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GLOBAL STABILITY FOR THE MULTI-CHANNEL

GEL’FAND-CALDERÓN INVERSE PROBLEM IN TWO

DIMENSIONS

MATTEO SANTACESARIA

Abstract. We prove a global logarithmic stability estimate for the

multi-channel Gel’fand-Calderón inverse problem on a two-dimensional

bounded domain, i.e. the inverse boundary value problem for the equa-

tion −∆ψ+ v ψ = 0 on D, where v is a smooth matrix-valued potential

defined on a bounded planar domain D.

1. Introduction

The Schrödinger equation at zero energy

(1.1) −∆ψ + v(x)ψ = 0 on D ⊂ R
2

arises in quantum mechanics, acoustics and electrodynamics. The recon-

struction of the complex-valued potential v in equation (1.1) through the

Dirichlet-to-Neumann operator is one of the most studied inverse problems

(see [9], [8], [3], [10], [11], [12] and references therein).

In this article we consider the multi-channel two-dimensional Schrödinger

equation, i.e. equation (1.1) with matrix-valued potentials and solutions;

this case was already studied in [13, 12]. One of the motivations for studying

the multi-channel equation is that it comes up as a 2D-approximation for

the 3D equation (see [12, Sec. 2]).

This paper is devoted to give a global stability estimate for this inverse

problem in the multi-channel case, which is highly related to the reconstruc-

tion method of [12].

Let D be an open bounded domain in R
2 with C2 boundary and v ∈

C1(D̄,Mn(C)), where Mn(C) is the set of the n × n complex-valued ma-

trices. The Dirichlet-to-Neumann map associated to v is the operator Φ :

C1(∂D,Mn(C)) → Lp(∂D,Mn(C)), p <∞ defined by:

(1.2) Φ(f) =
∂ψ

∂ν

∣

∣

∣

∣

∂D
1
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where f ∈ C1(∂D,Mn(C)), ν is the outer normal of ∂D and ψ is the

H1(D̄,Mn(C))-solution of the Dirichlet problem

(1.3) −∆ψ + v(x)ψ = 0 on D, ψ|∂D = f ;

here we assume that

(1.4) 0 is not a Dirichlet eigenvalue for the operator −∆+ v in D.

The following inverse boundary value problem arises from this construction:

given Φ, find v.

This problem can be considered as the Gel’fand inverse boundary value

problem for the multi-channel Schrödinger equation at zero energy (see [6],

[9]) and can also be seen as a generalization of the Calderón problem for the

electrical impedance tomography (see [4], [9]). Note also that we can think

of this problem as a model for the monochromatic ocean tomography (e.g.

see [2] for similar problems arising in this tomography).

In the case of complex-valued potentials the global injectivity of the map

v → Φ was firstly proved in [9] for D ⊂ R
d with d ≥ 3 and in [3] for d = 2

with v ∈ Lp: in particular, these results were obtained by the use of global

reconstructions developed in the same papers. The first global uniqueness

result (along with an exact reconstruction method) for matrix-valued poten-

tials was given in [12], which deals with C1 matrix-valued potentials defined

on a domain in R
2. A global stability estimate for the Gel’fand-Calderón

problem for d ≥ 3 was found for the first time by Alessandrini in [1]; this

result was recently improved in [10]. In the two-dimensional case the first

global stability estimate was given in [11].

In this paper we extend the results of [11] to the matrix-valued case; we

do not discuss global results for special real-valued potentials arising from

conductivities: for this case the reader is referred to the references given in

[1], [3], [8], [9], [10], [11].

Our main result is the following:

Theorem 1.1. Let D ⊂ R
2 be an open bounded domain with C2 bound-

ary, let v1, v2 ∈ C2(D̄,Mn(C)) be two matrix-valued potentials which sat-

isfy (1.4), with ‖vj‖C2(D̄) ≤ N for j = 1, 2, and Φ1,Φ2 the correspond-

ing Dirichlet-to-Neumann operators. For simplicity we assume also that

vj |∂D = 0 and ∂
∂ν vj|∂D = 0 for j = 1, 2. Then there exists a constant

C = C(D,N, n) such that

(1.5)

‖v2−v1‖L∞(D) ≤ C
(

log(3 + ‖Φ2 − Φ1‖
−1)
)− 3

4

(

log(3 log(3 + ‖Φ2 −Φ1‖
−1))

)2
,
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where ‖A‖ denotes the norm of an operator A : L∞(∂D,Mn(C)) → L∞(∂D,Mn(C))

and ‖v‖L∞(D) = max1≤i,j≤n ‖vi,j‖L∞(D) (likewise for ‖v‖C2(D̄)) for a matrix-

valued potential v.

This is the first global stability result for the multi-channel (n ≥ 2)

Gel’fand-Calderón inverse problem in two dimension. In addition, Theo-

rem 1.1 is new also for the scalar case, as the estimate obtained in [11] is

weaker.

