N

N

CONVERGENCE OF A QUANTUM NORMAL FORM
AND AN EXACT QUANTIZATION FORMULA
Sandro Graffi, Thierry Paul

» To cite this version:

Sandro Graffi, Thierry Paul. CONVERGENCE OF A QUANTUM NORMAL FORM AND AN
EXACT QUANTIZATION FORMULA. 2011. hal-00562634

HAL Id: hal-00562634
https://hal.science/hal-00562634v1

Preprint submitted on 3 Feb 2011

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00562634v1
https://hal.archives-ouvertes.fr

CONVERGENCE OF A QUANTUM NORMAL FORM AND AN EXACT

1.

1.1.
1.2.
1.3.

2.
3.

3.1.
3.2.
3.3.
3.4.

4.
O.

5.1.

QUANTIZATION FORMULA

SANDRO GRAFFI AND THIERRY PAUL

ABSTRACT. Let the quantization of the linear flow of diophantine frequencies w over the torus
T!, I > 1, namely the Schrédinger operator —ifiw -V on L?(T'), be perturbed by the quantization
of a function V,, : R! x T — R of the form

Vu(£,1’) :V(Zoﬁw(f),$)7 ['w(é-) = w1§1+"'+wl£l

where z — V(z,z) : R x T' — R is real-holomorphic. We prove that the corresponding quantum
normal form converges uniformly with respect to & € [0,1]. Since the quantum normal form
reduces to the classical one for i = 0, this result simultaneously yields an exact quantization
formula for the quantum spectrum, as well as a convergence criterion for the Birkhoff normal form,
valid for a class of perturbations holomorphic away from the origin. The main technical aspect
concerns the quantum homological equation [F(—ihw - V), W]/ih+V = N, F : R — R being
a smooth function e—close to the identity. Its solution is constructed, and estimated uniformly
with respect to i € [0, 1], by solving the equation {F(L.), W}am +V = N for the corresponding
symbols. Here {-, -} stands for the Moyal bracket. As a consequence, the KAM iteration for the
symbols of the quantum operators can be implemented, and its convergence proved, uniformly
with respect to (¢,h,¢) € R x [0,1] x {e € C| |¢] < "}, where * > 0 is explicitly estimated
in terms only of the diophantine constants. This in turn entails the uniform convergence of the
quantum normal form.
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1. INTRODUCTION

1.1. Quantization formulae. The establishment of a quantization formula (QF) for the eigen-
values of the Schrodinger operators is a classical mathematical problem of quantum mechanics (see
e.g.[FM]). To review the notion of QF, consider first a semiclassical pseudodifferential operator
H (for this notion, see e.g.[Ro]) acting on L?(R'), I > 1, of order m, self-adjoint with pure-point
spectrum, with (Weyl) symbol o5 (¢, 2) € C®°(R! x R, R).

Definition 1.1. We say that H admits an M -smooth exact QF, M > 2, if there exists a function
w: (A h) — u(A h) € CM(RE x [0,1];R) such that:

(1) u(A,h) admits an asymptotic expansion up to order M in h uniformly on compacts with
respect to A € R;
(2) Vh €]0,1], there is a sequence ny := (nk,,...,ng,) C Z! such that all eigenvalues A (h) of

H admit the representation:
>\k<ﬁ) = ,u,(nkh, ﬁ). (1.1)

Remark 1.2. (Link with the Maslov index) Consider any function f: R! — R! with the property
(f(A),Vu(A,0)) = 9ppu(A,0). Then we can rewrite the asymptotic expansion of 1 at second order

p(ngh, k) = p(ngh + hf (ngh)) + O (k). (1.2)

When f(mh) = v, v € Q!, the Maslov index [Ma] is recovered. Moreover, when
A (h) — p(ngh, b)) = O(BM), h—0, M>2 (1.3)

then we speak of approximate QF of order M.

Example 1.3. (Bohr-Sommerfeld-Einstein formula). Let oy fulfill the conditions of the Liouville-
Arnold theorem (see e.g.[Arl], §50). Denote A = (Ay,...,4;) € R' the action variables, and
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E(Ai,...,A;) the symbol o expressed as a function of the action variables. Then the Bohr-
Sommerfeld-Einstein formula (BSE) QF is

Aon = E((ny +v/Dh,..., (0 +v/4h) + O(h?) (1.4)

where v = v(l) € NU {0} is the Maslov index [Ma]. When H is the Schrdédinger operator,
and oy the corresponding classical Hamiltonian, (1.4) yields the approximate eigenvalues, i.e.
the approximate quantum energy levels. In the particular case of a quadratic, positive definite
Hamiltonian, which can always be reduced to the harmonic oscillator with frequencies w; >
0,...,w; > 0, the BSE is an exact quantization formula in the sense of Definition 1.1 with v = 2,

namely:
l

WA R) = B(Ay + /2., A+ 1/2) = wi(Ag + 1/2)
k=1

To our knowledge, if [ > 1 the only known examples of exact QF in the sense of Definition
1.1 correspond to classical systems integrable by separation of variables, such that each separated
system admits in turn an exact QF, as in the case of the Coulomb potential (for exact QF's for
general one-dimensional Schrodinger operators see [Vo]). For general integrable systems, only the
approximate BSE formula is valid. Non-integrable systems admit a formal approximate QF, the
so-called Einstein-Brillouin-Keller (EBK), recalled below, provided they possess a normal form to
all orders.

In this paper we consider a perturbation of a linear Hamiltonian on 7*T! = R! x T!, and
prove that the corresponding quantized operator can be unitarily conjugated to a function of the
differentiation operators via the construction of a quantum normal form which converges uniformly
with respect to h € [0, 1]. This yields immediately an exact, co-smooth QF. The uniformity with
respect to 7 yields also an explicit family of classical Hamiltonians admitting a convergent normal

form, thus making the system integrable.

1.2. Statement of the results. Consider the Hamiltonian family H. : R! x T! — R, (£, )
He (&, ), indexed by e € R, defined as follows:

Ho (€, ) = Lo,(&) +eV(x,6); Lo(€):=(w,6), weR, VeC®R xT,R). (1.5)

Here ¢ € R, 2 € T! are canonical coordinates on the phase space R! x T, the 2l—cylinder. £, (€)
generates the linear Hamiltonian flow &; — &;, x; — x; + w;t on R! x T!. For [ > 1 the dependence
of V on £ makes non-trivial the integrability of the flow of H. when & # 0, provided the frequencies
w = (w1,...,w;) are independent over Q and fulfill a diophantine condition such as (1.25) below.

