CONVERGENCE OF A QUANTUM NORMAL FORM AND AN EXACT QUANTIZATION FORMULA - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2011

CONVERGENCE OF A QUANTUM NORMAL FORM AND AN EXACT QUANTIZATION FORMULA

Sandro Graffi
  • Fonction : Auteur
  • PersonId : 891189
Thierry Paul
  • Fonction : Auteur
  • PersonId : 878449
  • IdRef : 158973372

Résumé

Let the quantization of the linear flow of diophantine frequencies $\om$ over the torus $\T^l$, $l>1$, namely the Schrödinger operator $-i\hbar\omega\cdot\nabla$ on $L^2(\T^l)$, be perturbed by the quantization of a function $\V_\om: \R^l\times\T^l\to\R$ of the form \vskip 5pt\noindent $$ \V_\om(\xi,x)=\V(z\circ \L_\om(\xi),x),\quad \L_\om(\xi):= \om_1\xi_1+\ldots+\om_l\xi_l $$ \vskip 4pt\noindent where $z\mapsto \V(z,x): \R\times\T^l \to\R$ is real-holomorphic. We prove that the corresponding quantum normal form converges uniformly with respect to $\hbar\in [0,1]$. Since the quantum normal form reduces to the classical one for $\hbar=0$, this result simultaneously yields an exact quantization formula for the quantum spectrum, as well as a convergence criterion for the Birkhoff normal form, valid for a class of perturbations holomorphic away from the origin. The main technical aspect concerns the quantum homological equation $\ds {[F(-i\hbar\om\cdot\nabla),W]}/{i\hbar}+V=N$, $F:\R\to\R$ being a smooth function $\ep-$close to the identity. Its solution is constructed, and estimated uniformly with respect to $\hbar\in [0,1]$, by solving the equation $\{F(\L_\om),\W\}_M+\V=\N$ for the corresponding symbols. Here $\{\cdot,\cdot\}_M$ stands for the Moyal bracket. As a consequence, the KAM iteration for the symbols of the quantum operators can be implemented, and its convergence proved, uniformly with respect to $(\xi,\hbar,\ep)\in \R^l\times [0,1]\times \{\ep\in\C\,|\;|\ep|<\ep^\ast\}$, where $\ep^\ast>0$ is explicitly estimated in terms only of the diophantine constants. This in turn entails the uniform convergence of the quantum normal form.
Fichier principal
Vignette du fichier
STAMS.pdf (436.05 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00562634 , version 1 (03-02-2011)

Identifiants

  • HAL Id : hal-00562634 , version 1

Citer

Sandro Graffi, Thierry Paul. CONVERGENCE OF A QUANTUM NORMAL FORM AND AN EXACT QUANTIZATION FORMULA. 2011. ⟨hal-00562634⟩
352 Consultations
85 Téléchargements

Partager

More