Instability estimates complementing the stability estimates of [1], [10],

[11] and of the present work are given in [8], [7].

The proof of Theorem 1.1 is based on results obtained in [11], [12], which

takes inspiration mostly from [3] and [1]. In particular, for z0 ∈ D we use the

existence and uniqueness of a family of solution ψz0(z, λ) of equation (1.1)

where in particular ψz0 → eλ(z−z0)2I, for λ → ∞ (where I is the identity

matrix). Then, using an appropriate matrix-valued version of Alessandrini’s

identity along with stationary phase techniques, we obtain the result. Note

that this matrix-valued identity is one of the new results of this paper.

A generalization of Theorem 1.1 in the case where we do not assume that

vj |∂D = 0 and ∂
∂ν vj|∂D = 0 for j = 1, 2, is given in section 5.

This work was fulfilled in the framework of researches under the direction

of R. G. Novikov.

2. Preliminaries

In this section we introduce and give details about the above-mentioned

family of solutions of equation (1.1), which will be used throughout all the

paper.

We identify R
2 with C and use the coordinates z = x1+ ix2, z̄ = x1− ix2

where (x1, x2) ∈ R
2. Let us define the function spaces C1

z̄ (D̄) = {u : u, ∂u∂z̄ ∈

C(D̄,Mn(C))} with the norm ‖u‖C1
z̄ (D̄) = max(‖u‖C(D̄), ‖

∂u
∂z̄ ‖C(D̄)), where

‖u‖C(D̄) = supz∈D̄ |u| and |u| = max1≤i,j≤n |ui,j |; we define also C1
z (D̄) =

{u : u, ∂u∂z ∈ C(D̄,Mn(C))} with an analogous norm. Following [11], [12], we

consider the functions:

Gz0(z, ζ, λ) = eλ(z−z0)2gz0(z, ζ, λ)e
−λ(ζ−z0)2 ,(2.1)

gz0(z, ζ, λ) =
eλ(ζ−z0)2−λ̄(ζ̄−z̄0)2

4π2

∫

D

e−λ(η−z0)2+λ̄(η̄−z̄0)2

(z − η)(η̄ − ζ̄)
dReη dImη,(2.2)

ψz0(z, λ) = eλ(z−z0)2µz0(z, λ),(2.3)

µz0(z, λ) = I +

∫

D
gz0(z, ζ, λ)v(ζ)µz0(ζ, λ)dReζ dImζ,(2.4)
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hz0(λ) =

∫

D
eλ(z−z0)2−λ̄(z̄−z̄0)2v(z)µz0(z, λ)dRez dImz,(2.5)

where z, z0, ζ ∈ D and λ ∈ C and I is the identity matrix. In addition, equa-

tion (2.4) at fixed z0 and λ, is considered as a linear integral equation for

µz0(·, λ) ∈ C1
z̄ (D̄). The functionsGz0(z, ζ, λ), gz0(z, ζ, λ), ψz0(z, λ), µz0(z, λ)

defined above, satisfy the following equations (see [11], [12]):

4
∂2

∂z∂z̄
Gz0(z, ζ, λ) = δ(z − ζ),(2.6)

4
∂2

∂ζ∂ζ̄
Gz0(z, ζ, λ) = δ(ζ − z),(2.7)

4

(

∂

∂z
+ 2λ(z − z0)

)

∂

∂z̄
gz0(z, ζ, λ) = δ(z − ζ),(2.8)

4
∂

∂ζ̄

(

∂

∂ζ
− 2λ(ζ − z0)

)

gz0(z, ζ, λ) = δ(ζ − z),(2.9)

−4
∂2

∂z∂z̄
ψz0(z, λ) + v(z)ψz0(z, λ) = 0,(2.10)

−4

(

∂

∂z
+ 2λ(z − z0)

)

∂

∂z̄
µz0(z, λ) + v(z)µz0(z, λ) = 0,(2.11)

where z, z0, ζ ∈ D, λ ∈ C, δ is the Dirac’s delta. (In addition, it is assumed

that (2.4) is uniquely solvable for µz0(·, λ) ∈ C1
z̄ (D̄) at fixed z0 and λ.)

We say that the functions Gz0 , gz0 , ψz0 , µz0 , hz0 are the Bukhgeim-type

analogues of the Faddeev functions (see [12]).

Now we state some fundamental lemmata. Let

(2.12) gz0,λu(z) =

∫

D
gz0(z, ζ, λ)u(ζ)dReζ dImζ, z ∈ D̄, z0, λ ∈ C,

where gz0(z, ζ, λ) is defined by (2.2) and u is a test function.