Under this assumption it is well known that H. admits a normal form at any order (for this



4 SANDRO GRAFFI AND THIERRY PAUL

notion, see e.g. [Ar2], [SM]). Namely, ¥ N € N a canonical bijection C. y : R' x T « R! x T! close

to the identity can be constructed in such a way that:

N

(He 0 Cen)(&,@) = Lo(©) + Y Br(&w)e" + N Ry p1£(¢ @) (1.6)
k=1

N+1

This makes the flow of H.({,z) integrable up to an error of order ¢™*". In turn, C. n is the

Hamiltonian flow at time 1 generated by
N

W (& m) = (& 2) + Y Wi(& )b, (1.7)

k=1
where the functions Wi, (€, z) : Rl x T! — R are recursively computed by canonical perturbation
theory via the standard Lie transform method of Deprit[De] and Hori[Ho] (see also e.g [Ca]).
To describe the quantum counterpart, let H, = L, 4+ €V be the operator in L?(T') of symbol

H., with domain D(H,) = H'(T') and action specified as follows:
!
Yu e D(H.), Hou= Lyu+Vu, Lyu= Zkaku, Dy := —ih0y, u, (1.8)
k=1
and V' is the Weyl quantization of V (formula (1.26) below).
Since uniform quantum normal forms (see e.g. [Sj],[BGP],[Pol], [Po2]) are not so well known

as the classical ones, let us recall here their definition. The construction is reviewed in Appendix.

Definition 1.4. [Quantum normal form (QNF)] We say that a family of operators He e-close (in
the norm resolvent topology) to Hy = Ly, admits a uniform quantum normal form (QNF) at any

order if

(i) There exists a sequence of continuous self-adjoint operators Wi,(h) in L*(T!), k = 1,... and
a sequence of functions By (&1, ..., &, h) € CP°(R! x [0,1];R), such that, defining VN € N

the family of unitary operators:

N
Une(h) = e™Ne®/n Wy (h) = Wi(h)eF (1.9)
k=1
we have:
N
Une(WHUR (h) = Ly + Y _ Bi(D1, ..., Dy, h)eb + N Ry (). (1.10)
k=1

(ii) The operators By(D,h) : k = 1,2..., Ryy1 are continuous in L*(T'); the corresponding
symbols Wy, Br,, Rn11(e) belong to C®(R! x T! x [0, 1]), and reduce to the classical normal
form construction (1.6) and (1.7) as h — 0:

Bi(&;0) = Br(€);  Wi(§2,0) = Wi(&,2),  Rnt16(7,60) = Ryt1e(2,€) (1.11)
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N

(1.10) entails that H. commutes with Hy up to an error of order eV*!; hence the following

approximate QF formula holds for the eigenvalues of H.:

N
Ane(h) = h(n,w) + 3 Br(nih,...,mh, h)e" + O(eNT1). (1.12)
k=1

Definition 1.5. (Uniformly convergent quantum normal forms) We say that the QNF' converges
M -smoothly, M > 2[, uniformly with respect to the Planck constant h, if there is €* > 0 such
that

[e.e]
sup Z | DWy(€, x5 h)e¥| < +o0 (1.13)
—1 REXTEX[0,1] la]<M
oo
sup > |DBr(&, h)e| < +oo, |e] <. (1.14)

k=1 B'x[0.1] |y 1< s

Here D* = 0¢'0;70,°, |af = |az| + |az| + as.
(1.13,1.14) entail that, if |¢] < *, we can define the symbols

Wao(& w52, 1) i= (&, 2) + Y Wh(§,zh)eF € CY(R! x T x [0,6%] x [0,1];C),  (1.15)
k=1

Boo(&56,h) = L, (&) + i Bi(&n)ed € CM(R! x [0,£*] x [0,1];C) (1.16)
k=1

By the Calderon-Vaillancourt theorem (see §3 below) their Weyl quantizations W (e, 1), Boo (€, k)
are continuous operator in L2(T). Then:
eWoelEW/ R o= WeoleW)/h — B (D, ..., Dy;e,h). (1.17)
Therefore the uniform convergence of the QNF has the following straightforward consequences:
(A1) The eigenvalues of H. are given by the exact quantization formula:
An(h,€) = Boo(nh, b, g), nez, e :={ceR|l¢<e*} (1.18)
(A2) The classical normal form is convergent, uniformly on compacts with respect to & € R,
and therefore if e € ®* the Hamiltonian H(§, x) is integrable.
Let us now state explicit conditions on V ensuring the uniform convergence of the QNF.

Given F(t,x) € C®(R x T;R), consider its Fourier expansion

Flt,x) =Y Fylt)esn, (1.19)

q€e7!

and define furthermore F,, : R! x T! — R; F,, € C®(R! x T!;R) in the following way:
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Ful&,w) i= F(Lul(§),2) = D Fug(§)e' @™, (1.20)
qez!
1 ~ .
Faal€) = (Fyo £)(6) = s | Fulp)e e dp = (121)
= (27?1)1/2 qu(p)e_i<pw’£> dp, pw:= (pwi,...,pw). (1.22)

Here, as above, £, (&) = (w, &).

Given p > 0, introduce the weighted norms:

| Foa©llp = / By (p)|e??| dp (1.23)
|Fu@ )l = 3 e E, gl (1.24)
q€E7!

We can now formulate the main result of this paper. Assume:
(H1) There exist v > 1,7 > [ — 1 such that the frequencies w fulfill the diophantine condition

[w. )| ™" <Al g€, q#0. (1.25)
(H2) V,, is the Weyl quantization of V,, (&, x) (see Sect.3 below), that is:
Vof(@) = [ D Vy(p)eam a2 (5 + mpw)dp,  f € L*(T'). (1.26)
K gez!
with V(& z;h) = V((w, £), ) = V., (€, x) for some function V(t;2) : R x T — R.
(H3)
Vallp, < 400, p>1+16v7".

Clearly under these conditions the operator family H. := L, + ¢V,,, D(H.) = H'(T!), ¢ € R, is

self-adjoint in L?(T') and has pure point spectrum. We can then state the main results.

Theorem 1.6. Under conditions (H1-H3), H. admits a uniformly convergent quantum normal
form Boow(&,€,h) in the sense of Definition 1.5, with radius of convergence no smaller than:

1

(v, 1) = . (1.27)
24(3+21)227 |||,
If in addition to (H1-H2) we assume, for any fixed r € N:
(H4)
0> A7, r) = 1+ 8972 + 1)?) (1.28)

we can sharpen the above result proving smoothness with respect to A:
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Theorem 1.7. Let conditions (H1-H2-HJ) be fulfilled. For r € N define @ := {¢ € C||e| <

e*(y,,7)}, where:

1
e24(B3+27) (p 4 227V,

e (y,1,r) = (1.29)
Then h — Bx(t,e,h) € C([0,1]; C*({t € C|[|St]| < p/2 x D} (p)}); i.e. there exist Cr(e*) > 0
such that, for e € D;:

T

3 s IR )l < G 7 =01, (130

In view of Definition 1.1, the following statement is a straightforward consequence of the above

Theorems:

Corollary 1.8 (Quantization formula). H. admits an co-smooth quantization formula in the
sense of Definition 1.1. That is, Vr € N, ¥ |e| < e*(vy,7,7) given by (1.29), the eigenvalues of H.

are expressed by the formula:
A1, hy€) = Boowo(nhye,h) = Lo(nh) + Y Bo(Ly(nh), h)e® (1.31)
s=1

where Buo (€, €, 1) belongs to C™(R! x [0,e*(-,7)] x [0,1]), and admits an asymptotic expansion at

order r in h, uniformly on compacts with respect to (€,€) € R! x [0,e*(-,7)].

Remarks

(i) (1.30) and (1.31) entail also that the Einstein-Brillouin-Keller (EBK) quantization for-

mula:

AEBE(R) = Lo,(nh) + i Bs(L,(nh))e® = Boow(nhye), n €z (1.32)

s=1
reproduces here Spec(H.) up to order h.

