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Abstract In the present paper, we study the (1,1, 1)-discrete surfaces
introduced in [Jam04]. In [Jam04], the (1,1, 1)-discrete surfaces are not
assumed to be connected. In this paper, we prove that assuming connect-
edness is not restrictive, in the sense that, any two-dimensional coding
of a (1,1,1)-discrete surface is the two-dimensional coding of both con-
nected and simply connected ones. In the second part of this paper,
we investigate a particular class of discrete surfaces: those generated
by infinite smooth words. We prove that the only smooth words gen-
erating such surfaces are Ky, 3y, 1K1 3} and 2Ky, 3), where K 3, =
33311133313133311133313331 ... is the generalized Kolakoski’s word on
the alphabet {1,3}.

Résumé Dans cet article, nous étudions les (1,1, 1)-surfaces discrétes
introduites dans [Jam04]. Dans Darticle [Jam04], les surfaces ne sont
pas supposées discrétes. Nous montrons dans cet article qu’il n’est
pas restrictif de faire une telle supposition et que tout codage bi-
dimensionel d’une (1,1,1)-surface discréte code a la fois une surface
connexe et une surface simplement connexe. La seconde partie de cet
article est consacrée a ’étude des surfaces discrétes engendrées par des
mots lisses. Nous démontrons que les seuls mots lisses engendrant de
telles surfaces sont les mots Ky 3y, 1K 13y et 2Ky 33, ot K13y =
33311133313133311133313331... est le mot de Kolakoski généralisé sur
lalphabet {1,3}.

1 Introduction

A wide literature has been devoted to the study of Sturmian words, that is,
the infinite words over a binary alphabet which have n + 1 factors of length
n [Lot02]. These words are also equivalently defined as a discrete approxima-
tion of a line with irrational slope. Then, many attempts have been done to
generalize this class of infinite words to two-dimensional words. For instance, in
[Vui98,BV00,ABS04], it is shown that the orbit of an element p € [0, 1] under the
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action of two rotations codes a discrete plane. Furthermore, the problem of one
or two-dimensional words characterizing discrete lines or planes is investigated
in [BV00,Lot02,ABS04,BT04,DGKO03]. In [Jam04], the author introduces the
(1,1, 1)-discrete surfaces as a quite natural generalization of the discrete planes
of [BV00,ABS04] and shows how to decide whether a given two-dimensional
sequence over the three-letter alphabet {1,2, 3} codes a (1, 1, 1)-discrete surface.

In this paper, we study the connectedness and the simple connectedness of
the (1,1, 1)-discrete surfaces and we show that, given a two-dimensional sequence
u over the three-letter alphabet {1,2,3}, then u codes (1,1, 1)-discrete surface
if and only if u codes a connected one and a simply connected one. Secondly,
we study the (1,1, 1)-discrete surfaces associated with smooth words as in for
instance [BL02,BLL02,BBLP03] for the case of 2-letters alphabets and [BBC04]
for arbitrary alphabets. These surfaces have local geometric properties and we
give an explicit description of the associated smooth words.

This paper is organized as follows. In Section 2, we recall the basic notions
concerning (1,1, 1)-discrete surfaces and the combinatorics of two-dimensional
words over a finite alphabet. In Section 3, we prove the first main result of this
paper, namely

Theorem. Let u € {1,2,3}Z2 be a two-dimensional sequence. The following
assertions are equivalent:

i) the sequence u codes a (1,1,1)-discrete surface;
i1) the sequence u codes a connected and simply connected (1,1, 1)-discrete sur-
face.

We also prove that any connected surface coded by an element of {1, 2, 3}22 is
simply connected. Finally, in Section 4, we demonstrate the second main result
of this paper, that is:

Theorem. Let w be a smooth word over the alphabet {1,2,3}. The tiling
T(w) associated to w is a piece of a discrete surface if and only if w €
{K1,3y, 1K1 3y, 2K 1 3y} where Ky 3y is the generalized Kolakoski’s word.

2 Basic notions

2.1 Discrete surfaces

In this section we recall the basic notions concerning (1,1, 1)-discrete surfaces
and discrete planes.

