Separable solutions of quasilinear Lane-Emden equations - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2011

Separable solutions of quasilinear Lane-Emden equations

Résumé

For $0 < p-1 < q$ and $\ge=\pm 1$, we prove the existence of solutions of $-\Gd_pu=\ge u^q$ in a cone $C_S$, with vertex $0$ and opening $S$, vanishing on $\prt C_S$, under the form $u(x)=|x|^\gb\gw(\frac{x}{|x|})$. The problem reduces to a quasilinear elliptic equation on $S$ and existence is based upon degree theory and homotopy methods. We also obtain a non-existence result in some critical case by an integral type identity.
Fichier principal
Vignette du fichier
QuasiSource17.pdf (191.69 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00582641 , version 1 (03-04-2011)
hal-00582641 , version 2 (24-05-2011)
hal-00582641 , version 3 (26-10-2011)

Identifiants

Citer

Alessio Porretta, Laurent Veron. Separable solutions of quasilinear Lane-Emden equations. 2011. ⟨hal-00582641v3⟩
157 Consultations
213 Téléchargements

Altmetric

Partager

More