(ii) Apart the classical Cherry theorem yielding convergence of the Birkhoff normal form for
smooth perturbations of the harmonic flow with complex frequencies when [ = 2 (see e.g.
[SM], §30; the uniform convergence of the QNF under these conditions is proved in [GV]),
no simple convergence criterion seems to be known for the QNF nor for the classical NF as
well. (See e.g.[PM], [Zu], [St] for reviews on convergence of normal forms). Assumptions
(1) and (2) of Theorem 1.6 entail Assertion (A2) above. Hence they represent, to our

knowledge, a first explicit convergence criterion for the NF.
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Remark that £, () is also the form taken by harmonic-oscillator Hamiltonian in R?,

0(n, g5 Zws M +v2), (eys) €ER?, s=1,...,1
if expressed in terms of the action variables £ > 0, s =1,...,[, where

5= 773 + y? = 25Zs, Zs = Ys +ins.

Assuming (1.25) and the property
l
Bk(g) = (fk:oﬁw(g)) :fk(zwszszs)a k=0,1,... (1'33)

Riissmann [Ru] (see also [Ga]) proved convergence of the Birkhoff NF if the perturbation V,
expressed as a function of (z,%), is in addition holomorphic at the origin in C?. No explicit
condition on V seems to be known ensuring both (1.33) and the holomorphy. In this case instead
we prove that the assumption V(§,z) = V(L (), z) entails (1.33), uniformly in & € [0, 1]; namely,
we construct Fg(t;h) : R x [0,1] — R such that:

Bs(€§ h) = -7:s<£w(§)§h) = fsz(f;ﬁ), s=0,1,... (1'34)

The conditions of Theorem 1.6 cannot however be transported to Riissmann’s case: the map

T == e

i=1,...,1,

namely, the inverse transformation into action-angle variable, is defined only on Rﬂr x T! and does
not preserve the analyticity at the origin. On the other hand, 7 is an analytic, canonical map
between Rﬁr x T! and R?% \ {0,0}. Assuming for the sake of simplicity Vo = 0 the image of H.

under 7 is:

l
(Heo T)(my) = Y ws(mz +42) +e(Vo T)(n,y) :== Po(n,y) +ePi(n, y) (1.35)
s=1
where

Pi(n,y) = (Vo T)(n,y) = Prr(.y) + Pri(ny). (n,y) € R*\ {0,0}. (1.36)

l . ks
1 — 1Ys
Prr(n,y) = B > (RVeoHo)n,y) [ [ (ﬁ)

kez! s=1

ks
1 s . S
Pt =5 S oo I (il

kezt s=1
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If V fulfills Assumption (H3) of Theorem 1.6, both these series converge uniformly in any compact
of R? away from the origin and P; is holomorphic on R? \ {0,0}. Therefore Theorem 1.6 imme-
diately entails a convergence criterion for the Birkhoff normal form generated by perturbations

holomorphic away from the origin. We state it under the form of a corollary:

Corollary 1.9. (A convergence criterion for the Birkhoff normal form) Under the assumptions of
Theorem 1.6 on w and V, consider on R¥\ {0,0} the holomorphic Hamiltonian family P-(n,y) :=
Po(n,y)+eP1(n,y), € € R, where Py and Py are defined by (1.35,1.36). Then the Birkhoff normal
form of H. is uniformly convergent on any compact of R%\ {0,0} if |e| < e*(v, 7).

1.3. Strategy of the paper. The proof of Theorem 1.6 rests on an implementation in the quan-
tum context of Riissmann’s argument|[Ru] yielding convergence of the KAM iteration when the
complex variables (z,%) belong to an open neighbourhood of the origin in C*. Conditions (1.25,
1.34) prevent the occurrence of accidental degeneracies among eigenvalues at any step of the quan-
tum KAM iteration, in the same way as they prevent the formation of resonances at the same
step in the classical case. However, the global nature of quantum mechanics prevents phase-space
localization; therefore, and this is the main difference, at each step the coefficients of the homo-
logical equation for the operator symbols not only have an additional dependence on A but also
have to be controlled up to infinity. These difficulties are overcome by exploiting the closeness to
the identity of the whole procedure, introducing adapted spaces of symbols i(Section 2), which
account also for the properties of differentiability with respect to the Planck constant. The link
between quantum and classical settings is provided by a sharp (i.e. without A*° approximation)
Egorov Theorem established in section 4. Estimates for the solution of the quantum homological
equation and their recursive properties are obtained in sections 5.1 (Theorem 5.3) and 5.2 (The-
orem 5.5) respectively. Recursive estimates are established in Section 6 (Theorem 6.4) and the
proof of our main result is completed in section 7. The link with the usual construction of the

quantum normal form described in Appendix.

2. NORMS AND FIRST ESTIMATES

Let m,l =1,2,.... For F € C®(R™ x T! x [0,1];C), (£, z,h) — F(&,2;h), and G € C°(R™ x
[0,1];C), (& k) — G(&; k), consider the Fourier transforms

-~

1 ‘
Gi1) = i [ GlEse 09 1)
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1 )

F(&, q;h) = / ‘7-'(5,:15;h)e_“q’”"’> dx. (2.2)

27T m/2 [,
Fle.an) = Y F(E.q: e or (2.3)

g€zt

. 1 .

h)= ——— h)e 1P g 2.4
F(p7qﬂ ) (27T)m/2 rm F(é.?q, )e € ( )

It is convenient to rewrite the Fourier representations (2.3, 2.4) under the form a single Lebesgue-

Stieltjes integral. Consider the product measure on R x R':

d\(t) :== dpdv(s), t:=(p,s) € R™ x Rl; (2.5)
m l
dp := H dpx; dv(s) = H Z (sh—aqn), qn €Z,h=1,...,1 (2.6)
k=1 h=1qn<sp
Then:
F(& x;h) = / F(p, s3h)e' P+ dx(p, ) (2.7)
R™ X R}

Definition 2.1. For p > 0, ¢ > 0, we introduce the weighted norms

GI5 = Jmax 1G (5 )l 1 am eololapy = Jmax, / IG(.; b)| el dp. (2.8)
feo= hfg[gf]ZH D TG Wl eoigs Glg =105 (29)
. 1.5 .
Remark 2.2. By noticing that |p| < |p/ — p| + [p/| and that, for z > 0, 27e™%% < f(%)], we
e
immediately get the inequalities
IFGIL < |Fl6lGlo, (2.10)
/2 INEAN
(I — AN F|,_s < -5) o k>0 (2.11)
Set now for k € NU {0}:
pi(t) = (L i) = (14 [pf? + |s)2. (2.12)
and note that
E
pure(t = t') <22 g (8) e (1), (2.13)

because |z — 2/|2 < 2(|z|? + |2'|?).
Definition 2.3. Consider F(&,x;h) € C®°(R™ x T! x [0, 1]; (C), with Fourier expansion

F(&azh) =Y F(&qh (2.14)

qeZ!
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(1) Set:

IFIE = ma Z / ik (p, $)3) F(py 53 1) P15 H1PD A (p, ). (2.15)
heOl mXRl

(2) Let O, be the set of functions ® : Rl x T! x [0,1] such that ®(&,x;h) = F(L,(E),z;h) for
some F: Rx T x [0,1] — C. Define, for ® € O,:

1®lp,se = hrrl[?;]Z/ |t~y (P, q) O F (p, 5 1) e? P dX(p, 5). (2.16)
(3) Finally we denote Op'V (F) the Weyl quantization of F recalled in Section 3 and
Tip) = {FIIFI, < oo}, (2.17)
Jip) = {0V (F)|F e T k), (2.18)
Te(p) = {F € Ou||Fllpk < oo}, (2.19)
Je(p) = {F I Fllpx < oo}, (2.20)

Finally we denote: LL(R™) := L'(R™, eIPldp).