Lemma 2.1 ([11]). Let gz0,λu be defined by (2.12). Then, for z0, λ ∈ C, the

following estimates hold:

gz0,λu ∈ C1
z̄ (D̄), for u ∈ C(D̄),(2.13)

‖gz0,λu‖C1(D̄) ≤ c1(D,λ)‖u‖C(D̄), for u ∈ C(D̄),(2.14)

‖gz0,λu‖C1
z̄ (D̄) ≤

c2(D)

|λ|
1

2

‖u‖C1
z̄ (D̄), for u ∈ C1

z̄ (D̄), |λ| ≥ 1.(2.15)

Given a potential v ∈ C1
z̄ (D̄) we define the operator gz0,λv simply as

(gz0,λv)u(z) = gz0,λw(z), w = vu, for a test function u. If u ∈ C1
z̄ (D̄), by

Lemma 2.1 we have that gz0,λv : C1
z̄ (D̄) → C1

z̄ (D̄),

(2.16) ‖gz0,λv‖
op
C1

z̄ (D̄)
≤ 2n‖gz0,λ‖

op
C1

z̄ (D̄)
‖v‖C1

z̄ (D̄),
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where ‖·‖op
C1

z̄ (D̄)
denotes the operator norm in C1

z̄ (D̄), z0, λ ∈ C. In addition,

‖gz0,λ‖
op
C1

z̄ (D̄)
is estimated in Lemma 2.1. Inequality (2.16) and Lemma 2.1

imply existence and uniqueness of µz0(z, λ) (and thus also ψz0(z, λ)) for

|λ| > ρ(D,K,n), where ‖v‖C1
z̄ (D̄) < K.

Let

µ(k)z0 (z, λ) =
k
∑

j=0

(gz0,λv)
jI,

h(k)z0 (λ) =

∫

D
eλ(z−z0)2−λ̄(z̄−z̄0)2v(z)µ(k)z0 (z, λ)dRez dImz,

where z, z0 ∈ D, λ ∈ C, k ∈ N ∪ {0}.

Lemma 2.2 ([11]). For v ∈ C1
z̄ (D̄) such that v|∂D = 0 the following formula

holds:

(2.17) v(z0) =
2

π
lim
λ→∞

|λ|h(0)z0 (λ), z0 ∈ D.

In addition, if v ∈ C2(D̄), v|∂D = 0 and ∂v
∂ν |∂D = 0 then

(2.18)

∣

∣

∣

∣

v(z0)−
2

π
|λ|h(0)z0 (λ)

∣

∣

∣

∣

≤ c3(D,n)
log(3|λ|)

|λ|
‖v‖C2(D̄),

for z0 ∈ D, λ ∈ C, |λ| ≥ 1.

Let

Wz0(λ) =

∫

D
eλ(z−z0)2−λ̄(z̄−z̄0)2w(z)dRe zdIm z,

where z0 ∈ D̄, λ ∈ C and w is some Mn(C)-valued function on D̄. (One can

see that Wz0 = h
(0)
z0 for w = v.)

Lemma 2.3 ([11]). For w ∈ C1
z̄ (D̄) the following estimate holds:

|Wz0(λ)| ≤ c4(D)
log (3|λ|)

|λ|
‖w‖C1

z̄ (D̄), z0 ∈ D̄, |λ| ≥ 1.(2.19)

Lemma 2.4 ([12]). For v ∈ C1
z̄ (D̄) and for ‖gz0,λv‖

op
C1

z̄ (D̄)
≤ δ < 1 we have

that

‖µz0(·, λ) − µ(k)z0 (·, λ)‖C1
z̄ (D̄) ≤

δk+1

1− δ
,(2.20)

|hz0(λ)− h(k)z0 (λ)| ≤ c5(D,n)
log(3|λ|)

|λ|

δk+1

1− δ
‖v‖C1

z̄ (D̄),(2.21)

where z0 ∈ D, λ ∈ C, |λ| ≥ 1, k ∈ N ∪ {0}.

The proofs of Lemmata 2.1-2.4 can be found in the references given.

We will also need the following two new lemmata.
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Lemma 2.5. Let gz0,λu be defined by (2.12), where u ∈ C1
z̄ (D̄), z0, λ ∈ C.

Then the following estimate holds:

‖gz0,λu‖C(D̄) ≤ c6(D)
log(3|λ|)

|λ|
‖u‖C1

z̄ (D̄), |λ| ≥ 1.(2.22)

Lemma 2.6. The expression

(2.23) W (u, v)(λ) =

∫

D
eλ(z−z0)2−λ̄(z̄−z̄0)2u(z)(gz0,λv)(z)dRez dImz,

defined for u, v ∈ C1
z̄ (D̄) with ‖u‖C1

z̄ (D̄), ‖v‖C1
z̄ (D̄) ≤ N1, λ ∈ C, z0 ∈ D,

satisfies the estimate

|W (u, v)(λ)| ≤ c7(D,N1, n)
(log(3|λ|))2

|λ|1+3/4
, |λ| ≥ 1.(2.24)

The proofs of Lemmata 2.5, 2.6 are given in section 4.