Let {e_f7 e, e_g)} denotes the canonical basis of the Euclidean space R3. An
element of Z3 is called a vozel. The fundamental unit cube C is the set defined
by:

C= {Z‘le_f + $2€_2> + 1‘36_3) | ($1,$2,$3) S [O, 1]3} .
Let @ € Z3. The set @ + C is called the unit cube pointed by 7.

Let P be the plane with equation (v, 7) = u with v € R, 4 € R and
(?, ?) = v121 + v2x2 + vox3 denoting the usual scalar product of the vectors



o and 7. Let Cp be the union of the unit cubes pointed by a voxel z € Z3 and
intersecting the open half space (v, @) < u. We call discrete plane associated
to P the set Pp = Cp \Cp of Cp, where Cp (resp. Cp) is the closure (resp. the
interior) of the set Cp in R?, provided with its usual topology.

Let us now define the three fundamental faces (see Figure 1):

117},

[2

Ey = {z9e3 + x3€3 | (v2,73) € [0

Ey ={—mz1e1 + x3e3 | (z1,23) € [0, )
[0,

}
17}

B3 = {—z161 — 2963 | (v1,72) €

— — —

es €3 €3
a e a 2 e 2
(a) Face of type 1. (b) Face of type 2 (c) Face of type 3

Fig. 1. The three fundamental faces.

Let @ € Z% and k € {1,2,3}. The set 2 + E}, is called a pointed face of type
k. The vector 7 is called the distinguished vertex of @ + Ej.

Let m:R3 — {% € R3| (ej +é+e3, ) = 0} be the orthogonal projection
map onto the plane Py with equation (e7 + e3 + e3, ) = 0.

The following properties hold:

Theorem 1. [ABS04| Let Pp be a discrete plane and let Vp be the set of vertices
of Pp. We suppose that P admits a normal vector v € Rﬁ_.

1. The set Pp is partitioned by pointed faces.
2. The restriction maps my, : Vp — W(ZB) and mp, © Pp —

T ER?|(e]+estes, )= 0} are bijective.
Let us now define the (1,1, 1)-discrete surfaces as follows:

Definition 1. [Jam04] A disjoint union & C R? of pointed faces is a (1,1,1)-
discrete surface if the map

me: 6 — Po
T = 7(7)

is a bijection (see Figure 2). The set Ve = & NZ3 is called the set of vertices
of 6.



Fig. 2. A piece of a discrete surface

From now on, to reduce the notation, we will use the terminology discrete
surface instead of (1,1, 1)-discrete surface.

Before associating a two-dimensional coding over the three letter-alphabet
{1,2,3} to any discrete surface &, let us recall a technical lemma:

Lemma 1. Let G be a discrete surface. The following properties hold:

i) The map
oo+ & — = (2)

)
xr — w(x

s a bijection.
i) Each vertex  of Vp is the distinguished vertex of one and only one pointed
face.

We can now associate a two-dimensional coding over the three letter-alphabet
{1,2,3} to any discrete surface & as follows: let I = m(Z®) = Zn(e]) ® Zn(e3).
We identify I" and Z2 by the lattice isomorphism

o: 7 — r
(m,n) — mm(er) +nn(ez).

To any 2discrete surface &, we associate the two-dimensional coding u €
{1,2,3}% defined by: ¥(m,n) € Z2, Vk € {1,2, 3},

Up,n, = k if and only if wﬁ,}g (mn(er) +nn(ez)) is of type k in &.

In other words, u,, , = k if the pre-image of the points mn(e7) + nw(ez) is of
type k in G.

A natural question is: given a two-dimensional sequence u € {1, 2, 3}22, does
u code a discrete surface ? Before answering this question, we need several notions
concerning combinatorics of two-dimensional words over a finite alphabet.



2.2 Basic notions on two-dimensional sequences over a finite
alphabet

In this section, we recall some basic notions of combinatorics on two-dimensional
words over a finite alphabet (see for instance [GRI7]).

Let X be a finite alphabet. Let {2 be a finite subset of Z2. A function w :
2 — X is called a finite pointed pattern over the alphabet X .

A shape 12 of Z? is the equivalence class of 2 C Z?2 for the following equiva-
lence relation:

N~ —= 3(1]1,’[}2) € Z2, 21 =2 + (U17'U2).