Remark 2.4. Note that, if F(, ¢, h) is independent of ¢, i.e. F(§,q, k) = F(&, h)dq,0, then:

IFI = 1F1 ks 1F N = 1F o (2.21)

.k

while in general
| Fllpk < IF|ly ke whenever k > k', p < p'; (2.22)

Remark 2.5. (Regularity properties)
Let F € ] (p),k > 0. Then:

(1) There exists K (c, p, k) such that

maX H]:(é.,(II h)HCa ]Rmx’]l‘l < KHf
hel0,1]

e Q€N (2.23)

and analogous statement for the norm || - ||, x-
(2) Let p >0, k > 0. Then F(&,z;h) € C([0,1]; C¥({|S¢] < p} x {|Sz| < p}) and

sup < |IFf (2.24)
IS¢ <d} x{|Sz|<d}

Analogous statements for F € Ji(p).

We will show in section 3 that:

1OP"™ (F)l5(z2) < |1 Fllpse ks p > 0. (2.25)
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In what follows we will often use the notation F also to denote the function F(L,(§)), because the
indication of the belonging to J or JT, respectively, is already sufficient to mark the distinction

of the two cases.

Remark 2.6. Without loss of generality we may assume:
lw| = Jwi|+ ...+ |w| <1 (2.26)

Indeed, the general case |w| = a|w'|, || <1, @ > 0 arbitrary reduces to the former one just by

the rescaling € — ae.

3. WEYL QUANTIZATION, MATRIX ELEMENTS, COMMUTATOR ESTIMATES

3.1. Weyl quantization: action and matrix elements. We sum up here the canonical (Weyl)
quantization procedure for functions (classical observables) defined on the phase space R! x T!. In
the present case it seems more convenient to consider the representation (unique up to unitary
equivalences) of the natural Heisenberg group on R! x T!. Of course this procedure yields the
same quantization as the standard one via the Brézin-Weil-Zak transform (see e.g. [Fol, §1.10)
and has already been employed in [CdV], [Pol],[Po2]).

Let H;(R' x R! x R) be the Heisenberg group over R**! (see e.g.[Fo], Chapt.1). Since the dual
space of R! x T! under the Fourier transformation is R! x Z!, the relevant Heisenberg group here

is the subgroup of H;(R! x R! x R), denoted by H;(R! x Z! x R), defined as follows:

Definition 3.1. Let u := (p,q),p € R',q € Z!, and lett € R. Then H;(R' x Z! x R) is the subgroup
of Hy(R! x R! x R) topologically equivalent to R! x Z' x R with group law

1
(1) (0,8) = (uv, £+ 5+ 20(uv) (3.1)
Here Q(u,v) is the canonical 2—form on R x Z!:

Qu,v) 1= (u1, v3) — (01, us) (3.2)

H;(R! x Z! x R) is the Lie group generated via the exponential map from the Heisenberg Lie
algebra HL;(Z! x R x R) defined as the vector space R! x Z! x R with Lie bracket

[(’U,,t) ' (U7S)] = (0,0,Q(U, 'U)) (33)
The unitary representations of H;(R! x Z* x R) in L?(T!) are defined as follows

(Un(p, 4. 8) f) () := MHH@EIRPDL2 f (0 4 pp) (3-4)
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Vh#0,V(p,q,t) € Hy, ¥ f € L*(T'). These representations fulfill the Weyl commutation relations
Un(u)* = Up(—u),  Un(u)Un(v) = ™07 (u 4 v) (3.5)

For any fixed h > 0 Uy, defines the Schrodinger representation of the Weyl commutation relations,
which also in this case is unique up to unitary equivalences (see e.g. [Fol, §1.10).
Consider now a family of smooth phase-space functions indexed by %, A(, z, h) : R xT! [0, 1] —

C, written under its Fourier representation

Ao = [ Y Apame @O ay = [ Apsme @D anps)  (36)
R! . RIXR
qEL
Definition 3.2. The (Weyl) quantization of A(&,x;h) is the operator A(h) definde as
AN = [ 3 Apa:mUiip. ) f(z) do (37)
R
qEZ!

= Alp, s; ))Un(p, 8)f(z) dX(p,s) f € LA(T')

R! XR!

Remark 3.3. Formula (3.7) can be also be written as

(A f)(x) =Y Alg,h)f, (Alg,h)f)(x) = /Rl A(p, ¢: D)Un(p, @) f () dp (3.8)

q€E7!
From this we compute the action of A(h) on the canonical basis in L?(T'):
em(z) = (2m) "2 m) g et mez

Lemma 3.4.

AWem(x) =y DT A(n(m + /2), ¢, h) (3.9)

A

Proof. By (3.8), it is enough to prove that the action of A(q,h) is
Alg, Dem(x) = D0 A(R(m + /2), g, b) (3.10)
Applying Definition 3.2 we can indeed write:

(Alg: e (@) = (20) 12 [ Alp.giyelon inpa/ziimesim) g
R!

— (QW)—l/2ei<(m+q)vr> / j(p; q, h)eih<p,(m+q/2)> dp = €i<(m4rq)7x>_,4(h(m +q/2),q,h).
Rl

We note for further reference an obvious consequence of (3.10):

(A(g, hem, A(g, h)en) 2y = 0, m #n;  (A(r, h)em, A(q, h)en) 2y = 0, 7 # q. (3.11)
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As in the case of the usual Weyl quantization, formula (3.7) makes sense for tempered distributions
A(&, ;) [Fo]. Indeed we prove in this context, for the sake of completeness, a simpler, but less

general, version of the standard Calderon-Vaillancourt criterion:

Proposition 3.5. Let A(h) by defined by (3.7). Then

ol+1 - (31-1)/2

P e e vi=ylD D L R0 [y (3.12)
la|<2k
where
é +1, leven
k=
Hl41 Jodd

Since:

1A(g, B)timem|* = |A(R(m + q/2), ¢, h)[* - [

by Lemma 3.4 and (3.11) we get:

[A(R)ul® < > MA@ R Emenl? = > AR+ q/2), 4, B - [T

(g;m)ezt x7! (g;m)ezt x7!

< S suplAE P Y [am = Y sup |AE 1) ul?
gezt S€F' mez! gezt SR

2
< (3 sup A ¢, w2l
qez! {er!
Therefore:

1AM 222 < ) sup [A(E, g, h)].

qez! §eR!