3. Proof of Theorem 1.1

We begin with a technical lemma, which will be useful to generalise

Alessandrini’s identity.

Lemma 3.1. Let v ∈ C1(D̄,Mn(C)) be a matrix-valued potential which

satisfies condition (1.4) (i.e. 0 is not a Dirichlet eigeinvalue for the operator

−∆+ v in D). Then tv, the transpose of v, also satisfies condition (1.4).

The proof of Lemma 3.1 is given in section 4.

We can now state and prove a matrix-valued version of Alessandrini’s

identity (see [1] for the scalar case).

Lemma 3.2. Let v1, v2 ∈ C1(D̄,Mn(C)) be two matrix-valued potentials

which satisfy (1.4), Φ1,Φ2 their associated Dirichlet-to-Neumann operators,

respectively, and u1, u2 ∈ C2(D̄,Mn(C)) matrix-valued functions such that

(−∆+ v1)u1 = 0, (−∆+ tv2)u2 = 0 on D,

where tA stand for the transpose of A. Then we have the identity

(3.1)
∫

∂D

tu2(z)(Φ2 − Φ1)u1(z)|dz| =

∫

D

tu2(z)(v2(z)− v1(z))u1(z)dRez dImz.

Proof. If v ∈ C1(D̄,Mn(C)) is any matrix-valued potential (which satisfies

(1.4)) and f1, f2 ∈ C1(∂D,Mn(C)) then we have

(3.2)

∫

∂D

tf2Φf1|dz| =

∫

∂D

t
(

tf1Φ
∗f2
)

|dz|,

where Φ and Φ∗ are the Dirichlet-to-Neumann operators associated to v

and tv, respectively (these operators are well-defined thanks to Lemma 3.1).
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Indeed, it is sufficient to extend f1 and f2 in D as the solutions of the

Dirichlet problems (−∆+ v)f̃1 = 0, (−∆+ tv)f̃2 = 0 on D and f̃j|∂D = fj,

for j = 1, 2, so that one obtains
∫

∂D

(

tf2Φf1 −
t
(

tf1Φ
∗f2
))

|dz|

=

∫

∂D

(

tf2
∂f̃1

∂ν
− t

(

∂f̃2

∂ν

)

f1

)

|dz|

=

∫

D

(

tf̃2∆f̃1 −
t
(

∆f̃2

)

f̃1

)

dRez dImz

=

∫

D

(

tf̃2 v f̃1 −
t
(

tv f̃2

)

f̃1

)

dRez dImz = 0,

where for the second equality we used the following matrix-valued version

of the classical scalar Green’s formula:

(3.3)

∫

∂D

(

t

(

∂f

∂ν

)

g − tf
∂g

∂ν

)

|dz| =

∫

D

(

t(∆f) g − tf∆g
)

dRez dImz,

for any f, g ∈ C2(D,Mn(C)) ∩ C
1(D̄,Mn(C)).

Identities (3.2) and (3.3) imply
∫

∂D

tu2(z)(Φ2 − Φ1)u1(z)|dz|

=

∫

∂D

(

t
(

tu1(z)Φ
∗
2u2(z)

)

− tu2(z)Φ1u1(z)
)

|dz|

=

∫

∂D

(

t

(

∂u2(z)

∂ν

)

u1(z)−
tu2(z)

∂u1(z)

∂ν

)

|dz|

=

∫

D

(

t(∆u2(z)) u1(z)−
tu2(z)∆u1(z)

)

dRez dImz

=

∫

D

(

t
(

tv2(z)u2(z)
)

u1(z)−
tu2(z) v1(z)u1(z)

)

dRez dImz

=

∫

D

tu2(z)(v2(z)− v1(z))u1(z)dRez dImz. �

Now let µ̄z0 denote the complex conjugated of µz0 (the solution of (2.4))

for a Mn(R)-valued potential v and, more generally, the solution of (2.4)

with gz0(z, ζ, λ) replaced by gz0(z, ζ, λ) for a Mn(C)-valued potential v. In

order to make use of (3.1) we define

u1(z) = ψ1,z0(z, λ) = eλ(z−z0)2µ1(z, λ),

u2(z) = ψ2,z0(z,−λ) = e−λ̄(z̄−z̄0)2 µ̄2(z,−λ),

for z0 ∈ D, λ ∈ C, |λ| > ρ (ρ is mentioned in section 2), where we called for

simplicity µ1 = µ1,z0 , µ2 = µ2,z0 and µ1,z0 , µ2,z0 are the solutions of (2.4)

with v replaced by v1,
tv2, respectively.
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Equation (3.1), with the above-defined u1, u2, now reads
∫

∂D

∫

∂D
e−λ̄(z̄−z̄0)2 tµ̄2(z,−λ)(Φ2 − Φ1)(z, ζ)e

λ(ζ−z0)2µ1(ζ, λ)|dζ||dz|(3.4)

=

∫

D
eλ,z0(z)

tµ̄2(z,−λ)(v2 − v1)(z)µ1(z, λ)dRez dImz.

with eλ,z0(z) = eλ(z−z0)2−λ̄(z̄−z̄0)2 and (Φ2 −Φ1)(z, ζ) is the Schwartz kernel

of the operator Φ2 − Φ1.

