N U] i e(u=H=0
(5) U,C if u is I-placed and:~" is not
T (X ity X Xt) N U] i (™) =1

As we will see, Conditions (1)-(4) are sufficient to get thquieed objects. Condition (5) is used
to prove that the construction is possible. The idea is theviing. When we extend somec 2<%,
some new links may appear. But we may also break some linksprserve only an initial segment
of them. In this case, to ensure Condition (3), we have to letalcome back to the last preserved
link. This is possible if we use iteratively Conditions (3)da(5).

e Assume that this is done. Lete X3 and(pk)kew be the infinite strictly increasing sequence of
integersp® > 1 such thate|p¢ is placed. Note thak . alpg, S Xappe by Condition (2). This shows
that (X, o olp o )kew IS @ Non-increasing sequence of nonempty closed subs&tsubfose diameters tend
to 0, and we defing f(a)} := Ny, Xapp =Nkew Xappe, SO thatf : X3 — X is continuous and
fla)=liMpo0 zoppe-

Now let («a, 5) € As. If (a, 5) EUM:l Gr(et 5, ), then let(p;) je., be the infinite strictly increas-
ing sequence of integegs > 1 such thatp,;—1) :Efﬂ, (pj—1)1>0anda(p;—1)=1. In particular,
alp; isl-placed and («|p;) =0. Note that(p;);c., is also the infinite strictly increasing sequence of
integersp; > 1 such thaip;—1)o = Eftl, (pj—1)1>0andB(p;—1)=1on one side, and a subsequence

of both (pf) kew and(pf)kew on the other side.

If moreoverp > py and ap is placed, then the witness is an extensiort @ind [(«|p) > I,
by Lemma 5.6.(c). In particular, i > py anda|p is [-placed, then the witness is This proves
that (p;);je. is the infinite strictly increasing sequence of integgys> py such thata|p; is I-
placed. Thereforea|pj+1) = alp;. By Condition (3),(Uyp, )jew IS @ NON-increasing sequence
of nonempty clopen subsets 4N 2 x> whose GH-diameter tend @ So we can definé'(a, 3) € A
by {F (e, )} :=Njecu, Ualp;- Note thatF(a, 8) =lim; o0 (2o, Tapp,) = (f(@), F(B)) € A, s0
thatAs C (f x f)~1(A).
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e Let us prove that the construction is possible. We do it byatidn on the lengtit of w.
Subcase 1k=0

We are done sinciis not placed.
Subcase 2k=1

The claim givegzg, r1) € ANY 2NN x2. We choose &) neighborhoodX. of x. with diameter
at most2~!, as well as a¥} subsetl/y =U; of X2 with GH-diameter at most~! such that(zg, 1)
isiNUp CANY2NQy2. We are done since &’ > is 0-placed and:(< ¢’ >)=¢'.

Subcase 3k>2

If there is no placed sequencedf, then there is nothing to do. ifc 2 is I-placed, then! € 2%
is [-placed and:(u!) =1—¢(u). Assume for example thatu) =0. Lemma 5.8 ensures that we just
have to define:,,, 2., X,,, X,; andU, =U,., independently from the other sequenceg’in

- If w~ and (u!)~ arel-placed, then(u~, (u')™) = (u™!, (u')~). Moreover,e(u™) = e(u) = 0,
(u)”=(u") and(u')~ = (u")!, by Lemma 5.9. We sétr,,, 1) := (-, T(, ), We chooseX)
setsX,, X, with diameter at mo2—* such thatx,,, z,1) € Xy x X0 C Xy x X0 C X, x Xy, as
well as a¥| subset, of X2 with GH-diameter at mo2—* such thatz,,, v,.) €U, CU,- =U,,-i.
We are done sinctl,; =U, CU,- =U,~y =U-1yp =U1)-1

-If = or (u!)~ is (< 1)-placed, them:~ =u~! = (u!)~ :( H~lis (1—1)-placed, by Lemma 5.9.(c).
Let W be aX} neighborhood of;,,- =T (1)~ with W C X, —. Note that

Ho[(Xu— XX(U—)L—l) N qu] if €(U_) =0,

Ty- €

Hl[(X(u—)l—l XXuf) N qu] if €(u_):1.