Integration by parts entails that, for k € N, and Vg € C*(T'):

. 1 4
i{g,x) dz!| = / ez (1 4 —A, k d

[ e atwyie| = e | [ 00+ (—a0 (e
1

< ———x(2m)sup Y [05g(x).

2k T
1+ 1dl T |a<2k
Let us now take:

!
=+1, leven
27 2%k —1+4+1=

fotinos tom 29
H141, lodd -0
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Then 2k — [+ 1 > 2, and hence:
1 dus -+ d (I-1)/2  poo -1
Z 2k§2/ = QQZZSQW I+1 / § 55 4p-
g€z 1+ gl rt 14 |lull (=) Jo 1+p
0o -1 oo 1/2k—1
1
[ e L [,

1 Ly o 1
< /2k—1 d / 1/2k—2 d _
= ok </0 " u o )T Ak =k —0)

This allows us to conclude:

Now:

o 1
> swlAGan)| < @) 30 IOAGw Wl eine D T
qez! ¢ <2k qez! 4
@Bi-1)/2 1
R e D ]|
= I+1 xS by TN Lo (RExT) -
rEh) 1+2 o
with k& given by (3.13). This proves the assertion. O

Remark 3.6. Thanks to Lemma 3.4 we immediately see that, when A(, x,h) = F(L, (), x; h),

AW = [ 32 Flpasn)Unpora)f do (3.14)

R A

= [ Y F(p.q;h)e’@n a2 ¢ 4 ppw)dp  f € L*(T')

R q€E7!

where, again, pw := (pw1, ..., pw;). Explicitly, (3.10) and (3.9) become:

A(R)em(z) =Y D A(hiw, (m + q/2)), ¢, h) (3.15)
A(g, Wem(x) = D A(h(w, (m + q/2)), ¢, ) (3.16)

Remark 3.7. If A does not depend on zx, then A(&,q,h) = 0,q # 0, and (3.9) reduces to the

standard (pseudo) differential action

(A(Ryu)(z) =Y Almh, B)iime' ™ = > " A(=ihV, h)iye ™ (3.17)
mezt mezt
because —ihVe,, = mhey,. On the other hand, if F does not depend on £ (3.9) reduces to the
standard multiplicative action

(A(hyu) (@) =D A(g, )e"D™ " G ™™™ = A, h)u(z) (3.18)

q€e7! mezt

Corollary 3.8. Let A(h) : L?(T') — L?(T') be defined as in 3.2. Then:
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(1) Vp>0,Yk > 0 we have:
IAMW) 22— 2 < IAIIL,

and, if A(§,x,h) = A(Ly(E), x5 h)

AP 22 < [ Allp.p-

(em+s, A(g; B)em) = 04,5 A((m +q/2))h, g, )
(émts: A(h)em) = A((m + s/2)h, s, h)

and, if A(§,x,h) = F(L,(£), x;h)

<6m+87 F(Q? h)€m> = 511,8‘7:((("]7 (m + Q/2)>h7 q, h) = 5q,8f([’w(m + 8/2)h7 q, h)
(em+s, F(h)em) = F((w, (mh+ sh/2)),s,h) = F(L,(mh+ sh/2),s,h)

FEquivalently:
<6m7 A(h)€n> = A((m + n)h/27 m—=n, h)
(3) A(n) is an operator of order —oo, namely there exists C(k,s) > 0 such that

[AR)ull ey < Ok, s)l[ull e ey, (kys) €R, k=8

Proof. (1) Formulae (3.19) and (3.20) are straighforward consequences of Formula (2.23).
(2) (3.23) immediately yields (3.24). In turn, (3.23) follows at once by (3.10).

(3) The condition A € J(p) entails:
sup  A(& g, m)]e?! < el max [|A(p;q,n)lly — 0, |g| — oo.
(&;h)€ER! x[0,1] hel0,1]
Therefore:
[ABullFe < > W+ 1aP)FAm + q/2)h, g, B - [
(g;m)ezt x7!

< Y sup(L+ g [A((m + a/2)h, g, WP Y (1+ [mf?)*[im]?

m
A @ mez!

= C(k,s)|lullz
Clk,s) = > sup(l+ |q]*)"A((m + q/2)h, q, h)[*

qezt am

where 0 < C'(k, s) < +o0 by (3.27) above. The Corollary is proved.

(3.27)
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3.2. Compositions, Moyal brackets. We first list the main properties which are straightfor-
ward consequences of the definition, as in the case of the standard Weyl quantization in R%. First

introduce the abbreviations

t:=(p,s); t'=(,s); wt:=(pw,s) (3.28)
Qult — 1,t) = (1) — Py ') — (' — ), 1) = (P s) — (' pw). (3.29)

Given F(h),G(h) € Jx(p), define their twisted convolutions:

(F(m)FG(n)(p, g h) = F(t' = t;m)G(t'; n)elM0 =021 qx!) (3.30)
(F1G) (@, &, h) = /R » (F(W)FG(h))(t, h)e' =1 HPE©) (1) (3.31)
Clp, q; h) = % - F —t, )Gt h) sin[hQu (' — t,¢')/2] () (3.32)
C(x,&h) = /R » C(p, s; h)ePEeOFi52) gx(¢1) (3.33)

Once more by the same argument valid for the Weyl quantization in R%:

Proposition 3.9. The following composition formulas hold:

F(h)G(h) = (F(R)FG (1)) (t; B)Up (wt) dA(t). (3.34)

RXR!

_ / Clt: WU (wt) dA (1) (3.35)

Remark 3.10. The symbol of the product F(k)G(h) is then (F#G)(Ly(§),x, k) and the symbol of
the commutator [F'(h), G(h)]/ih is C(Ly(§), x; h), which is by definition the Moyal bracket of the
symbols F,G. From (3.32) we get the asymptotic expansion:

° 3521 . 336
h) .
Clp, ¢;w; 5 CE] I (p, qsw) (3.36)
7=0
Di(p,q;w) = Ft =t m)G(t h)[Qu(t —t,t')Y dX(t) (3.37)
RxR!

whence the asymptotic expansion for the Moyal bracket
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(=1l plrtil A A
> 0wt A (L), ) wOLOL G, 1) -
|r+31=0

oo 1\ g . ;

|r+3j[=0
Remark that:
{fv g}M(‘Cw(g)a €T h) = {fa g}(ﬁw(f)a :L‘) + O(h) (3'39)
In particular, since L, (€) is linear, we have V F(&;2;5) € C®(R! x T! x [0, 1]):
{F, L&) m(Lo(§), s h) = {F, Lo (§)}HLu(§), x5 h) (3.40)

The observables F (&, x; h) € J(p) enjoy the crucial property of stability under compositions of
their dependence on £, (&) (formulae (3.31) and (3.33) above). As in [BGP], we want to estimate
the relevant quantum observables uniformly with respect to &, i.e. through the weighted norm
(2.16).

3.3. Uniform estimates. The following proposition is the heart of the estimates needed for the
convergence of the KAM iteration. The proof will be given in the next (sub)section. Even though
we could limit ourselves to symbols in J(p), we consider for the sake of generality and further

reference also the general case of symbols belonging to JT(p).

