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Abstract

We consider the parameter estimation problem for the non-ergodic fractional Ornstein-
Uhlenbeck process defined as dX; = 0X.dt + dB:, t > 0, with a parameter § > 0, where B
is a fractional Brownian motion of Hurst index H € (%, 1). We study the consistency and

the asymptotic distributions of the least squares estimator 6, of § based on the observation
{Xs, s€[0,t]} as t — oo.

Key words and phrases: Parameter estimation, Non-ergodic fractional Ornstein-Uhlenbeck process,
Young integral.
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1 Introduction

We consider the Ornstein-Uhlenbeck process X = {X;,t > 0} given by the following linear stochas-
tic differential equation

X() = 0, de == 6det + dB,g7 t Z O7 (1)

where B is a fractional Brownian motion of Hurst index H > % and 0 € (—oo,00) is an unknown
parameter. An interesting problem is to estimate the parameter 6 when one observes the whole
trajectory of X. First, let us recall some results in the case when B is a standard Brownian motion.
In this special case, the parameter estimation for # has been well studied by using the classical
maximum likelihood method or by using the trajectory fitting method. If § < 0 (ergodic case), the
maximum likelihood estimator (MLE) of § is asymptotically normal (see Liptser and Shiryaev [9],
Kutoyants [8]). If & > 0 (non-ergodic case), the MLE of 6 is asymptotically Cauchy (see Basawa
and Scott [3], Dietz and Kutoyants [4]). Recently, in a more general context, several authors
extended this study to some generalizations of Ornstein-Uhlenbeck process driven by Brownian
motion (for instance, Barczy and Pap [2]). Similar properties of the asymptotic behaviour of MLE
has also been obtained with respect to the trajectory fitting estimators (see Dietz and Kutoyants

[4])-



When B is replaced by an a-stable Lévy motion in the equation (1), Hu and Long [6] discussed
the parameter estimation of 6 in both the ergodic and the non-ergodic cases. They used the
trajectory fitting method combined with the weighted least squares technique.

Now, let us consider a parameter estimation problem of the parameter 6 for the fractional
Ornstein-Uhlenbeck process X of (1).

In the case § < 0 (corresponding to the ergodic case), Hu and Nualart [7] studied the parameter
estimation for 6 by using the least squares estimator (LSE) defined as

5 _ iy XodX,

= S t>o. 2
" xzas @)

This LSE is obtained by the least squares technique, that is, é\t (formally) minimizes

2
s| ds.

To obtain the consistency of the LSE é;, the authors of [7] are forced to consider fot X,dX, as
a Skorohod integral rather than Young integral in the definition (2) Assuming fot XsdXs is a

Skorohod integral and 6 < 0, they proved the strong consistence of Gt it H > =, and that the LSE

0, of 0 is asymptotically normal if H € [%7 %) Their proof of the central hmlt theorem is based

on the fourth moment theorem of Nualart and Peccati [12].
In this paper, our purpose is to study the non-ergodic case corresponding to ¢ > 0. More
precisely, we shall estimate 6 by the LSE 6, defined in (2), where in our case, the integral fo X dX,

2
is interpreted as a Young integral. Indeed in that case, we have 0t = ﬁ which converges
0 s

almost surely to 6, as t tends to infinity (see Theorem 1). Moreover, it turned out that the path-
wise approach is the preferred way to simulate numerically an estimator 9: Our technics used in
this work are inspired from the recent paper by Es-Sebaiy and Nourdin [5].

The organization of our paper is as follows. Section 2 contains the presentation of the basic
tools that we will need throughout the paper: fractional Brownian motion, Malliavin derivative,
Skorohod integral, Young integral and the link between Young and Skorohod integrals. The aim
of Section 3 is twofold. Firstly, we prove when H > 3 1 the strong consistence of the LSE Gt, that

is, Gt converges almost surely to 0, as ¢ goes to mﬁmty Secondly, we investigate the asymptotic
distribution of our estimator 6, in the case H > =. We obtain that (see Theorem 5)

ot (9} . 0) 1% 990(1)  as t — oo,

with C(1) the standard Cauchy distribution with the probability density function = + ey T € R.