Assume for example that we are in the second case. Then

Ty €W NI (X (- y-1 X Xy- ) NU,-] NY #0.

The claim gives a coupler,,, z,1) € AN (WNII [(X (- -1 X X, - ) N U,-]|NY)*NQ x> since the
setW NI [(X(,-y-1 x X,-) N U,-]is & NTI}. We chooseZ} setsX,, X, with diameter at most
2% such tha{(z,, z,1) € Xy x X, C Xy x X, € X,,- X X(,1)-, as well as &} subset/, of X2 with
GH-diameter at most—* such tha{x,,, z,.) €U, C ANTIL; [(X(u-y—1 X Xy-) N Uu_]2 NY2NQyo.

- If = or (u!)~ is (>1)-placed, then by Lemma 5.9.(d) exactly one of those two sempseis(>[)-
placed, and the other oneliglaced. Ifu~ (resp.,(u!)™) is (>1)-placed, then, ! = ((ul)—)l (resp.,
u~'=u"). So assume first that™ is (>1)-placed, so thatu!)~ = (u!) ' = (uv~!)! andu~" is I-placed.
Here is an illustration of what is going on in this case.
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0 0
N
0 0 0 0
N Y
0 0 0 0
N N
0 0 0
Y N
0 0 0\
0 0 0
N
0 0 0 0 0
4 N
0 0 0 0 0 0
y Y
0 0 0 0 0 0 0
v N
0 0 0 0 0 0 0 0
v N
0 0 0 0 0 0 0 0 0
' N
0 0 0 0 0 0 0 0 0 0
¥ N
0 0 0 0 0 0 0 0 0 0 0
0 0 0 ﬁ 0 0 0 0 0 0 0 0
N '
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 g 0 0
0 0 0 0 m 1 0 0 0 0 0 0 0 0 0 0 0 0 0
N

We define(uy,)n<r, by uo :=u", ur, := utanduy, = u;l(“") if n < L. This can be done,

by Lemma 5.9.(e). Note that, is placed. We enumerate injectively the seque(icen))n<L by

the non-increasing sequeng@e);<x. More concretely X =lop—1>1, l(ug) = ... = l(un,—1) = lo,
l(uNo):"':l(uNoJer*l):ll:lo_ly ceey
HUNy4. +Ng_y) = =l(UNg+.. 4 Ng_1—1) =l 1=lk 2 —1=1+1

andl(uNOJr___JrNK_l):l(uL) :lK:l, with No, ceey Ng_1>1.

Note thatu; = uglo is lp-placed if Ny > 2. By Condition (3), we get/,,, C U,,,. We can iterate
this argument, so that the inclusiéh,, C UHNO_1 holds, even ifNg =1. By Condition (5),z,,- is in

HO[(XUNO XX(UNO)ll) N UUNO] if e(un,)=0,
X,-N

u

T [(X i X Xung) 1 U] i () =1.

UN,)

Similarly, X,,- C XuN0 .

28



This gives
(X, XX(UNO)ll) N Uy, if e(un, ) =0,
(a0, 29) €
(X(uNO)l1 X Xy=) MUy, if e(un)=1.
If we iterate the previous argument, then we get

U,

(T, Typt) ::(:U(I](fl,:vffl) €(X,- x X ung st ngey = (X X X (ty1) N Uy

“N0+AAA+NK,1)ZK) n
sinces(u!) =¢(u) =0. We choosex} setsX,,, X, with diameter at mos2—* such that

(Tur Ty) € XX Xt C Xy X X1 € Xy X X ymty1 = Xy X X 1)
as well as a¥} subset’, of X2 with GH-diameter at most—* such thatz,,, z,:) €U, CU,,-:.