Proposition 3.11. Let F, G € J,I(p), k=0,1,...,d =dy +ds. Let F,G be the corresponding
symbols, and 0 < d+dy < p. Then:

(1") FG ¢ J,I(p) and fulfills the estimate

IFGlsr2) < 1F4GIIT 5, < (6 + DA AT G (3.41)
(2" [F’hG] € J,;r(p —d) and fulfills the estimate
(3
< < =" 42
R I et N e T P (342)
(3" FG e Jl(p), and
1761}, < (e + DAIF] - g1, (3.43)

Moreover if F, G € Ji(p), k=0,1,..., and F,G € Tx(p), then:
(1) FG € Jk(p) and fulfills the estimate

1EGsz2) < 1 FGllpse < (k + DA F ok - 1G] (3.44)
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(2)

€ Ji(p — d) and fulfills the estimate

e

e
h

i

(k+1)4k
< |{F, —d—dik S ST
By I{F, G mllp-d—di ke < e2dy(d + dy)

(3) FG € Jk(p) and

1F o - G p—ah (3.45)

1FGllpe < (k 4+ DA Fll o - 1G] (3.46)
Remark 3.12. The operators F(#) with the uniform norm |F|/,x,k = 0,1,... form a Banach

subalgebra (without unit) of the algebra of the continuous operators in L?(T').
Before turning to the proof we state and prove two further useful results.

Corollary 3.13. Let F,G € Ji(p), and let 0 < d < p, r € N. Then:

V2rr(k 4 1)4F

AT Gharbr - Dl < PG

IF 15,161 .1 (3.47)

Proof. We follow the argument of [BGP], Lemma 3.5. If d = d; + da, (3.42) entails:

C
HF, G allo-ak < = IF ok - IGllp-dns i i= (k + 1)4%.
(& dd1
-1 d
because [|G||p—ak|l < |G|lp=do,x and di(d + di) < did. Set now dy = er which yields d; = -
Then:

Ck Cyr

IH{F, Gl p—ar < @Hfup,k : ||ng—T:1d,k = WH}_”P”“ ’ Hg”ﬂ—%ldvk
and
Ck
HFAF G harlp-ar € |l 7, Gl ez <
(Cyr)?
< H]:H,z;k : ||g‘|p_%d,k

(ed)?

Iterating r times we get:

1 (Cpr)” 1 r

ﬁ”{f7{f7 7{f7g}M}M7"'}MHP—d7k < rl (6d)r+1HFH ko Hg”p_’“r;ldjg'
The Stirling formula and the majorization ||Gl|, -1, < [|G][, now yield (3.47). O
Proposition 3.14. Let F(§;x;h) € Ji(p), p > 0, k = 0,1,.... Then {F,Ly,}m € Te(p — d)

V0 <d< p and the following estimates hold:

. 1
I1F, Lol /it p—ap = {Fs Lol p—ap < ng

ok (3.48)
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H[Fv [ T [F’ Lw] o ']/(ih)THﬂ—d,k = H{fv B {fv ‘Cw}M T }MHp—dJ? (3'49)

2m(r — 1)(k + 1)4F

= (cd)d"

115,

Proof. By (3.40):

{F Lot ={F. Lo} = —(w, Vo) F(&,mh) = > (w,q)e’ @™ / Fo(p; B)ePE©) dp
R

A

and therefore:

I{F, Lotntllp—ar < I{F, Lotlpman < D 1w, @)@ DM Fyll,p <

A

- 1
sup(w, e 37 7 e < 1 F

1
qeZ qul

because |w| < 1 by Remark 2.6. This proves (3.48). (3.49) is a direct consequence of Corollary
3.13. 0

3.4. Proof of Proposition 3.11.
3.4.1. Three lemmata. The proof will use the three following Lemmata.

Lemma 3.15. Let p,p’ € R, 5,5’ € R\. Define t := (p,s),t' := (v,s'). Let Qu(-) and p;(-) be
defined by (3.29) and (2.12), respectively. Then:

|Qu(t, )7 < 271 (8) 1 (). (3.50)

The proof is straightforward, because |, (¢, )| < 2|¢||t/| and |w| < 1.

Lemma 3.16.
d™ sin hx/2 ||+t
’dhm h 'S gm+1 * (3.51)
Proof. Write:
dm 1 . dm 1 [* (=h)™ [* B ®
mhsmhx/2zw2/o cosht/2dt = 1 /0 ™ cos™ (nt/2) dt < 2mH/O t™ dt.
whence
d™ sin hx /2 R /xtmdt R < || FL
drm h — gm+1 0 - 2m+1(m_|_ 1) = om+l°
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Lemma 3.17. Let (F,G) € Jl, 0 < d+dy < p, t = (p,s), ' = (0,5, |t| :== |p| + |s],
|t'| :=|p'| +|§'|. Then:
{F, GYll} < |7 (3.52)
) p—d—d; = e2dy (d + dy) p p—d

Proof. We have by definition

{F .Gl ama, < ; / el =l gx(¢) /R IF@GE = 1)l - |sinh(t’ — ) At /B[ dN(E)

< [ et miane [ @16 - 0] (¢ - o] -] dN(E)
_ / elo=d=dlt g () / Flut /2060w — t/2)] - [u— /2] - Ju + £/2] d\(u)

R2!

— /Rzz - e(P—d—dl)(‘xH-‘yD|f({[,‘)g(y)| . |£L'| . |y| d)\(l’)d)\(y) <
X

1 1
- plz| (p—d)lyl < - gt
T [ F@I @) [ 6@ ax) < s A
because sup |afe ™% = i,é > 0. O
Q€R ed
3.4.2. Assertion (17). By definition
= _ o ihQ (1t —1) olt| '
IF (G, Z Y- LG B ik (£ aN(H A1)
whence
H}"(ﬁ)ﬁg(ﬁ)Hpk =
Y
> <7> 0) T IFE =, )G, WISt — ) iy (0Pl AN )AN() =
] R2! xR2!
v=0 j=0
kv =3 . o
ZZ ( )( )/ 07T F (W — 4, 0)ALG (W) Qu (' — £, ) gy ()P AN (E ) dN(E)
= ]:0 i—0 R2l xR2!

By Lemma 3.15 and the inequality ju, (' —t) < 28/2 10, (8 ) i (£) we get, with t = (p,s) : ¢/ = (¢, §')

| (¢ — £, 8 re—ry () < 27 15 (¢ — )11 (8 ) e (2)

< Vit — 1)) (022 o (1 = £ g (8)
e P (w1 ()

Denote now v —j —i =k — ', i = k —+” and remark that j </, i <~ — j. Then:

2j+(k_7)/2ﬂk7'y+j (t' - )15 (1) < QkU7’ (t/):uw” (t)
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Since <7> (‘7> < 4% and the sum over k has (k + 1) terms we get:

i) \u

|F(R)G (1 >Hpk_

(k+ 1)4 Z / OF F (W =t m)|0F " GO ) s (¢ — D) (£)eP dA(E)AN(E)
’y ’Y// 0 R2l><R2l

Now we can repeat the argument of Lemma 3.17 to conclude:
IF LG, < (k+ DA AT, - IG11T
which is (3.41). Assertion (31), formula (3.43) is the particular case of (3.41) obtained for €, = 0,

and Assertion (3), formula (3.46), is in turn particular case of (3.43) .