The right side I(λ) of (3.4) can be written as the sum of four integrals,

namely

I1(λ) =

∫

D
eλ,z0(z)(v2 − v1)(z)dRez dImz,

I2(λ) =

∫

D
eλ,z0(z)

t(µ̄2 − I)(v2 − v1)(z)(µ1 − I)dRez dImz,

I3(λ) =

∫

D
eλ,z0(z)

t(µ̄2 − I)(v2 − v1)(z) dRez dImz,

I4(λ) =

∫

D
eλ,z0(z) (v2 − v1)(z)(µ1 − I)dRez dImz,

for z0 ∈ D.

The first term, I1, can be estimated using Lemma 2.2 as follows:
∣

∣

∣

∣

2

π
|λ|I1 − (v2(z0)− v1(z0))

∣

∣

∣

∣

≤ c3(D,n)
log(3|λ|)

|λ|
‖v2 − v1‖C2(D̄),(3.5)

for |λ| ≥ 1. The other terms, I2, I3, I4, satisfy, by Lemmata 2.1 and 2.4,

|I2| ≤

∣

∣

∣

∣

∫

D
eλ,z0(z)

t(gz0,λ
tv2)(v2 − v1)(z)(gz0 ,λv1)dRez dImz

∣

∣

∣

∣

(3.6)

+O

(

log(3|λ|)

|λ|2

)

c8(D,N, n),

|I3| ≤

∣

∣

∣

∣

∫

D
eλ,z0(z)

t(gz0,λ
tv2)(v2 − v1)(z)dRez dImz

∣

∣

∣

∣

(3.7)

+O

(

log(3|λ|)

|λ|2

)

c9(D,N, n),

|I4| ≤

∣

∣

∣

∣

∫

D
eλ,z0(z) (v2 − v1)(z)(gz0,λv1)dRez dImz

∣

∣

∣

∣

(3.8)

+O

(

log(3|λ|)

|λ|2

)

c10(D,N, n),

where N is the costant in the statement of Theorem 1.1 and |λ| is sufficiently

large, for example for λ such that

2n
c2(D)

|λ|
1

2

≤
1

2
, |λ| ≥ 1.(3.9)
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Lemmata 2.5, 2.6, applied to (3.6)-(3.8), give us

|I2| ≤ c11(D,N, n)
(log(3|λ|))2

|λ|2
,(3.10)

|I3| ≤ c12(D,N, n)
(log(3|λ|))2

|λ|1+3/4
,(3.11)

|I4| ≤ c13(D,N, n)
(log(3|λ|))2

|λ|1+3/4
.(3.12)

The left side J(λ) of (3.4) can be estimated as follows:

|λ||J(λ)| ≤ c14(D,n)e
(2L2+1)|λ|‖Φ2 − Φ1‖,(3.13)

for λ which satisfies (3.9), and L = maxz∈∂D, z0∈D |z − z0|.

Putting together estimates (3.5)-(3.13) we obtain

|v2(z0)− v1(z0)| ≤ c15(D,N, n)
(log(3|λ|))2

|λ|3/4
+

2

π
c14(D,n)e

(2L2+1)|λ|‖Φ2 − Φ1‖

(3.14)

for any z0 ∈ D. We call ε = ‖Φ2 − Φ1‖ and impose |λ| = γ log(3 + ε−1),

where 0 < γ < (2L2 + 1)−1 so that (3.14) reads

|v2(z0)− v1(z0)| ≤ c15(D,N, n)(γ log(3 + ε−1))−
3

4

(

log(3γ log(3 + ε−1))
)2

(3.15)

+
2

π
c14(D,n)(3 + ε−1)(2L

2+1)γε,

for every z0 ∈ D, with

(3.16) 0 < ε ≤ ε1(D,N, γ, n),

where ε1 is sufficiently small or, more precisely, where (3.16) implies that

|λ| = γ log(3 + ε−1) satisfies (3.9).

As (3 + ε−1)(2L
2+1)γε → 0 for ε → 0 more rapidly then the other term,

we obtain that

‖v2 − v1‖L∞(D) ≤ c16(D,N, γ, n)

(

log(3 log(3 + ‖Φ2 −Φ1‖
−1))

)2

(log(3 + ‖Φ2 − Φ1‖−1))
3

4

(3.17)

for any ε = ‖Φ2 − Φ1‖ ≤ ε1(D,N, γ, n).

