On cubic hypersurfaces of dimension seven and eight - Archive ouverte HAL
Article Dans Une Revue Proceedings of the London Mathematical Society Année : 2014

On cubic hypersurfaces of dimension seven and eight

Laurent Manivel

Résumé

Cubic sevenfolds are examples of Fano manifolds of Calabi-Yau type. We study them in relation with the Cartan cubic, the $E_6$-invariant cubic in $\PP^{26}$. We show that a generic cubic sevenfold $X$ can be described as a linear section of the Cartan cubic, in finitely many ways. To each such ''Cartan representation'' we associate a rank nine vector bundle on $X$ with very special cohomological properties. In particular it allows to define auto-equivalences of the non-commutative Calabi-Yau threefold associated to $X$ by Kuznetsov. Finally we show that the generic eight dimensional section of the Cartan cubic is rational.
Fichier principal
Vignette du fichier
Iliev-Manivel_Cubics_1102.3618.pdf (286.91 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00566576 , version 1 (16-02-2011)
hal-00566576 , version 2 (10-06-2011)

Identifiants

Citer

Atanas Iliev, Laurent Manivel. On cubic hypersurfaces of dimension seven and eight. Proceedings of the London Mathematical Society, 2014, 108 (2), pp.518-540. ⟨hal-00566576v2⟩

Collections

CNRS FOURIER INSMI
160 Consultations
519 Téléchargements

Altmetric

Partager

More