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For 0 < p -1 < q and either ǫ = 1 or ǫ = -1, we prove the existence of solutions of -∆ p u = ǫu q in a cone C S , with vertex 0 and opening S, vanishing on ∂C S , under the form u(x) = |x| -β ω( x |x| ). The problem reduces to a quasilinear elliptic equation on S and existence is based upon degree theory and homotopy methods. We also obtain a non-existence result in some critical case by an integral type identity.

Introduction

It is well established that the description of the boundary behavior of positive singular solutions of Lane-Emden equations -∆u = ǫu q (1.1) with q > 1 in a domain Ω ⊂ R N is greatly helped by using specific separable solutions of the same equation. This was performed in 1991 by Gmira-Véron [START_REF] Gmira | Boundary singularities of solutions of some nonlinear elliptic equations[END_REF] in the case ǫ = -1 and more recently by Bidaut-Véron-Ponce-Véron [START_REF] Bidaut-Véron | Isolated boundary singularities of semilinear elliptic equations[END_REF] in the case ǫ = 1. If the domain is assumed to be a cone C S = {x ∈ R N \ {0} : x/|x| ∈ S} with vertex 0 and opening S S N -1 (the unit sphere in R N ), separable solutions of (1.1) vanishing on ∂C S \ {0} were of the form

u(x) = |x| -2 q-1 ω(x/|x|), (1.2) 
with ω satisfying -∆ ′ ω -ℓ q,N ω -ǫω q = 0 in S,

1 vanishing on ∂S and where ℓ q,N = 2 q-1 2q q-1 -N and ∆ ′ is the Laplace-Beltrami operator on S N -1 . To this equation is associated the functional

J(φ) := S 1 2 |∇ ′ φ| 2 - ℓ q,N 2 φ 2 - ǫ q + 1 |φ| q+1 dv g , (1.4) 
where ∇ ′ is the covariant derivative on S N -1 . In the case ǫ = 1, non-existence of a non-trivial positive solution of (1.3) when ℓ q,N ≥ λ S (the first eigenvalue of -∆ ′ in W 1,2 0 (S)) follows by multiplying the equation by the first eigenfunction and integrating over S; existence holds when ℓ q,N < λ S and q < N +1 N -3 by classical variational methods, and again non-existence holds when q ≥ N +1 N -3 and S ⊂ S N -1 + is starshaped by using an integral identity [3, Th 2.1,Cor 2.1]. When ǫ = -1, non-existence of a non-trivial solution of (1.3) when ℓ q,N ≤ λ S is obtained by multiplying the equation by ω and integrating over S, while existence when ℓ q,N > λ S follows by minimizing J over W 1,2 0 (S) ∩ L q+1 (S). In this paper we investigate similar questions for the quasilinear Lane-Emden equations -div |∇u| p-2 ∇u = ǫu q in C S ,

where S is a smooth subset of S N -1 , q > p -1 > 0 and ǫ = ±1 and we look for positive solutions u, vanishing on ∂C S \ {0}, under the separable form

u(x) = |x| -β ω(x/|x|). (1.6) 
It is straightforward to check that u is a solution of (1.5) provided

β = β q := p q + 1 -p (1.7)
and ω is a positive solution of -div β 2 q ω 2 + |∇ ′ ω| 2 (p-2)/2 ∇ ′ ω -β q λ(β q ) β 2 q ω 2 + |∇ ′ ω| 2 (p-2)/2 ω = ǫω q (1.8) in S vanishing on ∂S, where div(•) is the divergence operator defined according to the intrinsic metric g and where we have set λ(β) = β(p -1) + p -N.

(1.9)

If ǫ = 0, it is now well-known that positive p-harmonic functions in C S vanishing on ∂C S exist under the form (1.6), and either they are regular at 0 and β = -βS < 0, or they are singular and β = β S > 0, where the values of βS , β S are unique. In this case ω = ωS or ω S is a solution of -div β 2 ω 2 + |∇ ′ ω| 2 (p-2)/2 ∇ ′ ω -βλ(β) β 2 ω 2 + |∇ ′ ω| 2 (p-2)/2 ω = 0 (1.10) in S, where β = βS or β S . The existence of ( βS , ωS ) is due to Tolksdorf in a pioneering work [START_REF] Tolksdorff | On the Dirichlet problem for quasilinear equations in domains with conical boundary points[END_REF]. Tolksdorf's method has been adapted by Véron [20] in order to prove the existence of (β S , ω S ). Later on Porretta and Véron [START_REF] Porretta | Separable p-harmonic functions in a cone and related quasilinear equations on manifolds[END_REF] obtained a more general proof of the existence of such couples. Notice that β S (as well as βS ) is uniquely determined while ω is unique up to homothety. In both cases the proofs rely on strong maximum principle. When p = 2, existence of a nontrivial solution in the case ǫ = 1 is obtained in [START_REF] Bidaut-Véron | Separable solutions of some quasilinear equations with source reaction[END_REF] when N = 2 and β q < β S by a dynamical system approach; while if ǫ = -1 and β q > β S , such an existence is proved in [START_REF] Véron | Some existence and uniqueness results for solution of some quasilinear elliptic equations on compact Riemannian manifolds[END_REF] by a suitable adaptation of Tolksdorf's construction. Notice that no functional can be associated to (1.8), excepted in the case q = q * = N p N -p -1. In such a case (1.8) is the Euler-Lagrange equation for the functional

J q (φ) := S 1 p β 2 q * φ 2 + |∇ ′ φ| 2 p 2 - ǫ q * + 1 |φ| q * +1 dv g , (1.11) 
and existence of a non-trivial solution of (1.8) with ǫ = 1 is derived from the mountain pass theorem. In all the other cases variational techniques cannot be used and have to be replaced by topological methods based upon Leray-Schauder degree. Define q c by

q c = q c,p = (N -1)p N -1-p -1 if p < N -1 ∞ if p ≥ N -1,
then we prove the following results:

I Let ǫ = 1.
Assume p > 1, q < q c and β q < β S , then (1.8) admits a positive solution in S vanishing on ∂S.

II Let ǫ = -1. Assume p > 1 and β q > β S , then (1.8) admits a unique positive solution in S vanishing on ∂S.

