PARAMETER ESTIMATION FOR FRACTIONAL ORNSTEIN-UHLENBECK PROCESSES: NON-ERGODIC CASE
Résumé
We consider the parameter estimation problem for the non-ergodic fractional Ornstein-Uhlenbeck process defined as $dX_t=\theta X_tdt+dB_t,\ t\geq0$, with a parameter $\theta>0$, where $B$ is a fractional Brownian motion of Hurst index $H\in(\frac{1}{2},1)$. We study the consistency and the asymptotic distributions of the least squares estimator $\widehat{\theta}_t$ of $\theta$ based on the observation $\{X_s,\ s\in[0,t]\}$ as $t\rightarrow\infty$.
Fichier principal
Parameter_estimation_for_non-ergodic_fractional_OU.pdf (141.57 Ko)
Télécharger le fichier
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...