3.4.3. Assertion(2"). By definition:

Fn),6 }MHM—Z / OFIF (W — t, WG, ) sin AU — t,) /B [ (D) AA(F)(1).

21 g2l
Lemma 3.16 entails:
|8 sin Bt — t, 1) /B| < | — ¢, )T

and therefore:
I{F(R), G(M) }arllpk <

kv )
> (7) / BT — £ G IR — ) gy (eI AN )dA(E) =

kv v—J .
22 @ <J> / 00T F (W — £ LG B[t — 8,8 i (£)eP T AN )N ()

Let us now absorb a factor |Q,(#' — ¢,t')]’ in exactly the same way as above, and recall that

|Qu," —t,t")| < |t —t)t'|. We end up with the inequality:
{7 (), G(h )}MHpk‘ <

(e De 3 [ 107 B = ok G i (¢ e (e AN
o y7=0 IR XR?

Repeating once again the argument of Lemma 3.17 we finally get:

0G0l < e T 1617

which is (3.42). Once more, Assertion (2) is a particular case of (3.42) and Assertion (1) a
particular case of (3.41). This completes the proof of Proposition 3.10.



CONVERGENCE OF A QUANTUM NORMAL FORM AND AN EXACT QUANTIZATION FORMULA 23
4. A SHARPER VERSION OF THE SEMICLASSICAL EGOROV THEOREM

Let us state and prove in this section a particular variant of the semiclassical Egorov theorem
(see e.g.[Ro]) which establishes the relation between the unitary transformation e**"/* and the
canonical transformation ¢j,, generated by the flow of the symbol W(E, z;h)|n=0 := Wo(&, )
(principal symbol) of W at time 1. The present version is sharper in the sense that the usual one

allows for a O(h*°) error term.

Theorem 4.1. Let p > 0,k =0,1,... and let A, W € J,i(p) with symbols A, W. Then:

isW

S = e (Ly+ Ae " =L, + B

where:
(1) YO <d < p, Be Jl(p—d);
(2)

(k+ 1)4k
(ed)?

(3) Moreover the symbol B of B is such that:

-1
18I} < L= el /d) AN, + el /e

Lo+ B=(L,+A)o®5y +O(h)

where (I)f,vo is the Hamiltonian flow of Wy := W)|n=o at time €.
(4) Assertions (1), (2), (3) hold true when (A, B,W) € Ji(p) with ||A||L,€, ”B”L,k’ HWHLk
replaced by || Allok; [|Bllpk, [[WI

pyk -

Proof. The proof is the same in both cases, since it it is based only on Proposition 3.11. Therefore
we limit ourselves to the Jx(p) case.

By Corollary 3.8, Assertion (3), under the present assumptions H'(T'), the domain of the self-
adjoint operator F (L, ) + A, is left invariant by the unitary operator ¢i°% . Therefore on H L(Th)

we can write the commutator expansion

5€:Lw+z:li(if;z:[w,[m...,[w,fzw]...]+Z o)™ w4 ]

Amm)!
m=1

whence the corresponding expansions for the symbols

§(r,6:h,2) = Lo(O) + Y0 (W W, (W, L0} Y
m=1 ’

oo Em
+> SV A
m=1
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because {W, L}y = {W, L,} by the linearity of £,. Now apply Corollaries 3.13 and 3.14. We
get, denoting once again Cy, = (k + 1)4*:

> _m
I3 S, 0]l <152 S0, 00 00, Lab s
m=1

Z’g’mn{w Voo L T What -l ar < S Zﬁcemwup,)

. (ie X gm
1> S WAL e <13 S OV OV, OV, A e
| >

) el m
€ m=1
Now define:

B = Zl 7(;2:, AL 1+ Z hmm, LIWALL] (453)

and remark that Vn > 0 we can always find 0 < d’ < d — 7 such that vV27rmd "™ < (d')™™

Denoting (abuse of notation) d’ = d we can write:

(k+ 1)4F
(ed)?

This proves assertions (1) and (2).

1Bllp-ax < (L= [ellWllppe/d ™ DAk + Il e/ le]

By Remark 2.9, we have:

S22, & h) ho = Lo + Be(&, 25 h) |po =

o0

k
S N W VL A ) = (L + A)
k=0

where Ly, F = {W, F} denote the Lie derivative with respect to the Hamiltonian flow generated
by Wy. Now, by Taylor’s theorem

M0 (L, + A) = (Lo, + A) 0 5y, (7, €)

and this concludes the proof of the Theorem. O

Remark 4.2. Let W be a solution of the homological equation (5.1). Then the explicit expression
of Wy clearly is:

— 1 Vq (5) ei(q,x}
Wo=FZ.0) 2= Tl

qezt
and

W0 (F(Ly,) + eA) = F(Ly) + eNoo(Ly) + O(£%).
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Thus W, coincides with the expression obtained by first order canonical perturbation theory.

5. HOMOLOGICAL EQUATION: SOLUTION AND ESTIMATE

Let us briefly recall the well known KAM iteration in the quantum context.
The first step consists in looking for an LQ(Tl)—unitary map Up. = e€Wo/h W, = Wy, such
that

Soe = Uoe(Luw +eVo)Use = Fre(Luw) + e Vie, Vo=V, Fio(Ly) = Ly +eNo(Ly).

Expanding to first order near ¢ = 0 we get that the two unknowns Wy and Ny must solve the

equation

L,
Lo, Wol 4 _ o
1h

Vi, is the second order remainder of the expansion. Iterating the procedure:
Up. = ei€2ZW‘f/h;

¢ % 0
Ste = Upe(Fre(Lo) + ¥ Vo) Uf e == Fopr e (L) + €2 Visa(e),

Fielll Wed |y,
With abuse of notation, we denote by Fy.(Ly, k), Nie(Lu, h), Vie(Ly, h) the corresponding sym-
bols.
The KAM iteration procedure requires therefore the solution in Ji(p) of the operator homological
equation in the two unknowns W and M (here we have dropped the dependence on ¢ and ¢, and
changed the notation from N to M to avoid confusion with what follows):

[F (L), W]

= +V = M(L,) (5.1)

with the requirement M (L) € Ji(p); the solution has to be expressed in terms of the correspond-
ing Weyl symbols (L, W, V, M) € Ji(p) in order to obtain estimates uniform with respect to h.
Moreover, the remainder has to be estimated in terms of the estimates for W, M.

Equation (5.1), written for the symbols, becomes
{F (L&) 1), Wz, & 1) far + V(@ Lo (§); h) = M(Le(8), 1) (5.2)

5.1. The homological equation. We will construct and estimate the solution of (5.1), actually

solving (5.2) and estimating its solution, under the following assumptions on F:

Condition (1) (u, k) — F(u;h) € C*°(R x [0, 1];R);
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Condition (2)

h
inf OuF (uyh) > 0;  lim M =C>0
(u,h)ERX[0,1] lul—oo  |ul
uniformly with respect to h € [0,1].
Condition (3) Set:
n
Kr(u,n,h) = 5.3
AT = F ) — ) o3
Then there is 0 < A(F) < 400 such that
sup IKx(u,n, h)| < A. (5.4)

u€ER,NER,AE[0,1]

The first result deals with the identification of the operators W and M through the determination

of their matrix elements and corresponding symbols W and M.