The result I is based upon sharp Liouville theorems for solutions of (1.5) in R N or R N + respectively due to Serrin-Zou [START_REF] Serrin | Cauchy-Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities[END_REF] and Zou [START_REF] Zou | A priori estimates and existence for quasi-linear elliptic equations[END_REF]. In the case of II, the existence part is already known, but we give here a simpler form than the one in [START_REF] Véron | Some existence and uniqueness results for solution of some quasilinear elliptic equations on compact Riemannian manifolds[END_REF], using a topological deformation acting on the exponent p. In the case ǫ = 1, the result is optimal in the case q = q c ; indeed, using an integral identity, we also prove

III Let ǫ = 1, S S N -1
+ be a starshaped domain and 1 < p < N -1. If q = q c , then (1.8) admits no positive solution in S vanishing on ∂S.

Notice that when p = 2 an integral identity was used in [START_REF] Bidaut-Véron | Isolated boundary singularities of semilinear elliptic equations[END_REF] to prove non existence for all q ≥ q c,2 . The form which is derived in the case p = 2 is much more complicated and we prove non-existence only in the case q = q c,p .

Finally, the constraint β q < β S in I (respectivey, β q > β S in II) is sharp. When ǫ = 1, the non-existence of positive solutions of (1.8) when β q ≥ β S has been proved in [START_REF] Bidaut-Véron | Separable solutions of some quasilinear equations with source reaction[END_REF]. The method is based upon strong maximum principle. When ǫ = -1 a somewhat similar method is used in [START_REF] Véron | Singular p-harmonic functions and related quasilinear equations on manifolds[END_REF] and yields to non-existence results when β q ≤ β S . Notice that the obtention of such results when p = 2 is straightforward.

Nonexistence for the reaction problem

Let S be a bounded C 2 sub-domain of S N -1 . We consider the positive solutions in S of

-div β 2 ω 2 + |∇ ′ ω| 2 (p-2)/2 ∇ ′ ω -βλ(β) β 2 ω 2 + |∇ ′ ω| 2 (p-2)/2 ω = ω q (2.1)
vanishing on ∂S. Recall that λ(β) is given by (1.9) and that, in connection with problem (1.5), we have interest in the special case where β = β q is given by (1.7). The following Pohozaev-type identity, which is valid for any β, is the key for nonexistence. We denote by S N -1 + the half sphere. Proposition 2.1 Let S S N -1 be a C 2 domain and φ the first eigenfunction of

-∆ ′ in W 1,2 0 (S N -1 + ). If ω ∈ W 1,p 0 (S) ∩ C(S)
is a positive solution in S of (2.1), and if we set Ω = (β 2 ω 2 + |∇ ′ ω| 2 ) 1/2 , then the following identity holds

1 - 1 p ∂S |ω ν | p φ ν dS = A S ω q+1 φ dσ + B S Ω p-2 |∇ ′ ω| 2 φ dσ + C S Ω p-2 ω 2 φ dσ, (2.2 
) with A = A(β) := - N -1 q + 1 -β(pβ + p -N ) (2.3) 
B = B(β) := N -1 -p p + β(pβ + p -N ), (2.4) 
C = C(β) := β 2 N -1 p -(pβ + p -N )λ(β) . (2.5) 
In order to prove Proposition 2.1, we start with the following lemma.

Lemma 2.1 Let S ⊂ S N -1 be a C 2 domain and φ ∈ C 2 (S). If ω ∈ W 1,p 0 (S) ∩ C(S) is a positive solution of (2.1) in S, we have:

1 - 1 p ∂S |ω ν | p φ ν dS = S ∆ ′ φ q + 1 -β(pβ + p -N )φ ω q+1 dσ - 1 p S Ω p ∆ ′ φ dσ + S Ω p-2 D 2 φ(∇ ′ ω, ∇ ′ ω)dσ + β(pβ + p -N ) S Ω p-2 |∇ ′ ω| 2 φ dσ -β 2 (pβ + p -N )λ(β) S Ω p-2 ω 2 φ dσ.
(2.6)

Proof. By the regularity theory of p-Laplace type equations (see e.g. [START_REF] Dibenedetto | C 1+α local regularity of weak solutions of degenerate elliptic equations[END_REF], [START_REF] Tolksdorff | Regularity for a More General Class of Quasilinear Elliptic Equations[END_REF] and the Appendix in [START_REF] Porretta | Separable p-harmonic functions in a cone and related quasilinear equations on manifolds[END_REF]) it turns out that ω ∈ C 1,γ (S) for some γ ∈ (0, 1), and since 

β 2 ω 2 + |∇ ′ ω| 2 > 0 in
:= (β 2 ω 2 + |∇ ′ ω| 2 ) 1/2 ) S Ω p-2 1 2 ∇ ′ |∇ ′ ω| 2 , ∇ ′ φ + D 2 φ(∇ ′ ω, ∇ ′ ω) ζ dσ + S Ω p-2 ∇ ′ ω, ∇ζ ∇ ′ ω, ∇ ′ φ dσ = βλ(β) S Ω p-2 ω ∇ ′ ω, ∇ ′ φ ζ dσ + 1 q + 1 S ∇ ′ ω q+1 , ∇ ′ φ ζ dσ. Since Ω p-2 1 2 ∇ ′ |∇ ′ ω| 2 , ∇ ′ φ = 1 p ∇ ′ Ω p , ∇φ -β 2 Ω p-2 ω ∇ ′ ω, ∇ ′ φ
we obtain, due to (1.9),

1 p S ∇ ′ Ω p , ∇ ′ φ ζ dσ + S Ω p-2 D 2 φ(∇ ′ ω, ∇ ′ ω) ζ dσ + S Ω p-2 ∇ ′ ω, ∇ ′ ζ ∇ ′ ω, ∇ ′ φ dσ = β(pβ + p -N ) S Ω p-2 ω ∇ ′ ω, ∇ ′ φ ζ dσ + 1 q + 1 S ∇ ′ ω q+1 , ∇ ′ φ ζ dσ.
Integrating by parts the first and last term we get

- 1 p S Ω p ∇ ′ φ, ∇ ′ ζ dσ + 1 q + 1 S ω q+1 ∇ ′ φ, ∇ ′ ζ dσ + S ω q+1 q + 1 - Ω p p ∆ ′ φ ζ dσ + S Ω p-2 D 2 φ(∇ ′ ω, ∇ ′ ω) ζ dσ + S Ω p-2 ∇ ′ ω, ∇ ′ ζ ∇ ′ ω, ∇ ′ φ dσ = β(pβ + p -N ) S Ω p-2 ω ∇ ′ ω, ∇ ′ φ ζ dσ.
(2.7) Now we choose ζ = ζ δ , where ζ δ is a sequence of C 1 compactly supported functions such that ζ δ (σ) → 1 for every σ ∈ S and |∇ ′ ζ δ | is bounded in L 1 (S). It is easy to see by integration by parts that we have for every continuous vector field