2 Preliminaries

In this section we describe some basic facts on the stochastic calculus with respect to a fractional
Brownian motion. For more complete presentation on the subject, see [11], [1] and [10].

The fractional Brownian motion (B, ¢ > 0) with Hurst parameter H € (0,1), is defined as a
centered Gaussian process starting from zero with covariance

1 (2 + s — |t — 5?7

Rul(t,s) = E(B.B,) = 5

We assume that B is defined on a complete probability space (2, F, P) such that F is the sigma-
field generated by B. By Kolmogorov’s continuity criterion and the fact

E(B;— B, =|s—t|*"; s, t> 0,



we deduce that B has Holder continuous paths of order H — ¢, for all € € (0, H).

Fix a time interval [0,7]. We denote by H the canonical Hilbert space associated to the
fractional Brownian motion B. That is, H is the closure of the linear span £ generated by the
indicator functions 1y 4, t € [0,7] with respect to the scalar product

(110,95 1j0,s]) = Ru(t, s).

The application ¢ € &€ — B(¢) is an isometry from £ to the Gaussian space generated by B and
it can be extended to H.

If H > 1 the elements of H may be not functions but distributions of negative order (see [13]).
Therefore, it is of interest to know significant subspaces of functions contained in it.

Let |H| be the set of measurable functions ¢ on [0, 7] such that

||90|||H\ = H(2H —1) / / u)||p(v)||u — v* 2dudv < .

Note that, if ¢, 1 € |H|,

E(B(g)B()) = H2H — 1) / / (o)} — v[2H 2 dudy.

It follows actually from [13] that the space |H| is a Banach space for the norm ||.[||5 and it is
included in H. In fact, .
L*([0,7]) c L7 ([0,T]) C |H| C H.

Let Cp°(R™,R) be the class of infinitely differentiable functions f : R” — R such that f and
all its partial derivatives are bounded. We denote by S the class of smooth cylindrical random
variables F of the form

where n > 1, f € Ci°(R",R) and ¢1, ..., o, € H.
The derivative operator D of a smooth and cylindrical random variable F' of the form (3) is defined
as the H-valued random variable

N o
DiF =Y %(B(%), s Blgn))i(t)
i=1 "
In this way the derivative DF is an element of L?(Q; H). We denote by D'? the closure of S with
respect to the norm defined by
17132 = E(IFI*) + E(IDF3,).

The divergence operator ¢ is the adjoint of the derivative operator D. Concretely, a random
variable u € L?(Q; H) belongs to the domain of the divergence operator Doms if

E[(DF, s < cl[Fll 20
for every F' € S. In this case 6(u) is given by the duality relationship
E(Fé(u)) = E(DF,u),,

for any F' € D12, We will make use of the notation
T
0(u) :/ us0Bs, u € Dom(9).
0

In particular, for h € H, B(h) = §(h) = fOT hs0Bs.



For every n > 1, let H,, be the nth Wiener chaos of B , that is, the closed linear subspace
of L?(Q) generated by the random variables {H,,(B(h)),h € H,||h|[% = 1} where H,, is the nth
Hermite polynomial. The mapping I,,(h®") = n!H,, (B(h)) provides a linear isometry between the
symmetric tensor product H®™ (equipped with the modified norm ||.|yen = \/%H-”H‘X’") and H,,.

For every f,g € H®" the following multiplication formula holds

E(In(f)1n(9)) = n!(f, g)ren.

Finally, It is well-known that L?(Q) can be decomposed into the infinite orthogonal sum of the
spaces H,,. That is, any square integrable random variable F' € L?() admits the following chaotic
expansion

F = E(F) + Zln(fn>v
n=1
where the f,, € H®" are uniquely determined by F.