Let {2 be a finite subset of Z2. A finite pattern of shape 2 is the equivalence
class of a finite pointed pattern w : 2 — X for the following equivalence
relation: for all pair w : 2 — XY and w’ : 2 — X of finite pointed patterns,
w ~ w' if and only if there exists an element (vq,v;) € Z? such that:

2 =0+ (vi,v2) and V(m,n) € 2, W n = W imtv,.ntvs-

In order to simplify the notation, from now on, we will denote the finite patterns
w instead of w and we will denote the shapes 2 instead of £2.

Let u € X2° be a two-dimensional sequence and let w : {2 — X' be a finite
pointed pattern. An occurrence of w in u is an element (mg,ng) € Z? such that
for all (m,n) € £2, Wy n = Umg+m,ne+n- Lhe set of finite patterns occurring in
u is called the language of u and is denoted L£(u). Given a shape (2, the set of
finite patterns with shape 2 occurring in u is called the (2-language of u and is
denoted by Lo (u).

Let £2 be a shape. The 2-complexity map of u is the function py; : e
NU {oo} defined as follows:

po: X% — NU {0}
u = [Lo(u)l,

where |Lg(u)| is the cardinality of the set Lg(u).

2.3 Recognition of discrete surfaces

Let u € {1,2, 3}22. In this section we investigate the following question: does u
code a discrete surface? Let us first introduce the pointed hooks and the hook
shape of u.

Definition 2. The hook shape is the equivalence class of the sets
{(m,n); (m,n+1);(m+1,n+1)}, for (m,n) € Z2, for the relation ~ in Section
2.2.

The following theorem holds:

Theorem 2. [Jam04] Let u € {1,2,3}%". Then u codes a discrete surface if and
only if the hook-language of u is included in the following set of patterns (see
Figure 4).
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Fig. 4. Left: The permitted hook-words. Right: The 3-dimensional representation of
the permitted hook-words.

A drawback of the previous definition of discrete surface is to be non-intuitive.
For instance, let us consider a discrete plane Bp. By construction, Pp is con-
nected and simply connected, that is, it does not contain any hole. Let T € Vp
be a vertex of Pp of type k. Then, P\ {7 + Ex} U{(T + e +es +e3)+ Ex}
is still a discrete surface.

In the following section, we show that assuming the discrete surfaces to be
connected is not a restriction. More precisely, we prove that any sequence u €
{1,2, 3}Z2 which codes a discrete surface codes a connected and simply connected
one.

3 The connected discrete surfaces

In this section, we investigate the discrete surfaces introduced in [Jam04] and
prove that, for any discrete surface G, there exists a connected discrete surface
G with the same two-dimensional coding.

Theorem 3. Let u € {1,2,3}22 be a two-dimensional sequence. The following
assertions are equivalent:



i) the sequence u codes a discrete surface;
ii) the sequence u codes a connected discrete surface.

Let z = mn(e;) +nm(ez), with (m,n) € Z2. Using the previously introduced
identification of I and Z? (see Section 2), we will denote u instead of w, ,,.
Let u € {1,2,3}% be the two-dimensional coding of a discrete surface, that

is,

Ter
where F; is a fundamental face (i € {1,2,3}), is a partition of the plane Py (see
[Jam04]). Tet 2 € I and 3 € I'. We define a partial order relation —— over
I as follows: for all @ € I, for all 4 € I', ¥ — 7 if and only 7/ is on the
boundary of T’ + m(E,_.).

Lemma 2. Let ¥ € I'. Then ¥ — T —7(e;) and T = T —7(e7) — m(es)

(an illustration of this property is given in Figure 5).

Proof. This is immediatly deduced from 7(e3) = —(m(e7) +m(ez)) and from the
definitions of E1, Fs and E3 and the projection map 7. |
(@) @)

Fig. 5. Lattice representation of the partial order relation ——.

Finally, Theorem 3 is a direct consequence on the following lemma.