F ∈ C(S) S F, ∇ ′ ζ δ dσ → - ∂S F, ν(σ) dσ
where ν is the outward unit normal on ∂S. We take ζ = ζ δ in (2.7) and we let δ → 0. Using that ω ∈ C 1 (S) and that, by Hopf lemma, ω ν := ∇ ′ ω, ν(σ) < 0 we can actually pass to the limit in the integrals containing ∇ ′ ζ δ . Recalling that ω = 0 and

∇ ′ ω = -|ω ν |ν on ∂S we obtain 1 - 1 p ∂S |ω ν | p φ ν dS = S ω q+1 q + 1 - Ω p p ∆ ′ φ dσ + S Ω p-2 D 2 φ(∇ ′ ω, ∇ ′ ω)dσ -β(pβ + p -N ) S Ω p-2 ω ∇ ′ ω, ∇ ′ φ dσ.
(2.8) Multiplying (2.1) by ωφ we derive

S Ω p-2 ω ∇ ′ ω, ∇ ′ φ dσ = - S Ω p-2 |∇ ′ ω| 2 φ dσ + βλ(β) S Ω p-2 ω 2 φ dσ + S ω q+1 φ dσ, so that (2.8) becomes, replacing its last term, 1 - 1 p ∂S |ω ν | p φ ν dS = S ω q+1 q + 1 - Ω p p ∆ ′ φ dσ + S Ω p-2 D 2 φ(∇ ′ ω, ∇ ′ ω)dσ -β(pβ + p -N ) S ω q+1 φ dσ + β(pβ + p -N ) S Ω p-2 |∇ ′ ω| 2 φ -β 2 (pβ + p -N )λ(β) S Ω p-2 ω 2 φ dσ.
which is (2.6).

Proof of Proposition 2.1. We use Lemma 2.1 choosing in (2.6) φ to be the first

eigenfunction of -∆ ′ in W 1,2 0 (S N -1 + ). Since ∆ ′ φ = (1 -N )φ, D 2 φ = -φg 0 , we get 1 - 1 p ∂S |ω ν | p φ ν dS = - S N -1 q + 1 + β(pβ + p -N ) ω q+1 φ dσ + N -1 p S Ω p φ dσ - S Ω p-2 |∇ ′ ω| 2 φ dσ + β(pβ + p -N ) S Ω p-2 |∇ ′ ω| 2 φ dσ -β 2 (pβ + p -N )λ(β) S Ω p-2 ω 2 φ.
(2.9)

Then, using also the definition of Ω, (2.2) follows, with A, B and C given by (2.3)-(2.5).

We shall say that a C 2 domain S ⊂ S N -1 + is starshaped if there exists a spherical harmonic φ of degree 1 such that φ > 0 on S and for any a ∈ ∂S,

∇φ, ν a ≤ 0 (2.10)
where ν a is the unit outward normal vector to ∂S at a in the tangent plane T a to S N -1 . It also means that there exists some x 0 ∈ S such that the geodesic connecting x 0 and a remains inside S.

Theorem 2.1 Assume that 1 < p < N -1, q = q c and S ⊂ S N -1 + is starshaped. Then (2.1) admits no positive solution in S vanishing on ∂S.

Proof. Recall that in (1.8) we have β q = p q-(p-1) , hence different values of q are in one-to-one correspondence with different values of β. We first notice that, if q = q c the corresponding critical β is given by

β c := p q c -(p -1) = N -1 -p p . ( 2 

.11)

We use now Proposition 2.1 with β = β q and we analyze the values of the coefficients A, B, C given by (2.3)-(2.5) as functions of β. First of all, since q + 1 = p(1+β) β , we have

A = - (N -1)β p(1 + β) -β(pβ + p -N ) = - β (β + 1) N -1 p + p(β + 1) 2 -N (β + 1)
and since from (2.11) we have

β c + 1 = N -1 p we deduce A = - β (β + 1) p β + 1 - 1 p (β -β c ) .
Still using (2.11), we also get

B = β c + β(p(β -β c ) -1) = (β -β c )(βp -1) .
Finally, using (1.9) and (2.11) we have

C = β 2 N -1 p -(pβ + p -N )((p -1)β + p -N ) = β 2 (β c + 1 -(p(β -β c ) -1)(p(β -β c ) -(β + 1))) = β 2 (β -β c )(1 -p) pβ -1 -p(N -p) p-1
.

(2.12)

Therefore A ≥ 0, B ≥ 0 and C ≥ 0 can be obtained only if q = q c , i.e. β = β c , in which case A = B = C = 0. Since φ ν ≤ 0 because S is star-shaped, we deduce from (2.2) that |ω ν | p φ ν = 0 on ∂S. Unless ω is identically zero, we have ω ν < 0 by Hopf boundary lemma. Then φ ν ≡ 0, and using the equation satisfied by φ and Gauss formula, we derive

λ S S φdσ = 0 =⇒ φ ≡ 0 in S,
which is impossible since φ > 0 in S N -1

+

. This proves the first assertion.

Remark. If p = 2, it is proved in [START_REF] Bidaut-Véron | Isolated boundary singularities of semilinear elliptic equations[END_REF] that the nonexistence result of Theorem 2.1 holds for every q ≥ q c , which suggests that our result above is not optimal. The proof in [START_REF] Bidaut-Véron | Isolated boundary singularities of semilinear elliptic equations[END_REF] cannot be applied here since the term S Ω p-2 ω ∇ ′ ω, ∇ ′ φ dσ is completely integrable only if p = 2. However, we conjecture that, even when p = 2, the conclusion of Theorem 2.1 holds under the more general condition q ≥ q c .

Remark. If we assume that p = 2, the proof of Theorem 2.1 relies on the existence of a positive function φ in S, satisfying (2.10) on ∂S and

∆ ′ φ (q + 1)φ -β(pβ + p -N ) ≥ 0, (2.13) pD 2 φ(ξ, ξ) -∆ ′ φ pφ + β(pβ + p -N ) ≥ 0 ∀ξ ∈ S N -1 , (2.14) 
and

- ∆ ′ φ pφ -(pβ + p -N )((p -1)β + p -N ) ≥ 0. (2.15)
Remark 2.1 For the sake of completeness, we recall the non-existence result obtained in [2, Th 1]:

Let ǫ = 1 and 0 < p -1 < q. If β q ≥ β S , there exists no positive solution of (1.8) in S which vanishes on ∂S.