Fix T > 0. Let f,g : [0,7] — R are Holder continuous functions of orders a € (0,1) and
8 € (0,1) with «+ 8 > 1. Young [14] proved that the Riemann-Stieltjes integral (so-called Young

integral) fOT fsdgs exists. Moreover, if « = 3 € (%, 1) and ¢ : R? — R is a function of class
C', the integrals f; g—‘ﬁ(fu,gu)dfu and [; %(fu7 gu)dg., exist in the Young sense and the following
change of variables formula holds:

t t
O(fergt) = S(forg0) + /0 g—?(fu,gu)dfw /0 %ﬁ(fu,gu)dgu, 0<t<T. (4)

As a consequence, if H > % and (u, t € [0,T]) be a process with Holder paths of order « > 1— H,
the integral fOT usdBs is well-defined as Young integral. Suppose moreover that for any ¢ € [0, 7],

uy € DV2) and
T T
P / / | Dgu||t — s|*~2dsdt < o0 | = 1.
o Jo

Then, by [1], w € Domd and for every ¢ € [0,T],

t t t t
/ usdBs = / us 0B, + H(2H — 1)/ / Dguy|s — r|*" 2 drds. (5)
0 0 0 JO

In particular, when ¢ is a non-random Hélder continuous function of order a > 1 — H, we obtain
T T
0 0

In addition, for all ¢, ¥ € |H|,
T T T T
E ( / pudB. / wsst> — HQH - 1) / / ()b ()] — v~ 2dudy. (7)
0 0 0 0

3 Asymptotic behavior of the least squares estimator
Throughout this paper we assume H € (3,1) and 6 > 0. Let us consider the equation (1) driven

by a fractional Brownian motion B with Hurst parameter H and € is the unknown parameter to
be estimated from the observation X. The linear equation (1) has the following explicit solution:

t
X, =% / e~ 4B, t>0, (8)
0



where the integral fot e 9%dB, is a Young integral.
Let us introduce the following process

t
& ::/ e %dB,, t>0.
0

By using the equation (1) and (8) we can write the LSE 6, defined in (2) as follows

t t gs
do=py XDy JoGdBe o)
3 X2ds Jy e20se2ds

3.1 Consistency of the estimator LSE

The following theorem proves the strong consistency of the LSE §t
Theorem 1 Assume H € (%, 1), then

§,5—>0 almost surely
ast — oo.

For the proof of Theorem 1 we need the following two lemmas.

Lemma 2 Suppose that H > % Then

i) For alle € (0, H), the process & admits a modification with (H — €)-Holder continuous paths,
still denoted & in the sequel.

ii) & — € = [y € ""dB, almost surely and in L*(Q) as t — oo,
Lemma 3 Let H > % Then, as t — oo,
t t 52
672‘%/ X2ds = e*%t/ e205¢2ds — 22 almost surely.
0 0 ) 20
Proof of Lemma 2. We prove the point ). We have, for every 0 < s < t,

t
E </ eerdBr>

t gt
H(2H — 1)/ / e ey — P2 dudo

2

E(& - &)

topt
< H(2H - 1)/ / lu — v]*" 2 dudv
= E(B,—B,)*=t—s]*

Thus, by applying the Kolmogorov-Centsov theorem to the centered gaussian process £ we deduce

7).

Concerning the second point i), we first notice that the integral £, = fooo e~ 97dB, is well defined.



In fact,
e} (o)
H(2H — 1)/ / e e 0% r — s|?H2drds

0o Jo

= 2H(2H — 1)/ dsefes/ dre= (s —r)2H-2
0 0

= 2H(2H — 1)/ dsefws/ due?u =2
0 0

= 2H(2H—1)/ du60“u2H72/ dse=20¢
0 u

_ H(2H —1) /Oo e—0uy 2H-2 7,
0

0
H(2H -1 HT'(2H

with I' denotes the classical Gamma function. Moreover, & converges to £, in L2(£2). Indeed,
Ella-eaf) = #er=1) [ [T eme
t Jt
= 2H(2H — 1)/ dse“gs/ dre (s — r)2H=2
t t
oo s—t
= 2H(2H — 1)/ dvefzes/ duetu2H—2
t 0
= 2H(2H—1)e*29t/ dve*%“/ due?ty2H—2
0 0
= 2H(2H—1)e—29t/ dueeuuw—z/ doe—20
0 u
a0t [

_ H(2H — 1)67 / e—0uy 2H=2 7,
0 0

HIRH)

92H
— Qast— oo.

