Global stability for the multi-channel Gel'fand-Calderón inverse problem in two dimensions
Résumé
We prove a global logarithmic stability estimate for the multi-channel Gel'fand-Calderón inverse problem on a two-dimensional bounded domain, i.e. the inverse boundary value problem for the equation $-\Delta \psi + v\, \psi = 0$ on $D$, where $v$ is a smooth matrix-valued potential defined on a bounded planar domain $D$.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...