Existence for the reaction problem

Concerning the problem with reaction we consider a more general statement than Theorem I, replacing the sphere by a complete d-dimensional Riemannian manifold (M, g) and suppose that S is a relatively compact smooth open domain of M . We denote by ∇ := ∇ g the gradient of a function identified with its covariant derivatives and by div := div g the intrinsic divergence operator acting on vector fields. The following result is proved in [START_REF] Porretta | Separable p-harmonic functions in a cone and related quasilinear equations on manifolds[END_REF].

Theorem 3.1 For any β > 0 there exists a unique Λ β > 0 and a unique (up to an homothety) positive function 

ω β ∈ C 2 (S) ∩ C 1 (S) solution of      -div β 2 ω 2 β + |∇ω β | 2 p-2 2 ∇ω β = βΛ β β 2 ω 2 β + |∇ω β | 2 p-2 2 ω β in S ω β = 0 on ∂S. ( 3 
0 < β < β S ⇐⇒ Λ β -β(p -1) > Λ β S -β S (p -1) = p -d -1 Therefore, if we set λ(β) = β(p -1) + p -d -1, we deduce that 0 < β < β S ⇐⇒ Λ β > λ(β). (3.2) 
Let us now prove the existence of solutions for the reaction problem.

Theorem 3.2 Assume 1 < p < d and p -1 < q < q c := pd/(d -p) -1. Then for any 0 < β < β S , there exists a positive function ω ∈ C(S) ∩ C 2 (S) satisfying -div (β 2 ω 2 + |∇ω| 2 ) p 2 -1 ∇ω = βλ(β)(β 2 ω 2 + |∇ω| 2 ) p 2 -1 ω + ω q in S ω = 0 on ∂S, (3.3) where λ(β) = β(p -1) + p -d -1.
In order to prove Theorem 3.2, we use topological arguments as it is often needed in a non-variational setting. In particular, following a strategy similar as in [START_REF] Quaas | Existence results for nonproper elliptic equation involving the Pucci's Operator[END_REF], our proof is based upon the following fixed point theorem which is only one possible consequence of Leray-Schauder degree theory to compute the fixed point index of compact mappings. Such results were developed mostly by Krasnoselskii ([9]), we refer to Proposition 2.1 and Remark 2.1 in [START_REF] De Figuereido | A priori estimates and existence of positive solutions of semilinear elliptic equations[END_REF] for the statement below. Theorem 3.3 Let X be a Banach space and K ⊂ X a closed cone with non empty interior. Let F : K × R + → K be a compact mapping, and let Φ(u) = F (u, 0) (compact mapping from K into K). Assume the following holds: there exist R 1 < R 2 and T > 0 such that (i) u = sΦ(u) for every s ∈ [0, 1] and every u: u = R 1 .

(ii) F (u, t) = u for every (u, t): u ≤ R 2 and t ≥ T . (iii) F (u, t) = u for every u: u = R 2 and every t ≥ 0. Then, the mapping Φ has a fixed point u such that R 1 < u < R 2 .

We also recall the following non-existence results respectively due to Serrin and Zou [START_REF] Serrin | Cauchy-Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities[END_REF], and Zou [START_REF] Zou | A priori estimates and existence for quasi-linear elliptic equations[END_REF].

Theorem 3.4 Assume 1 < p < d and p -1 < q < q c . Then there exists no C 1 positive solution of

-∆ p u = u q (3.4) in R d .
Theorem 3.5 Assume 1 < p < d and p -1 < q < q c . Then there exists no C 1 positive solution of

-∆ p u = u q (3.5) in R d + := {x = (x 1 , ..., x d ) : x d > 0} vanishing on ∂R d + := {x = (x 1 , ..., x d ) : x d = 0}.
Proof of Theorem 3.2. Define the operator A in W 1,p 0 (S) as

A(ω) := -div g (β 2 ω 2 + |∇ω| 2 ) p 2 -1 ∇ω + β 2 ω(β 2 ω 2 + |∇ω| 2 ) p 2 -1 .
Note that A is the derivative of the functional

J(w) = 1 p S (β 2 ω 2 + |∇ω| 2 ) p 2 dv g
Since J is strictly convex, then A is a strictly monotone operator from W 1,p 0 (S) into W -1,p ′ (S), henceforth its inverse is well defined and continuous [START_REF] Lions | Quelques méthodes de résolution des problèmes aux limites non linéaires[END_REF]. In order to apply Theorem 3.3, we denote by X = C 1 0 (S), the closure of C 1 0 (S) in C 1 (S). Clearly X ⊂ W 1,p 0 (S), with continuous imbedding, if it is endowed with its natural norm ||.||

X := ||.|| C 1 (S) . Furthermore, since ∂S is C 2 , C 1 (S) ∩ W 1,p 0 (S) = C 1 0 (S). If
K is the cone of nonnegative functions in S, it has a nonempty interior. For t > 0, we set

F (ω, t) := A -1 β (λ(β) + β + t) ω(β 2 ω 2 + |∇ω| 2 ) p 2 -1 + (ω + t) q .
Note that

Φ(ω) := F (ω, 0) = A -1 β (λ(β) + β) ω(β 2 ω 2 + |∇ω| 2 ) p 2 -1 + ω q ;
henceforth any nontrivial fixed point for Φ would solve problem (3.3).

We have to verify the assumptions of Theorem 3.3. First of all, the compactness of F (ω, t). If we set F (ω, t) = φ, then it means that φ ∈ W 1,p 0 (S) satisfies

-div g (β 2 φ 2 + |∇φ| 2 ) p 2 -1 ∇φ + β 2 φ(β 2 φ 2 + |∇φ| 2 ) p 2 -1 = β (λ(β) + β + t) ω(β 2 ω 2 + |∇ω| 2 ) p 2 -1 + (ω + t) q (3.6)
Thus, if we assume that ω belongs to a bounded set in K ∩ X, the right-hand side of (3.6) is bounded in C(S). Thus, by standard regularity estimates up to the boundary for p-Laplace type operators (see [START_REF] Porretta | Separable p-harmonic functions in a cone and related quasilinear equations on manifolds[END_REF]Appendix] and [START_REF] Dibenedetto | C 1+α local regularity of weak solutions of degenerate elliptic equations[END_REF], [START_REF] Tolksdorff | Regularity for a More General Class of Quasilinear Elliptic Equations[END_REF]), φ remains bounded in C 1,α (S) and therefore relatively compact in C 1 (S). It remains to show that conditions (i)-(iii) of Theorem 3.3 hold.