Now, let us show that & — &, almost surely as t — oco. By using Borel-Cantelli lemma, it is
sufficient to prove that, for any € > 0
oo
/ e %*dB,
t

Z P ( sup
For this purpose, let 1 < a < H. As in the proof of [Theorem 4, [1]], we can write for every ¢ > 0

n>0 n<t<n+1
) 00 s
/ e~"dB, = C;l/ dBee™" (/ dr(s—r)=*(r— t)“‘1> ;
t + t

with ¢o = [(s —r)7%(r —t)*"'dr = B(a,1 — a), where 3 is the Beta function.
By Fubini’s stochastic theorem (see for example [11]), we have

/ e %dB, = cgl/ dr(r —t)** (/ dB,e % (s — r)_a) .
t t T

> 5) < 00. (11)



Cauchy-Schwarz’s inequality implies that

o0
/ e %dB,
t
c;2 </OO(7” — t)Q(a_l)e_e(r_t)dr) </°° dre=0r=t)
t t

—2 S 3
Co F(QOé - 1) e-26t / dre—@(r—t) / st(s _ T)—ae—e(s—r)
t T

2

IN

)

/ dBge %% (s — r)7@efr=t)

2

020471

Thus,

2

o0
sup / e " dB,
n<t<n+1|Jt

2 0o
< Ca F(QO( — 1) 6726’”60/ drefe(rfn)
On the other hand,

— 920471
o] 2
E ( / (s —r) %G dB, )
(oo} o0
= H(2H-1) / dv(v — r)_o‘e_a(“_r) / du(u — r)_‘"e_‘g(“_r)m — |22
T T

oo o
= H(2H — 1)/ dvv_o‘e_‘%/ duu=%e™ |y — 212
0 0

= 2H(2H—1)/ dvv™ % /d ey — )22

0

o'} 2
/ dBy(s — 1)@ 067

= 2H(2H71)/ dvv—e *Hv/ du(v — )~ 0w—w) 2H -2
O

< 2H(2H - 1)/ dvv=%e% du(v — ) "2
0 0

o) 1

= 2H(2H — 1)/ dvaH_ga_le_av/ du®T=2(1 —u)~
0 0

D(2H — 20)3(2H — 1,1 — )

= 2H(2H —1) =

= C1(Oé,H,9) < o0

Combining this with the fact that [ e~%""™dr = 1, we obtain

o
E sup / e % dB,
n<t<n+1 t

e 2T(2a — 1)e?
02

2
) < Cy(a, H,0)e 2,

with
02(a7 Ha 0) =

/ e dB,| >
t

Cl(a,H, 9)

Consequently,

Z P ( sup
n>0 n<t<n+1

A

)

/ e % dB,
t

e 2Cy(a, H,0) Z e 2" < 0

n>0

n<t<n+1

5) < 5_2ZE< sup
n>0

IA



This finishes the proof of the claim (11), and thus the proof of Lemma 2. m
Proof of Lemma 3. Using (10), we have

HI'(2H
gz = 0D o

Hence &~ N(0, Hgg,H)) and this implies that

P(és = 0) = 0. (12)

The continuity of £ entails that, for every ¢ > 0

t t
t
/ 62955526132/ e?05¢2ds > 2€9t< inf §2> almost surely. (13)
0 t

t<s<t
2

Furthermore, the continuity of £ and the point ii) of Lemma 2 yield

lim (
t—oo

Combining this last convergence with (13) and (12), we deduce that

inf §§> = £ almost surely.
<s<t

Nl

t

lim e?9%¢2ds = oo almost surely.
t—oo 0

Hence, we can use L’Hospital’s rule and we obtain

t S
lim fo e**€ds o ft fgo

{00 2261 = am 20 = 20 almost surely.