Estimate (3.17) for general ε (with modified c16) follows from (3.17) for

ε ≤ ε1(D,N, γ, n) and the assumption that ‖vj‖L∞(D) ≤ N, j = 1, 2. This

completes the proof of Theorem 1.1. �
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4. Proofs of Lemmata 2.5, 2.6, 3.1.

Proof of Lemma 2.5. We decompose the operator gz0,λ, defined in (2.12), as

the product 1
4Tz0,λT̄z0,λ, where

Tz0,λu(z) =
1

π

∫

D

e−λ(ζ−z0)2+λ̄(ζ̄−z̄0)2

z − ζ
u(ζ)dReζ dImζ,(4.1)

T̄z0,λu(z) =
1

π

∫

D

eλ(ζ−z0)2−λ̄(ζ̄−z̄0)2

z̄ − ζ̄
u(ζ)dReζ dImζ,(4.2)

for z0, λ ∈ C. From the proof of [11, Lemma 3.1] we have the estimate

‖T̄z0,λu‖C(D̄) ≤
η1(D)

|λ|1/2
‖u‖C(D̄) + η2(D)

log(3|λ|)

|λ|

∥

∥

∥

∥

∂u

∂z̄

∥

∥

∥

∥

C(D̄)

,(4.3)

for u ∈ C1
z̄ (D̄), z0 ∈ D, |λ| ≥ 1. As the kernel of Tz0,λ and T̄z0,λ are

conjugated each other we deduce immediately

‖Tz0,λu‖C(D̄) ≤
η1(D)

|λ|1/2
‖u‖C(D̄) + η2(D)

log(3|λ|)

|λ|

∥

∥

∥

∥

∂u

∂z

∥

∥

∥

∥

C(D̄)

, |λ| ≥ 1,(4.4)

for u ∈ C1
z (D̄). Combining the two estimates we obtain

‖gλ,z0u‖C(D̄) =
1

4
‖Tz0,λT̄z0,λu‖C(D̄)

≤
1

4

(

η1(D)
‖T̄z0,λu‖C(D̄)

|λ|1/2
+ η2(D)

log(3|λ|)

|λ|

∥

∥

∥

∥

∂

∂z
T̄z0,λu

∥

∥

∥

∥

C(D̄)

)

≤ η3(D)

(

‖u‖C(D̄)

|λ|
+

log(3|λ|)

|λ|3/2

∥

∥

∥

∥

∂u

∂z̄

∥

∥

∥

∥

C(D̄)

+
log(3|λ|)

|λ|
‖u‖C(D̄)

)

≤ η4(D)
log(3|λ|)

|λ|
‖u‖C1

z̄ (D̄), |λ| ≥ 1,

where we used the fact that ‖ ∂
∂z T̄z0,λu‖C(D) = ‖u‖C(D). �

Proof of Lemma 2.6. For 0 < ε ≤ 1, z0 ∈ D, let Bz0,ε = {z ∈ C : |z − z0| ≤

ε}. We write W (u, v)(λ) =W 1(λ) +W 2(λ), where

W 1(λ) =

∫

D∩Bz0,ε

eλ(z−z0)2−λ̄(z̄−z̄0)2u(z)gz0,λv(z)dRez dImz,

W 2(λ) =

∫

D\Bz0,ε

eλ(z−z0)2−λ̄(z̄−z̄0)2u(z)gz0,λv(z)dRez dImz.

The first term, W 1, can be estimated as follows:

|W 1(λ)| ≤ σ1(D,n)‖u‖C(D̄)‖v‖C1

z (D̄)

ε2 log(3|λ|)

|λ|
, |λ| ≥ 1,(4.5)

where we used estimates (2.16) and (2.22).
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For the second term, W 2, we proceed using integration by parts, in order

to obtain

W 2(λ) =
1

4iλ̄

∫

∂(D\Bz0,ε
)

eλ(z−z0)2−λ̄(z̄−z̄0)2
u(z)gz0,λv(z)

z̄ − z̄0
dz

−
1

2λ̄

∫

D\Bz0,ε

eλ(z−z0)2−λ̄(z̄−z̄0)2 ∂

∂z̄

(

u(z)gz0,λv(z)

z̄ − z̄0

)

dRez dImz.