Step 1: Condition (i) holds. We proceed by contradiction in supposing that there exists a sequence {s n } ⊂ [0, 1] such that for any n ∈ N the following problem

       -div g (β 2 ω 2 + |∇ω| 2 ) p 2 -1 ∇ω + β 2 (β 2 ω 2 + |∇ω| 2 ) p 2 -1 ω = s p-1 β(λ(β) + β)(β 2 ω 2 + |∇ω| 2 ) p 2 -1 ω + s p-1 n ω q in S ω = 0 on ∂S, (3.7 
) admits a positive solution ω n , and that there holds

ω n X → 0 as n → ∞. Set w n = ω n / ω n , then w n solves        -div g (β 2 w 2 n + |∇w n | 2 ) p 2 -1 ∇w n + β 2 w n (β 2 w 2 n + |∇w n | 2 ) p 2 -1 = s p-1 n β(λ(β) + β)(β 2 w 2 n + |∇w n | 2 ) p 2 -1 w n + s p-1 n w q n w n q-(p-1) X in S
w n = 0 on ∂S Up to subsequences, we assume that s n → s for some s ∈ [0, 1]. Using compactness arguments we deduce that w n will converge strongly in C 1 (S) to some positive function w such that w X = 1 and which solves

       -div g (β 2 w 2 + |∇w| 2 ) p 2 -1 ∇w = β s p-1 λ(β) + (s p-1 -1)β (β 2 w 2 + |∇w| 2 ) p 2 -1 w in S w = 0 on ∂S (3.8)
Using Theorem 3.1, we derive Λ β = s p-1 λ(β)+(s p-1 -1)β. Since β < β S , λ(β) < Λ β by (3.2). Therefore, as s ≤ 1, we get

s p-1 λ(β) + (s p-1 -1)β ≤ s p-1 λ(β) < Λ β ,
which is a contradiction. Consequently, there exists R 1 > 0 such that for any s ∈ [0, 1], there holds ω = sΦ(ω) for any ω such that ω X = R 1 .

Step 2: Condition (ii) holds. Consider the first eigenvalue λ 1,β associated with the operator A, i.e.

λ 1,β = min S (β 2 ω 2 + |∇ω| 2 ) p 2 dv g : ω ∈ W 1,p 0 (S) , S |ω| p dv g = 1 (3.9)
Note that for t large enough, we have λ(β) + β + t ≥ 0, hence, using that q > p -1, we can find T > 0 such that

β (λ(β) + β + t) ω(β 2 ω 2 + |∇ω| 2 ) p 2 -1 + (ω + t) q ≥ (λ 1 + δ)ω p-1 ∀t ≥ T , ∀ω ≥ 0 .
Therefore, if t ≥ T and F (ω, t) = ω we deduce that ω = 0 and satisfies

-div g (β 2 ω 2 + |∇ω| 2 ) p 2 -1 ∇ω + β 2 ω(β 2 ω 2 + |∇ω| 2 ) p 2 -1 ≥ (λ 1,β + δ)ω p-1 in S ω = 0 on ∂S
The existence of a positive super-solution with λ 1,β + δ would make it possible to construct a positive solution as well. But since λ 1,β is an isolated eigenvalue (see Appendix) this yields a contradiction. Therefore, for t ≥ T the equation F (ω, t) = ω has no solution at all. Note that T only depends on λ 1 , β.

Step 3: Condition (iii) holds. Since we proved that (ii) holds independently on the choice of R 2 , it is enough to show that (iii) holds for every t ≤ T . This is done if we have the existence of universal a priori estimates, i.e. if we can prove the existence of a constant R 2 such that for any t ≤ T every positive solution of

         -div g (β 2 ω 2 + |∇ω| 2 ) p 2 -1 ∇ω + β 2 ω(β 2 ω 2 + |∇ω| 2 ) p 2 -1 = β(λ(β) + β + t)(β 2 ω 2 + |∇ω| 2 ) p 2 -1 ω + (ω + t) q in S ω = 0 on ∂S satisfies ω < R 2 .
The crucial step is to prove that there exist universal a priori estimates for the L ∞ -norm (a bound for the W 1,p 0 -norm would follow immediately, and then a bound in X from the regularity theory). A standard procedure is to reach this result reasoning by contradiction and using a blow-up argument. Indeed, if a universal bound does not exist, there exist a sequence of solutions ω n and t n ≤ T such that

ω n ∞ → ∞ .
Let σ n be the (local coordinates of) maximum points of ω n ; up to subsequences, we

have σ n → σ 0 ∈ S. Setting M n = ω n -q-(p-1) p ∞ , define v n (y) = ω n (σ n + M n y) ω n ∞ = M p q-(p-1) n ω n (σ n + M n y)
Then v n is a sequence of uniformly bounded solutions, which will be locally compact in the C 1 -topology. Rescaling the equation and passing to the limit in n we find out that the limit function v is positive and satisfies the equation

-∆ p v = c 0 v q
for some constant c 0 (coming out from the local expression of Laplace-Beltrami operator). Depending whether σ 0 ∈ S or σ 0 ∈ ∂S, the equation would take place in either R d or in the half space R d + , where d = N -1, in which case v vanishes on ∂R d

+ . Since p -1 < q < q c , this contradicts either Theorem 3.4, or Theorem 3.5 because, by construction, we have v(0) = 1.

Remark. In the case p = 2, existence is proved in [START_REF] Bidaut-Véron | Isolated boundary singularities of semilinear elliptic equations[END_REF] using a standard variational method. It is also proved that, if (M, g) = (S d , g 0 ) (the standard sphere), and if S is a spherical cap with center a, any positive solution of

∆ ′ ω + β(β + 1 -d))ω + ω q = 0 in S ω = 0 on ∂S, (3.10) 
depends only on the angle θ from a. Furthermore, uniqueness is proved by a delicate analysis of the non-autonomous second order O.D.E. satisfied by ω. In the case p = 2 and assuming always that S is a spherical cap of (S d , g 0 ), it is still possible to construct a radial (i.e. depending only on θ) positive solution of (3.3): it suffices to restrict the functional analysis framework to radial functions. However, there are two interesting open questions the answer to which would be important: (i) Are all positive solutions of (3.3) radial ? (ii) Is there uniqueness of positive radial solutions of (3.3)?

