Discrete Surfaces and Infinite Smooth Words - Archive ouverte HAL
Communication Dans Un Congrès Année : 2005

Discrete Surfaces and Infinite Smooth Words

Damien Jamet
  • Fonction : Auteur
  • PersonId : 1185869
Geneviève Paquin
  • Fonction : Auteur
  • PersonId : 897130

Résumé

In the present paper, we study the (1,1,1)-discrete surfaces introduced in {Jam04]. In \[Jam04], the (1,1,1)-discrete surfaces are not assumed to be connected. In this paper, we prove that assuming connectedness is not restrictive, in the sense that, any two-dimensional coding of a [1,1,1]-discrete surface is the two-dimensional coding of both connected and simply connected ones. In the second part of this paper, we investigate a particular class of discrete surfaces: those generated by infinite smooth words. We prove that the only smooth words generating such surfaces are K_{\{1,3\}}, 1K_(1,3) and 2K_(1,3)$, where K_(1,3)=33311133313133311133313331 is the generalized Kolakoski's word on the alphabet {1,3}.
Fichier principal
Vignette du fichier
fpsac231104.pdf (270.28 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00580569 , version 1 (28-03-2011)

Identifiants

  • HAL Id : hal-00580569 , version 1

Citer

Damien Jamet, Geneviève Paquin. Discrete Surfaces and Infinite Smooth Words. FPSAC: Formal Power Series and Algebraic Combinatorics, Jun 2005, Taormina, Italy. ⟨hal-00580569⟩
135 Consultations
55 Téléchargements

Partager

More