Lemma 3. Let T € Z% and let | = (7)) —7w(er) —7w(es) € I' and 7 =
7(7') — w(e1) € I be the left and the right targets of the arrows with source on
7(@) in the graph of Figure 5. Then, the set

(E’ +Euﬂ(?)) + (7+E 7) +(Z + Bus),

with
Y =7 +esand 7 =7 +e+es if Ur(zy = 1,
Y=7+es and T =7 —el if Ur(z) = 2,
— e — - =
Yy =2 —e] —e3 and 2 =7 —e] if uﬂ(?)—S



Proof. In each case, one can verify that {3, 2’} C (? + FE

let us suppose that u,zy = 1. Then,

) . For instance,

Ur ()

(E) + Euw(y)) = ? + {.’1326_2) + 373@_3) | (.132,.’133) € [07 1]2} )

and ¥ =7 +e3 € (? + By, ) (see Figure 6). Idem for Z =7 +es+es.
Finally, 7(7) = (T + &) = 7(T) — n(&) — n(e3) = n(1). =
e

Fig. 6. Computing a connected surface by induction.

We can now prove Theorem 3:

Sketch of the proof. For all g € I' and r € R, let us denote Br(Zo,r) =
{mn(e7) +nn(ez) € I' | max{|m/|,|n|} < r}.

Let 61 = Eu. Then, the set &, is connected, 7(&; NZ3) = Bp(ﬁ), 1) and
for all 7 € Z>N &, T is of type ur(z)- Let r € N* and let us suppose that &,
is a connected disjoint union of pointed faces such that 7(&,) NZ3 = B[‘(H, T)
and for all 7 € Z3N G,, @ is of type Ur(z)- Then, with Lemma 3 and the
connectedness of the relation — (see Figure 7), one can be convinced that

it is possible to build, by induction on the sets (BF(B)J‘)) , a connected
reN*

union &, of pointed faces such that 7(&,,1 NZ3) = B[‘(B),T + 1). Indeed,
— — - . —
for any element ¥ € Br(0,r+ 1)\ Br(0,r), there exists an element @ €

Br(0,r) such that @ — 5. We thus obtain an increasing sequence (&,),.cn=
of connected unions of pointed faces such that, for all » € N*, mg : &, — P
is an injection(remind that we assume u to code a discrete surface). Let

6= e,
reN*

The set & is connected (it is an increasing sequence of connected sets) and
7 : & — P is injective. Finally, since 7(& NZ3) = I' and u codes a discrete



Fig. 7. A part of the graph of the relation —.

surface, that is,

U (#@) +7(Bus)) =P,

TEGNZ3

we conclude that 7 : & — Py is surjective. |

An other interesting property of two-dimensional sequences coding discrete
surfaces is:

Theorem 4. Let u € {1,2, 3}Zz and let G be a connected discrete surface coded
by u. Then & is simply connected, that is, & admits no hole.

Sketch of the proof. Let (&,),.cy. be the sequence computed in the proof of
Theorem 3. Then the following assertion holds:

Vr e N*, 6, C &,,.

Then,

6= J &,
reN*
and G is a union of closed sets. On can notice that each set B(7',r) = {y €
R3 | |7 — ¥l < r}, with 7 € RY, intersects at most a finite number of
closed pointed faces. Hence, it becomes easy to show that & is closed. Since
7w : R3 — Py is continuous, it follows that e : & — Py is continuous. It

remains to show that w‘%l : Pop — & is continuous. It follows from the fact that

7 :R3 — Py is a closed map. Finally, we have proved that e : & — Pis an
homeomorphism. Finally, & is simply connected, since P is simply connected.ll

4 Discrete surfaces generated by smooth words

In this section, we first recall some notions of combinatorics on words over ar-
bitrary alphabets, as defined in [BBC04]. Then, we study the discrete surfaces
which are generated by a specific class of words, the right infinite smooth words
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over the alphabet {1,2,3}. We prove that there are only three such discrete sur-
faces.
Let us consider a finite alphabet X of letters. A right infinite word is a sequence
w € XN, Every word w € XN can be uniquely written as a product of factors as
follows:
w=oa1%a®a3®...

with e; € N* and o; # o41. Hence, the run-length encoding defined by:

A N — NN

w=a1"a?a3% ... — ejegez...,

is well defined on XN,

Given a non-empty finite subset X of N, we define the right infinite smooth
words over X as the words which are invariant under the action of the A operator.
More precisely, the set Ky of the right infinite smooth words over X' is defined
as follows:

Ke={we SN VE €N, AF(w) € Z’N}.
Ezample 1. 1f X = {1, 2}, the operator A as two fixpoints, namely
A(K12y) = Kqi,2y, Al Kp9y) = 1- Ky 93,
where Ky 9y is the well-known Kolakoski word [Kol66], whose first terms are:
K10y = 22112122122112112212112122112112122122112122121121122. ..