Existence for the absorption problem

Let us now consider the absorption problem, namely (1.8) with ǫ = -1. We give an existence result which extends the previous ones obtained in [START_REF] Véron | Some existence and uniqueness results for solution of some quasilinear elliptic equations on compact Riemannian manifolds[END_REF], with a simpler proof.

Theorem 4.1 Assume 0 < p -1 < q. Then for any β > β S , there exists a unique positive function ω ∈ C(S) ∩ C 2 (S) satisfying

-div g (β 2 ω 2 + |∇ω| 2 ) p 2 -1 ∇ω = βλ(β)(β 2 ω 2 + |∇ω| 2 ) p 2 -1 ω -ω q in S ω = 0 on ∂S, (4.1) where λ(β) = β(p -1) + p -d -1.
Before proving Theorem 4.1, we will need the following lemma. Proof. By Theorem 3.1, Λ β is uniquely defined for any fixed p > 1. To emphasize the dependence of Λ β on p, let us denote it now by Λ β,p . The continuity of Λ β,p with respect to p can be proved in the same way as we proved (see Proposition 2.4 in [START_REF] Porretta | Separable p-harmonic functions in a cone and related quasilinear equations on manifolds[END_REF]) the continuity of Λ β,p with respect to β. Thus, we only sketch the argument, which relies on the construction itself of Λ β,p . Indeed, we proved in [START_REF] Porretta | Separable p-harmonic functions in a cone and related quasilinear equations on manifolds[END_REF] that Λ β,p is the unique constant such that there exists a function v ∈ C 2 (S) satisfying

     -∆ g v -(p -2) D 2 v∇v.∇v 1 + |∇v| 2 + β(p -1)|∇v| 2 = -Λ β,p in S lim σ→∂S v(σ) = ∞. (4.2)
If we normalize v by setting, for example, v(σ 0 ) = 0 for some σ 0 ∈ S, then v is unique. Moreover v ∈ C 2 (S) and v satisfies estimates in W 1,∞ loc (S) which are uniform as β ∈ (0, ∞) and p ∈ (1, ∞) vary in compact sets. It is also easy to check (see [START_REF] Porretta | Separable p-harmonic functions in a cone and related quasilinear equations on manifolds[END_REF]) that Λ β,p remains bounded whenever β varies in a compact set of (0, ∞) and p vary in a compact set of (1, ∞). The estimates obtained on v and ∇v imply that, whenever β n or p n are convergent sequences, the sequence of corresponding solutions v n of (4.2) (such that v n (σ 0 ) = 0) is relatively compact (locally uniformly in C 1 ). The equation (4.2) turns out then to be stable (including the boundary estimates); finally, the uniqueness property of Λ β,p , and of the associated (normalized) solution v, implies the continuity of Λ β,p with respect to both β and p.

Let now β S,p be the spectral exponent defined by the equation

Λ β,p = β(p -1) + p -d -1 (4.3) 
First of all note that when p lies in a compact set in (1, ∞), then necessarily β S,p is bounded. Indeed, since Λ β,p ≤ Λ 1,p whenever β ≥ 1, we have that

β S (p -1) + p -d -1 ≤ Λ 1,p if β S ≥ 1, so that β S ≤ 1 + 1 p -1 (Λ 1,p -(p -d -1)) .
Therefore, if p belongs to a compact set in (1, ∞), then β S remains also in a bounded set. Now, if p n → p 0 , setting β n = β S,pn , we have that β n is bounded and, up to subsequences, it is convergent to some β 0 . From (4.3), we deduce that Λ βn,pn is bounded, which implies that β n cannot converge to zero, hence β 0 > 0. Then, using the continuity of Λ β,p , we can pass to the limit in (4.3) and we deduce that β 0 is the spectral exponent with p = p 0 , i.e. β 0 = β S,p 0 . This proves that β S,p is continuous with respect to p.

We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1.

Step 1: construction of a solution. We use similar ideas as in the proof of Theorem 3.2, i.e. a topological degree argument. On the Banach space X = C 1 0 (S) (endowed with its natural norm) with positive cone K, we set

B(ω) = -div g (β 2 ω 2 + |∇ω| 2 ) p 2 -1 ∇ω + β 2 (β 2 ω 2 + |∇ω| 2 ) p 2 -1 ω + |ω| q-1 ω (4.4) Ψ(ω) := B -1 β (λ(β) + β) (β 2 ω 2 + |∇ω| 2 ) p 2 -1 ω + .
Clearly, Ψ(w) = w implies that w ≥ 0 and solves (4.1). Then, it is enough to prove the existence of a non trivial fixed point for Ψ. Observe that, as in Theorem 3.2, Ψ is a continuous compact operator in X thanks to the C 1,α estimates for p-Laplace operators, and Ψ(K) ⊂ K.

We now wish to compute the degree of I -Ψ. First of all we consider, if R is sufficiently large, deg(I -Ψ, B + R , 0) where

B + R = B R ∩ K. To this purpose, define, for t ∈ [0, 1], Ψ * (ω, t) = tΨ(ω). Then Ψ * is a compact map on X × [0, 1] and if Ψ * (ω, t) = ω, we have -div g (β 2 ω 2 + |∇ω| 2 ) p 2 -1 ∇ω + β 2 (β 2 ω 2 + |∇ω| 2 ) p 2 -1 ω + 1 t q-(p-1) ω q = t p-1 β (λ(β) + β) (β 2 ω 2 + |∇ω| 2 ) p 2 -1 ω. (4.5) 
We get, by the maximum principle,

ω t q-(p-1) ∞ ≤ t p-1 β p-1 (λ(β) + β) ≤ β p-1 (λ(β) + β) .
Since t ≤ 1, we deduce in particular that ω ∞ is bounded independently on t. Then, we have

1 t q-(p-1) ω q ≤ ω t q-(p-1) ∞ ω p-1 ∞ ≤ C ω p-1 ∞ ≤ C .
Multiplying by ω we obtain a similar bound for ω W 1,p 0 (S) , and the regularity theory for p-Laplace type equations yields a further estimate on ∇ω ∞ . Therefore, we conclude that there exists a constant M , independent on t ∈ [0, 1], such that tΨ(ω) = ω implies ω X ≤ M . As a consequence, if R is sufficiently large we have tΨ(ω) = ω on ∂B R . We deduce that deg(

I -tΨ, B + R , 0) is constant. Therefore deg(I -Ψ, B + R , 0) = deg(I -tΨ, B + R , 0) = deg(I, B + R , 0) = 1 . (4.6)
Next, we compute deg(I -Ψ, B + r , 0) for small r. We set

