On cubic hypersurfaces of dimension seven and eight - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2011

On cubic hypersurfaces of dimension seven and eight

Laurent Manivel

Résumé

Cubic sevenfolds are examples of Fano manifolds of Calabi-Yau type. We study them in relation with the Cartan cubic, the $E_6$-invariant cubic in $\PP^{26}$. We show that a generic cubic sevenfold $X$ can be described as a linear section of the Cartan cubic, in finitely many ways. To each such ``Cartan representation'' we associate a rank nine vector bundle on $X$ with very special cohomological properties. In particular it allows to define auto-equivalences of the non-commutative Calabi-Yau threefold associated to $X$ by Kuznetsov. Finally we show that the generic eight dimensional section of the Cartan cubic is rational.
Fichier principal
Vignette du fichier
7cub-arXiv.pdf (304.21 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00566576 , version 1 (16-02-2011)
hal-00566576 , version 2 (10-06-2011)

Identifiants

Citer

Atanas Iliev, Laurent Manivel. On cubic hypersurfaces of dimension seven and eight. 2011. ⟨hal-00566576v1⟩
160 Consultations
519 Téléchargements

Altmetric

Partager

More