Given a smooth words w over a finite alphabet X, we define the tiling asso-
ciated to w (see [BBLP03]) as the two-dimensional sequence (T(w)m,n)(m,n)eNQ
as follows:

Vm € N, (T(w)m,e) = A™(w).

In other words, for any m € N, the m-th line of (T(w)m’n)(m nyenz 18 the right
infinite word A™ (w).
Let us now state the main result of this section:

Theorem 5. Let w be a smooth word over the alphabet {1,2,3}. The tiling
T(w) associated to w is a piece of a discrete surface if and only if w €

{Kq13}, 1K¢13y,2K13y }-

Proof. Using the permitted hook-words of Figure 4 and the smoothness condi-
tion, that is,
VmeN, T(w)mt1,e = A(T(W)m,e)

an exhaustive inspection gives that T'(w) must start by one of the patterns of
Figure 8.

Clearly, the other 5 patterns are excluded because they do not respect the
smoothness condition. We proceed by exhaustive inspection. Let us for instance
investigate the first case (see Figure 9). In the two first extensions of the ini-
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5:21‘ 6:33‘ 7:22‘

1 2 3

Fig. 8. The possible starting patterns.

1 3‘

1
13/1’] \1\3,1/1 133‘ 133‘
1.1 2 1173 12 1|3

RN T 1K 3

Fig. 9. The different extensions in the first case.

tial word, the smoothness condition does not hold. In the third extension, the
smoothness condition provides a forbidden pattern. In the last extension, we
obtain the tiling associated to the word 1K, 3.

The other cases can be treated in the same way. For instance, we obtain the
tiling 7' (2K{y,3y) in the second case, and the tiling T (K{q 3) in the third case.
None of the other cases leads to a discrete surface (for a complete proof, see
Appendix A). ]

Since the identification of the three fundamental faces to the letters 1, 2 and
3 is arbitrary, a natural question arises: what is the action of permutation on the
coding alphabet? Does the result still hold? If not, for each permutation, what
are the smooth tilings that describe a discrete surface? This will be described in
a forthcoming paper.
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A Appendix

In this appendix, we give the detailled proof of Theorem 5. The next definitions
are necessary.

Every hook pattern may be extended on the right by using the set of per-
mitted hook-words of Figure 4. This process is identified by



13

Ezample 2. The pattern

33‘

can be extended on the right by using patterns in S in only 2 ways:

3|3 331
3 3|3

or
33‘ 333‘
3 3|3

Every tiling may be completed by using the smoothness property. This
process is identified by

s [T T TT] [ 1]

and is defined by R; = D, (R;—1), where R; denotes the i-th row of the tiling
and D, denotes the right derivative of a smooth word (see [BMP04]).

123‘3‘2‘2‘1‘3‘ 123322‘1‘3‘
1)1 1]1l2]2]1

2 2|2

|2 | 2

(a) (b)

Fig. 11. Example of completion with the smoothness property.

Ezample 3. Using the smoothness property, the tiling in Figure 11 A) is extended
to the tiling in Figure 11 B).

Proof of Theorem 5. Using the smoothness condition, it follows that the
tilings start with a pattern from Figure 8. Clearly, the other 5 patterns are
excluded because they do not respect the smoothness condition. We proceed by
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exhaustive inspection.

Case 1: Already done in the paper.

Case 2:
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Case 3:

S p

T(K{1,33)

Case 4:




17

Case 5:

Case 6:

w
w

311‘1‘ 331‘1‘

[~][~]e
w
-

3]s a[a]1]1]
2|3 2] 21
1f1 2 (1

1
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Case 7:

3311‘1‘