B t (ω) = -div g (β 2 ω 2 + |∇ω| 2 ) p 2 -1 ∇ω + β 2 (β 2 ω 2 + |∇ω| 2 ) p 2 -1 ω + t|ω| q-1 ω (4.7) and F (ω, t) := B t -1 β (λ(β) + β) ω + (β 2 ω 2 + |∇ω| 2 ) p 2 -1 .
Again, we have Ψ(•) = F (•, 1). We claim that there exists a small r > 0 such that F (ω, t) = ω for every t ∈ [0, 1] and ω ∈ ∂B r . Indeed, reasoning by contradiction, if this were not true there would exist a nonnegative sequence ω n such that 0 = ω n → 0, and t n ∈ [0, 1] such that F (ω n , t n ) = ω n , which means that

-div g (β 2 ω 2 n + |∇ω n | 2 ) p 2 -1 ∇ω n + β 2 (β 2 ω 2 n + |∇ω n | 2 ) p 2 -1 ω n + t n ω q n = β (λ(β) + β) ω n (β 2 ω 2 n + |∇ω n | 2 ) p 2 -1
Dividing by ω n p-1 and letting n → ∞, we find that ωn ωn would converge to some function ŵ such that ŵ ≥ 0, ŵ = 1 and

-div g (β 2 ω2 + |∇ω| 2 ) p 2 -1 ∇ω + β 2 (β 2 ω2 + |∇ω| 2 ) p 2 -1 ω = β (λ(β) + β) ω(β 2 ω2 + |∇ω| 2 ) p 2 -1
By Theorem 3.1 this means that λ(β) = Λ β , which is not possible since λ(β) > Λ β because β > β S (see Remark 3.1). Therefore, we conclude that F (ω, t) = ω for every t ∈ [0, 1] and ω ∈ ∂B r provided r is sufficiently small. We deduce that deg(I -F (•, t), B r , 0) is constant and in particular deg(I -Ψ, B + r , 0) = deg(I -F (•, 0), B + r , 0) .

In order to compute this degree, we perform an homotopy acting on p and β by setting p t = 2t + (1 -t)p and by taking β t so that t → β t is continuous on [0, 1], β 0 = β, β t > β S,pt for every t ∈ [0, 1] (where β S,pt is the spectral exponent for S with p = p t ) and β 1 > 0 is large enough. It follows from Lemma 4.2 that β S,pt is a continuous function of t and remains bounded as t ∈ [0, 1]. Therefore, a similar choice of function β t is possible. In the space C 1 0 (S) we define the mapping C t by

C t (ω) := -div g (β 2 t ω 2 + |∇ω| 2 ) p t 2 -1 ∇ω + β 2 t (β 2 t ω 2 + |∇ω| 2 ) p t 2 -1 ω. (4.8) We set F (ω, t) = C -1 t β t (λ(β t ) + β t )(β 2 t ω 2 + |∇ω| 2 ) p t 2 -1 ω . (4.9)
Combining the Tolksdorf's construction [START_REF] Tolksdorff | Regularity for a More General Class of Quasilinear Elliptic Equations[END_REF] which shows the uniformity with respect to p t of the C 1,α estimates (with α = α t ∈ (0, 1)), with the perturbation method of [13, Th A1], we obtain that (ω, t) → F (ω, t) is compact in C 1 0 (S) × [0, 1]. Since β t > β S,pt , clearly I -F (., t) does not vanish on ω X = r for any r > 0 which implies that

deg(I -Ψ, B + r , 0) = deg(I -F (•, 0), B + r , 0) = deg(I -F (•, 1), B + r , 0). But I -F (•, 1) = I -β 1 (λ(β 1 ) + β 1 )(-∆ g + β 2 1 ) -1 . (4.10) 
Since -∆ g has only one eigenvalue in S with positive eigenfunction and multiplicity one, choosing β 1 large in a way that λ(β 1 )β 1 > λ 1 (S) it follows that

deg(I -F (•, 1), B + r , 0) = -1 = deg(I -Ψ, B + r , 0) . To conclude, since we have deg(I -Ψ, B + R \ B + r , 0) = deg(I -Ψ, B + R , 0) -deg(I -Ψ, B + r , 0) = 0
we deduce the existence of some ω such that r < ω < R which is a solution of (4.1).

Step 2: uniqueness. If ω is any positive solution, then β 2 ω 2 + |∇ω 2 | is positive in S. This is obvious in S and it is a consequence of Hopf boundary lemma on ∂S.

Let ω and ω be two positive solutions. Either the two functions are ordered or their graphs intersect. Since all the solutions are positive in S and satisfy Hopf boundary lemma, we can define θ := inf{s ≥ 1 : sω ≥ ω}, and denote ω * := θω. Either the graphs of ω and ω * := θω are tangent at some interior point α ∈ S, or ω * > ω in S and there exists α ∈ ∂S such that ω ν (α) = ω * ν (α) < 0. We put w = ω -ω * and use local coordinates (σ 1 , ..., σ d ) on M near α. We denote by g = (g ij ) the metric tensor on M and g jk its contravariant components. Then, for any ϕ ∈ C 1 (S),

|∇ϕ| 2 = j,k g jk ∂ϕ ∂σ j ∂ϕ ∂σ k = ∇ϕ, ∇ϕ g . If X = (X 1 , ...X d ) ∈ C 1 (T M
) is a vector field, if we lower indices by setting

X ℓ = i g ℓi X i , then div g X = 1 |g| ℓ ∂ ∂σ ℓ |g|X ℓ = 1 |g| ℓ,i ∂ ∂σ ℓ |g|g ℓi X i .
By the mean value theorem applied to

t → Φ(t) = β 2 (ω * + tw) 2 + |∇(ω * + tw)| 2 ( p 2 -1) (ω * + tw) t = 0, 1,
we have, for some t ∈ (0, 1),

(β 2 ω 2 + |∇ω| 2 ) ( p 2 -1) ω -(β 2 ω * 2 + |∇ω * | 2 ) ( p 2 -1) ω * = j a j ∂w ∂σ j + bw, where b = β 2 (ω * + tw) 2 + |∇(ω * + tw)| 2 ( p 2 -2) (p -1)β 2 (ω * + tw) 2 + |∇(ω * + tw)| 2 and a j = (p -2) β 2 (ω * + tw) 2 + |∇(ω * + tw)| 2 ( p 2 -2) (ω * + tw) k g jk ∂(ω * + tw) ∂σ k Considering now t → Φ i (t) = β 2 (ω * + tw) 2 + |∇(ω * + tw)| 2 ( p 2 -1) ∂(ω * + tw) ∂σ i t = 0, 1,
we see that there exists some t i ∈ (0, 1) such that