This imply

|W 2(λ)| ≤
1

4|λ|

∫

∂(D\Bz0,ε
)

‖u(z)gz0 ,λv(z)‖C(D̄)

|z̄ − z̄0|
|dz|(4.6)

+
1

2|λ|

∣

∣

∣

∣

∣

∫

D\Bz0,ε

eλ(z−z0)2−λ̄(z̄−z̄0)2 ∂

∂z̄

(

u(z)gz0,λv(z)

z̄ − z̄0

)

dRez dImz

∣

∣

∣

∣

∣

,

for λ 6= 0. Again by estimates (2.16) and (2.22) we obtain

|W 2(λ)| ≤ σ2(D,n)‖u‖C1

z
(D̄)‖v‖C1

z
(D̄)

log(3ε−1) log(3|λ|)

|λ|2
(4.7)

+
1

8|λ|

∣

∣

∣

∣

∣

∫

D\Bz0,ε

u(z)
T̄z0,λv(z)

z̄ − z̄0
dRez dImz

∣

∣

∣

∣

∣

, |λ| ≥ 1,

where we used the fact that ∂
∂z̄gz0,λv(z) = 1

4e
−λ(z−z0)2+λ̄(z̄−z̄0)2 T̄z0,λv(z),

with T̄z0,λ defined in (4.2).

The last term in (4.7) can be estimated independently on ε by

(4.8) σ3(D,n)‖u‖C(D̄)‖v‖C1
z̄ (D̄)

log(3|λ|)

|λ|1+3/4
.

This is a consequence of (4.3) and of the estimate

(4.9) |T̄z0,λu(z)| ≤
log(3|λ|)(1 + |z − z0|)τ1(D)

|λ||z − z0|2
‖u‖C1

z̄ (D̄), |λ| ≥ 1,

for u ∈ C1
z̄ (D̄), z, z0 ∈ D (a proof of (4.9) can be found in the proof of [11,

Lemma 3.1]).
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Indeed, for 0 < δ ≤ 1
2 we have

∣

∣

∣

∣

∫

D
u(z)

T̄z0,λv(z)

z̄ − z̄0
dRez dImz

∣

∣

∣

∣

≤

∫

Bz0,δ
∩D

|u(z)|
|T̄z0,λv(z)|

|z − z0|
dRez dImz +

∫

D\Bz0,δ

|u(z)|
|T̄z0 ,λv(z)|

|z − z0|
dRez dImz

≤ ‖u‖C(D̄)‖v‖C1
z̄ (D̄)

τ2(D,n)

|λ|1/2

∫

Bz0,δ
∩D

dRez dImz

|z − z0|

+ ‖u‖C(D̄)‖v‖C1
z̄ (D̄)

log(3|λ|)

|λ|
τ3(D,n)

∫

D\Bz0,δ

dRez dImz

|z − z0|3

≤ 2π‖u‖C(D̄)‖v‖C1
z̄ (D̄)τ2(D,n)

δ

|λ|
1

2

+ ‖u‖C(D̄)‖v‖C1
z̄ (D̄)τ4(D,n)

log(3|λ|)

|λ|δ
,

for |λ| ≥ 1. Putting δ = 1
2 |λ|

−1/4 in the last inequality gives (4.8).

Finally, defining ε = |λ|−1/2 in (4.7), (4.5) and using (4.8), we obtain the

main estimate (2.24), which thus finishes the proof of Lemma 2.6. �

Proof of Lemma 3.1. Take u ∈ H1(D,Mn(C)) such that (−∆+ tv)u = 0 on

D and u|∂D = 0. We want to prove that u ≡ 0 on D.

By our hypothesis, for any f ∈ C1(∂D,Mn(C)) there exists a unique

f̃ ∈ H1(D,Mn(C)) such that (−∆+ v)f̃ = 0 on D and f̃ |∂D = f . Thus we

have, using Green’s formula (3.3),

∫

∂D

t

(

∂u

∂ν

)

f |dz| =

∫

D

(

t(∆u) f̃ − tu∆f̃
)

dRez dImz

=

∫

D

(

t
(

tv u
)

f̃ − tu v f̃
)

dRez dImz = 0

which yields ∂u
∂ν |∂D = 0. Now consider the following straightforward gener-

alization of Green’s formula (3.3),

∫

∂D

(

t

(

∂f

∂ν

)

g − tf
∂g

∂ν

)

|dz| =

∫

D

t
(

(∆− tv)f
)

g − tf ((∆− v)g) dRez dImz,

(4.10)

which holds (weakly) for any f, g ∈ H1(D,Mn(C)). If we put f = u we

obtain

(4.11)

∫

D

tu (−∆+ v)g dRez dImz = 0

for any g ∈ H1(D,Mn(C)). By Fredholm alternative (see [5, Sec. 6.2]), for

each h ∈ L2(D,Mn(C)) there exists a unique g ∈ H1
0 (D,Mn(C)) = {g ∈

H1(D,Mn(C)) : g|∂D = 0} such that (−∆ + v)g = h: this yields u ≡ 0 on

D. Thus Lemma 3.1 is proved. �
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5. An extension of Theorem 1.1

As an extension of Theorem 1.1 for the case when we do not assume that

vj |∂D ≡ 0, ∂
∂ν vj |∂D ≡ 0, j = 1, 2, we give the following result.