This completes the proof of Lemma 3. m
Proof of Theorem 1. Using the change of variable formula (4), we conclude that

1 t t
S =0 / e 2ds + / e’ ¢.dB,
2 0 0

Hence

t S
5, _ g o€ &dB, & L
f €205¢2ds T o201 fot €205¢2ds

Combining this with Lemma 2 and Lemma 3, we deduce that 5,5 — 6 almost surely ast — 0co. m

3.2 Asymptotic distribution of the estimator LSE

This paragraph is devoted to the investigation of asymptotic distribution of the LSE 5,5 of §. We
start with the following lemma.

Lemma 4 Suppose that H > % Then, for every t > 0, we have

t S t
/ dBge’* / dB,e " = / dBge?* / dB,e” / dBge™? / 5B,
0 0 0

fH(ZHfl)/ dse” 5/ dre®|s — |22,
0

0



Proof. Let ¢t > 0. By the change of variable formula (4)

t s t t t s
/stees/ dB,e " = /stees/ dBTe_GT—/ ste_Gs/ dB,e’".
0 0 0 0 0 0
6

On the other hand, according to (5) and (6),

t s
/ stefes/ dB,.e’"
0 0
t s t s
= / (5356_98/ (5BT€9T+H(2H—1)/ dse_es/ dre®|s — 2172,

0 0 0 0
which completes the proof. m
Theorem 5 Let H > % be fixed. Then, as t — o0,

et (@ - 9) e 990(1),

with C(1) the standard Cauchy distribution.

In order to prove Theorem 5 we need the following two lemmas.

Lemma 6 Fiz H > 5. Let F be any o{B}-measurable random variable such that P(F < oo) = 1.

Then, as t — oo,
t aw HT'(2H
(F,e—"f/ eeSst> 2 (F 705 )N>,
0

where N ~ N(0,1) is independent of B.
Lemma 7 Let H > % Then, as t — oo,

e

m“b

t s
/ 5386*95/ 6B’ — 0 in L*(Q), (14)
0 0

and

t s
=7 / dsgfes/ dre|s — r[P"72 — 0. (15)
0 0

Proof of Lemma 6. For any d > 1, s1...s4 € [0,00), we shall prove that, as t — oo,

' av VHT(2H
(le,...,Bsd,eet/ e@sst> L <lev~"aBsd7()N> (16)
0

QH

which is enough to lead to the desired conclusion. Because the left-hand side in the previous
convergence is a Gaussian vector (see proof of [Lemma 7, [5]]), to get (16) it is sufficient to
check the convergence of its covariance matrix. Let us first compute the limiting variance of



e % [ e%%dB, as t — co. We have
t 2

<e_9t/ eesst>
0

t ot
E = H(2H - 1)6_20t/ / e s — r|?H=2drds
0 Jo

t s
= 2H(2H — 1)672915/ dseos/ dre?"|s — r|?H 2
0 0

t s
= 2H(2H — 1)6_29t/ dsezes/ dre—@r,r2H—2
0 0

t t
= 2H(2H — l)efzet/ dreferrszz/ dse?%*

0 r
_ H(QIZ -1 (/t p2H=2,—0r g _ 26t /t r2H—260rdT)
0 0
HT(2H)
— 027}[ ast — o0,
because e~ 20t fot p2H=200r gy < 01 fot r2H=2qr = % —0ast— oo.
Thus,
' 1 HreH
tllgloE <60t/0 eesdBS> = 927}[

Hence, to finish the proof it remains to check that, for all fixed s > 0,

t
tlim E (Bs X efet/ eevdBU> =0.
— 00 0

Indeed, for s < t,

t
E (BS x e 0t / e‘%dBv)
0

t s
= H(2H - 1)67915/ dveev/ dulu — v|*172
0 0

s s t s
= H(2H - 1)6_9t/ dveev/ dulu —v]*" =2 4+ H(2H — 1)6_9t/ dvegv/ du(v — u)*H =2
0 0 s 0
s s t
= H(2H - 1)679’5/ dveev/ dulu — v|*172 4 Hefet/ V(WL — (v — 5)2 1) dy
0 0 s
= It + Jt.