If now (u!)~ is (>1)-placed, then we argue similarly, using the fact that

e((Wh) =g =1-e(u)=1.
This finishes the proof. 0

At the beginning of the section, we mentioned the fact thigtribt necessary to use the delise
subsetX3 of 2 to find a relationG on 2 satisfying(2, G) ﬁAg (w, ﬂA(w)). We now specify this.

Notation. We set, fort € w=, H; := K\ (Upnew )20 Ktn U Unewwn =1 ¢ (Ki)). Note
that H, is a1y subset o2 and H, N ¢, [H;]=0.
Lemma 5.10 (a) TheH; U ¢;[H,|'s are pairwise disjoint.

(b) The setH, is a subset off,, and thus satisfies the previous disjointness properties.

Proof. (a) Note first thati;,, gKt“’"(O) CK;and(Ky,),isa sequence of pairwise disjoint sets. This
implies thati, N Ky = 0 if ¢, ' are incompatible. In particular, & C K\(U,cu w0, (0)=0 Ktn) €Ki
and@t[Ht] - Ktl\(UnEw,wn(O):1 Ktn) C Ky, we also ge(Ht @] th[Ht]) N (Ht/ U pp [Ht/]) =0if t
andt’ are incompatible. Now

HyN Hyy, CHO Kij(erm)|1)
c {K? N Ktl if S(t/'n)(0) (0) .:1,
— LBy N Ko 1 $(m)0) (0)=0,
so thatH, N Hy =0 if t#t'. Similarly, (H; U oy [Hy])) N (Hy U op[Hy]) =0 if t#t.
(b) If a€ Ky, U o7 H(Ktp), then(a)y; has finitely manyt’s. O
Remarks. (a) We setG := (J,c,,<. Gr(gyg,), SO that(2,G) Zag (w,~A(w)), by the proof

of Lemma 5.5. By Lemma 5.1 is the Borel graph of a partial injection, as announced at the
beginning of the section.
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(b) Note that(Xs, Az) <9 (w, ~A(w)), as we can see with the following partition

Xs= |J HUE\{J H),

tEw<w tEw<w

with H; € I13 andA-discrete by Lemma 5.10.(bX3\ (U< He) €IS andAs-discrete.

(c) There are a comparirgdisjoint family (C5 ) (. ;)e2 <., Of subsets 0K3, and also homeomorphisms
¢; : CY — C} such thatAs = (J;,, Gr(¢;). Indeed, we choose a bijectidn: w — w<“ with
b=1(s) < b 1(t) if s Ct, as in the proof of Lemma 4.3, and s} := Hb(z)', cl .= (i) [Hyi)),
i = (i) g, so thathz ={J;c,, Gr(;). It remains to see that’s ) . ;)cax., iS cOmparing. We set

Ky \WUi<qp(ynci)wn )= Ko@) If p=2i+e<2¢+1,

Og:: X3\(Up’§2q+1 Og ) if p22¢]+21
0if p>2q+3,

so that(OF),c., is a partition ofXs into A9 sets sinceky, € K" ¢ K, K9 n K} = () and
K; N Ky =0 if t andt’ are incompatible.

As flt - Kto\(UnEw,wn(O)ZO Ktn)’ Spt[-[:[t] - Ktl\(UnEz,u,w"(O)zl Ktn) and Ht - ﬁt, (b) in
Definition 4.2 is fulfilled. If¢g <1, then

- either there is ng < ¢ such thab(i) is compatible withb(j). C? U C} C Ky, €057 and we set
p; =2q+2.

- or there arg/ < ¢ andn such thab(j)n Cb(i), in which casek, ;) C K;‘E;?)(O) N Ky, Inparticular,

Ky is disjoint from or included in each differen(fé;‘zg?,’)(o)\Kb(j/)n,. Thus K, is disjoint from or

included inO§j+€. By disjointness, there is at most one coules) such thati, ;) C O§j+€. If it
exists, then we seiz :=2j+e. If it does not exist, then we spg =2q+2.
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