Proposition 5.1. Let D ⊂ R
2 be an open bounded domain with C2 bound-

ary, let v1, v2 ∈ C2(D̄,Mn(C)) be two matrix-valued potentials which sat-

isfy (1.4), with ‖vj‖C2(D̄) ≤ N for j = 1, 2, and Φ1,Φ2 the corresponding

Dirichlet-to-Neumann operators. Then, for any 0 < α < 1
5 , there exists a

constant C = C(D,N, n, α) such that

(5.1) ‖v2 − v1‖L∞(D) ≤ C
(

log(3 + ‖Φ2 − Φ1‖
−1
1 )
)−α

,

where ‖A‖1 is the norm for an operator A : L∞(∂D,Mn(C)) → L∞(∂D,Mn(C)),

with kernel A(x, y), defined as ‖A‖1 = supx,y∈∂D |A(x, y)|(log(3+|x−y|−1))−1

and |A(x, y)| = max1≤i,j≤n |Ai,j(x, y)|.

The only properties of ‖ ‖1 we will use are the following:

i) ‖A‖L∞(∂D)→L∞(∂D) ≤ const(D,n)‖A‖1;

ii) In a similar way as in formula (4.9) of [9] one can deduce

‖v‖L∞(∂D) ≤ const(n)‖Φv − Φ0‖1,

for a matrix-valued potential v, Φv its associated Dirichlet-to-Neu-

mann operator and Φ0 the Dirichlet-to-Neumann operator of the 0

potential.

We recall a lemma from [11], which generalize Lemma 2.2 to the case

of potentials without boundary conditions. We define (∂D)δ = {z ∈ C :

dist(z, ∂D) < δ}.

Lemma 5.2. For v ∈ C2(D̄) we have that

∣

∣

∣

∣

v(z0)−
2

π
|λ|h(0)z0 (λ)

∣

∣

∣

∣

≤ κ1(D,n)δ
−4 log(3|λ|)

|λ|
‖v‖C2(D̄)(5.2)

+ κ2(D,n) log(3 + δ−1)‖v‖C(∂D),

for z0 ∈ D \ (∂D)δ, 0 < δ < 1, λ ∈ C, |λ| ≥ 1.

The proof of Lemma 5.2 for the scalar case can be found in [11]: the

generalization to the matrix-valued case is straightforward.
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Proof of Proposition 5.1. Fix 0 < α < 1
5 and 0 < δ < 1. We have the

following chain of inequalities

‖v2 − v1‖L∞(D)

= max(‖v2 − v1‖L∞(D∩(∂D)δ), ‖v2 − v1‖L∞(D\(∂D)δ))

≤ C1 max

(

2Nδ + ‖Φ2 − Φ1‖1,
log(3 log(3 + ‖Φ2 − Φ1‖

−1))

δ4 log(3 + ‖Φ2 − Φ1‖−1)

+ log(3 +
1

δ
)‖Φ2 −Φ1‖1 +

(

log(3 log(3 + ‖Φ2 − Φ1‖
−1))

)2

(log(3 + ‖Φ2 − Φ1‖−1))
3

4

)

≤ C2 max

(

2Nδ + ‖Φ2 − Φ1‖1,
1

δ4

(

log(3 + ‖Φ2 − Φ1‖
−1
1 )
)−5α

+ log(3 +
1

δ
)‖Φ2 −Φ1‖1 +

(

log(3 log(3 + ‖Φ2 − Φ1‖
−1
1 ))

)2

(log(3 + ‖Φ2 − Φ1‖
−1
1 ))

3

4

)

,

where we followed the scheme of the proof of Theorem 1.1 with the following

modifications: we made use of Lemma 5.2 instead of Lemma 2.2 and we also

used i)-ii); note that C1 = C1(D,N, n) and C2 = C2(D,N, n, α).

Putting δ =
(

log(3 + ‖Φ2 − Φ1‖
−1
1 )
)−α

we obtain the desired inequality

‖v2 − v1‖L∞(D) ≤ C3

(

log(3 + ‖Φ2 − Φ1‖
−1
1 )
)−α

,(5.3)

with C3 = C3(D,N, n, α), ‖Φ2 − Φ1‖1 = ε ≤ ε1(D,N, n, α) with ε1 suffi-

ciently small or, more precisely when δ1 =
(

log(3 + ε−1
1 )
)−α

satisfies:

δ1 < 1, ε1 ≤ 2Nδ1, log(3 +
1

δ1
)ε1 ≤ δ1.

Estimate (5.3) for general ε (with modified C3) follows from (5.3) for

ε ≤ ε1(D,N, n, α) and the assumption that ‖vj‖L∞(D̄) ≤ N for j = 1, 2.

This completes the proof of Proposition 5.1. �
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