(β 2 ω 2 + |∇ω| 2 ) ( p 2 -1) ∂ω ∂σ i -(β 2 ω * 2 + |∇ω * | 2 ) ( p 2 -1) ∂ω * ∂σ i = j a ij ∂w ∂σ j + b i w,
where

b i = (p -2) β 2 (ω * + t i w) 2 + |∇(ω * + t i w)| 2 ( p 2 -2) β 2 (ω * + t i w) ∂(ω * + t i w) ∂σ i and a ij = (p -2) β 2 (ω * + t i w) 2 + |∇(ω * + t i w)| 2 ( p 2 -2) ∂(ω * + t i w) ∂σ i k g jk ∂(ω * + t i w) ∂σ k +δ j i β 2 (ω * + t i w) 2 + |∇(ω * + t i w)| 2 ( p 2 -1) 
.

Set P = ω * (α) = ω(α) and Q = ∇ω * (α) = ∇ω(α). Then P 2 + |Q| 2 > 0 and b i (α) = (p -2) β 2 P 2 + |Q| 2 ( p 2 -2) β 2 P Q i , and 
a ij (α) = β 2 P 2 + |Q| 2 p 2 -2 δ j i (β 2 P 2 + |Q| 2 ) + (p -2)Q i k g jk Q k .
Because ω * is a supersolution for (4.1), the function w satisfies

- 1 |g| ℓ,j ∂ ∂σ ℓ A jℓ ∂w ∂σ j + i C i ∂w ∂σ i + Dw ≤ 0 (4.11)
where the C i and D are continuous functions and

A jℓ = |g| i g ℓi a ij .
The matrix (a ij )(a) is symmetric definite and positive since it is the Hessian of Therefore the matrix (A jℓ ) keeps the same property in a neighborhood of a. Since w is nonpositive and vanishes at some a ∈ S or w < 0 and w ν = 0 at some boundary point, it follows from the strong maximum principle or Hopf boundary lemma (see [START_REF] Protter | Maximum principles in differential equations[END_REF]) that w ≡ 0, i.e. θω = ω. This implies that actually θ = 1 and ω = ω.

Appendix

We prove here the following result The function |ω| is also a minimizer for λ 1,β , thus it is a positive solution of (5.2). By Harnack inequality [START_REF] Serrin | Local behaviour of solutions of quasilinear equations[END_REF], for any compact subset K of S, there exists which implies that ω is an eigenfunction associated with λ 1,β . We observe that ω n cannot have constant sign. Indeed, if we had that ω n is positive in Ω, we could proceed as in the proof of Theorem 4.1-Step 2; up to rescaling ω n , we could assume that w = ω -ω n is nonpositive, is not zero, and the graphs of ω and ω n are tangent. In that case, using (5.2) and (5. 

C K such that |ω|(σ 1 ) |ω|(σ 2 ) ≤ C K ∀σ i ∈ K, i = 1, 2.
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 1 The mapping β → Λ β is continuous and decreasing, and the spectral exponent β S is the unique β > 0 such that Λ β S = β S (p -1) + p -d -1. Remark 3.1 Let us notice that the monotone character of β → Λ β implies that
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 42 For β > 0 and p > 1, let Λ β and β S be defined by Theorem 3.1. Then both Λ β and β S are continuous functions of p, varying in (1, ∞).
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 512121 Let S be a subdomain of a complete d-dimensional Riemannian manifold (M, g). If β > 0 and p > 1, the first eigenvalue λ 1,β of the operator ω → -div((β 2 ω 2 + |∇ω| 2 ) p ∇ω) + β 2 ω(β 2 ω 2 + |∇ω| 2 ) p in W 1,p0 (S) is isolated. Furthermore any corresponding eigenfunction has constant sign.Proof. The proof is an adaptation of the original one due to Anane and Lindqvist when β = 0. We recall thatλ 1,β = inf S (β 2 ω 2 + |∇ω| 2 ) p 2 dv g : ω ∈ W 1,p 0 (S), |ω| p dv g = 1 ,(5.1)and that there exists ω ∈ W 1,p 0 (S) ∩ C 1,α (S) such that -div((β 2 ω 2 + |∇ω| 2 ) p 2 -1 ∇ω) + β 2 ω(β 2 ω 2 + |∇ω| 2 ) p 2 -1 = λ 1,β |ω| p-2 ω in S. (5.2)

2 - 1 2 - 1 =

 2121 Thus any minimizer ω must keep a constant sign in S. If λ 1,β is not isolated, there exists a decreasing sequence {µ n } of real numbers converging to λ 1,β and a sequence of functions ω n ∈ W 1,p 0 (S), solutions of-div(β 2 ω 2 n + |∇ω n | 2 ) p ∇ω n ) + β 2 ω n (β 2 ω 2 n + |∇ω n | 2 ) p µ n |ω n | p-2 ω n in S (5.3) such that ω n L p (S) = 1. By standard compactness and regularity results, we can assume that ω n → ω weakly in W 1,p 0 (S) and strongly in L p (S). Thus S (β 2 ω 2 + |∇ω| 2 ) p 2 dv g ≤ lim inf n→∞ S (β 2 ω 2 n + |∇ω n | 2 ) p 2 dv g = λ 1,β

  [START_REF] Bidaut-Véron | Isolated boundary singularities of semilinear elliptic equations[END_REF], we see that w satisfies a nondegenerate elliptic equation (as in (4.11)), and we obtain a contradiction either by the strict maximum principle or by Hopf lemma. Thus, any eigenfunction ω n must change sign in Ω. Set S + n = {σ ∈ S : ω n (σ) > 0} and S - n = {σ ∈ S : ω n (σ) < 0}. Clearly, for 0 < θ < 1,S ± n (β 2 ω 2 n + |∇ω n | 2 ) p 2 dv g ≥ (1 -θ)β p S ± n |ω n | p dv g + θ S ± n |∇ω n | p dv g .

It follows from (5.3), multiplying by ω + n , that

Since for some suitable q > p (for example q = p * if p < d, or any p < q < ∞ if p ≥ d)

Similarly we get, multiplying (5.3) by ω - n , that

It follows that the two sets S ± = lim sup n→∞ S ± n have positive measure. Since ω ≥ 0 on S + and ω ≤ 0 on S -, we derive a contradiction with the fact that any eigenfunction corresponding to λ 1,β has constant sign.