It’s clear that I; — 0 as t — oo.
Using integration by parts, the therm J; can be written as

Ji

t
_ Hefet/ er(UQHfl _ (’U _ 3)2H71)dv

ot Os -1 t
—  He O (6 [ 2H—-1 _ (t - S)QH—l] _ %SQH—I + 2H / ee“[(v _ S)QH—Q _ U2H—2]dv>
S

0 9
H H(2H —1 t
< g[tﬂl_l —(t— s)zH_l] 4 %e—ﬂ/ eev(v _ S)2H_2dv
= Jtl + Jt2

10



Since H < 1, J} = Z[2H=1 — (t — 5)?H=1] - 0 as t — o0.
On the other hand,
H2H 1)

t
J = — efat/ e (v —5)2H2qy

H(2H — 1)e?s t=s
_ ( ; )e eﬂ%/ U2 =2,
0

< H(2H0— 1)695 o0t /t e 2H=2 0,
0

H((2H —1)e?s [t
— ( 9 )6 / e—GU(t _ ’U)QH_QCZU
0

_ H(2H0— 1)efs [2H-1 /1 =0t (1 — u)2H2gy
0

Fix u € (0,1). The function ¢ € [0, 00) — 127~ 1e=0% attains its maximum at ¢ = 20=1. Then
Sup(t2H71679tu) — e Tty 2H < cul™2H
>0

with ¢ = (%)2}1_1. In addition, fol ul =2 (1 — u)2H 24y < 0o, and for any u € (0, 1),

t2H= om0 (] _ )22 0 ast — oo.

Therefore, using the dominated convergence theorem, we obtain that J2 converges to 0 as t — 0o.
Thus, we deduce the desired conclusion. m
Proof of Lemma 7. Let us prove the convergence (14). We have

t s 2
e E (/ 5Bse_95/ 5BT€0T>
OtE(/ / —0|s— T\(SB 5B)

_ —OtE< I( —0]s— Tll[O,tP))

H2(2H — 1
_ (7)6_%/ e=Olv=slg=0lu=rl|yy _ y2H=21s _ p 120200 dudrds
2 (0,4
H2(2H —1)?
< ant/ v — ul?H=2|s — r[2H2dududrds
2 [0,4)4
= E[E(BQ)]Qe_et = 174‘4He_9t
2 K 2

— 0 ast — o0.

For the convergence (15), we have

t s
H(2H — 1)e _%/ dse” S/ dre?"|s — p|*H =2

H(2H — 1) 7%/ds/ dr|s — r|>1=2

t2H
= —e

2

— 0 ast — oo.

IN

I\J‘Q

11



This finishes the proof. m
Proof of the theorem 5. By combining (9) and Lemma 4, we can write,

ot (= eft fg dB,e?s fos dB,e 0"
" (0,-0) = &
Jo €293€2ds
gtfoo efet fot e@Sst
— X
e—20t fot e205€2ds oo

e~ ot fot §Bse s fos §B,.er
e—20t fot €205¢2ds
e 0t fot dse= s f; drefr|s — r|?H =2

e—26t fot €205¢2ds

—H(2H -1)
= A?x B! -c?-DY.
Using Lemme 2 and Lemma 3, we obtain that
AY — 20 almost surely as t — oo.

According to Lemma 6, we deduce

Bf ] e ast — o0
Moreover,
VHT(2H) N 1aw
——=C(1
GH foo ( )7
because —ite_ N(0,1) and N ~ N(0,1) are independent.
HT(2H)

Thus, by Slutsky’s theorem, we conclude that
A? x B? 22%.20C(1) as t — oo.

On the other hand, it follows from Lemma 3 and Lemma 7, that

prob.
COPZ 0 ast — oo,

and

DY — 0 almost surely as t — oo.
Finally, by combining the previous convergences, the proof of Theorem 5 is done. m
Acknowledgments. The authors would like to thank Ivan Nourdin for many valuable discussions
on the subject. We warmly thank him for proving that J; converges to zero (see Proof of Lemma 6).
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