Proposition 5.1. Let V € J(p), p > 0, and let W and M be the minimal closed operators in
L?(T™) generated by the infinite matrices

ih(em, Vemtq)
F((w,m)h,h) — F({w, (m + q))h, h)’

(em, Mep,) = (em, Ven), (em, Memiq) =0, q#0 (5.6)

on the eigenvector basis e,, : m € Z' of L,,. Then:

(€m, Wemtq) = q#0, (em,Wen)=0 (5.5)

(1) W and M are continuous and solve the homological equation (5.1);
(2) The symbols W(x,&; k) and M(&,h) have the expression:

M(ER) = V(Lo(€)ih); W(Lu(&),aih) = Y WI(Lu(§), g; h)e ™ (5.7)
g€zt ,q#0

ihV(Ly,(€);q;h) Lq 20 W(Lu(6):h) =0. (5.8)

F(Lo(€);h) = F(Lu(€+9), 1)
Here the series in (5.7) is || - ||, convergent; V(L,(§);h) is the 0-th coefficients in the

WI(Lu(§),q; 1) =

Fourier expansion of V(L (§),z, h).

Proof. Writing the homological equation in the eigenvector basis e,, : m € 7! we get
F(Ly,), W
(em, [(;Jh)]en) + (em, Ven) = (em, M (Ly)en)dmn (5.9)
which immediately yields (5.5,5.6) setting n = m+¢. As far the continuity is concerned, we have:
1h
F((w,m)h, h) — F({w, (m + q))h, h)

n
F({w,m)h, k) — F((w,m)h+n,h)’

= (w, )" n = (g, w)h.

and therefore, by (5.4) and the diophantine condition:

[{em: Wema)| < 2lgl"Alem, Vemq)l.
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The assertion now follows by Corollary 3.8, which also entails the || - ||, convergence of the series

(5.7) because V € J,. Finally, again by Corollary 3.8, formulae (3.23), (3.24), we can write
<em7 Wem-l—q) = W(<w7 (m + Q/2)>h, q, h); <€ma M6m> = M(wa m>h7 h) = V(Ew(w7 m>ha 0, h)
and this concludes the proof of the Proposition. O

The basic example of F is the following one. Let:
. Fo(u,e;h) = u+ Py(u, e, h), £=0,1,2,... (5.10)
. Dy(e,h) :=eNo(u;e, h) + €2N1(u; g,h) + ... +eNy(u,e,h), ¢j:= &2 (5.11)
where we assume holomorphy of € — N;(u,e,h) in the unit disk and the existence of py > p1 >
. > pg > 0 such that:
(Ns) max W p, < 00,
Denote, for ( € R:
Dy (u+ (e h) — Py_q(use,h)

ge(u,C;e, h) :== (5.12)
¢
Let furthermore:
O0<dy<...<dyg<po, 0<pg:=p; (5.13)
Pst1=ps—ds>0,s=0,....,0—1
o= di<p (5.14)
and set, for j =1,2,...
S N
00 k(N e) Z ‘5 ” ‘f’s’ 0N, €) := 00N, €). (5.15)
By Remark 2.4 we have
-1
s IVl pa
0 = —_— 1
o k(N €) z; od. (5.16)

Lemma 5.2. In the above assumptions:
(1) For any R > 0 the function ¢ — ge(u,(,e,h) is holomorphic in {C | |¢| < R||S¢| < p},
uniformly on compacts with respect to (u,e,h) € R x R x [0, 1];

(2) For anyn € NU{0}:

sup Hg(u)<757h)]n|pe < [94(-/\/" 5)]n (517)

CER
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(3) Let:
max 0y(N,e) < 1, L>0. (5.18)
le|<L

Then:
sup |Kr(u,Ces )y < o e (5.19)
commen TS S Wl =TT, (N ) ‘

(4)
sup 105.9(u, .8, h)|p, < 005(N€) (5.20)
€R
scug |5’gg(u,c,&?,FL)]p,Z < 0N, ¢) (5.21)
c
sgug 100 g(u, C,e,0)|p, < 00 (N,€). (5.22)
S

Proof. The holomorphy is obvious given the holomorphy of N(u;e,h). To prove the estimate
(5.17), denoting N(p, e, h) the Fourier transform of N(¢, e, h) we write

(w.C.eh) Z o [ Rty m(e — e dp = (5.23)

9 . .
¢ Z €s /./\[g(p, g, h)eP)/ 2 gin ¢p/2 dp
s=0 R
which entails:

sup |ge(u, ¢, €, )|y, = sup/ 19:(p, ¢, &, h)|eﬂelp| dp
CER CER JR

Ns|
of [ INs(p,e, n)pletrs= el gp < = 5|7”3_6 N.e 1)  0<ds<ps.
hgl[g>§Zre|/r (9., Wplee=l dp Z\er W 1) /
Hence Assertion (3) of Proposition 3.11, considered for k£ = 0, immediately yields (5.17). Finally,
if gy is defined by (5.12), then:

1 1

Cl +g€(u G, 8, h)

and the estimate (5.19) follows from (5.17) which makes possible the expansion into the geome-

K#(u,( e,h) =

trical series

1 o0 . )
1+ ge(u,Coeh) 7;)(_1) ge(u; €. h) (5.24)

convergent in the 0y(N,e) norm. To see (5.20), remark that (5.23) yields:

—

Blgu(u, ¢, e, h) = f.z [ Rl 1) 25in o2
0
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Therefore:

sup [3,90(u, ¢, €, )| p, < Sup max 22 |€s!/ Na(p,, 1)l [pl| sin ¢p/2|/¢le ! dp

CER
/—1
< sup max 22 |as\/\/\[ D, €, h)|]p|3|smg‘p/2|/§]e ps—ds)|p| dp
CER re(0,1] =
/—1
< su 5 efds‘p| max/ JN g, heps|p|d
< sup Jp Z_% e max | PPN (p,e;h)e P dp

/—1
1 |Ns‘p J
< Z E 2P < .N’
€ s=0 |€S’ ds ZJ( E)

(5.21) is proved by exactly the same argument. Finally, to show (5.22) we write:

-1
sup [.go(u, ¢, e,h)|,, < Sup max 22 les] / |00 Ns(p, e, )| - | sin Cp/2| /Cle P! dp
CER CER

/-1

max Z o] / DI (p, 2, 1) ePs= 40Pl dp < 6,(N, &)

hGOl

This proves the Lemma. U]

By Condition (1) the operator family i +— F(Ly;e,h), defined by the spectral theorem, is
self-adjoint in L2(T'); by Condition (2) D(F (L)) = H'(T!). Since L, is a first order operator
with symbol L, the symbol of F(L,;¢, h) is F(Ly(€), e, h). We can now state the main result of
this section. Let Fy(z,e,h) be as in Lemma 5.2, which entails the validity of Conditions (1),

(2), (3).

Theorem 5.3. Let V; € Ji(pe), £ =0,1..., Vi =V for some py > ppy1 >0, k =0,1,.... Let
Vo(Lo,(€),z56,h) € T(p) be its symbol. Then for any 0,(N,e) < 1 the homological equation (5.1),
rewritten as
[Fe(Lw), Wi
th

{fé(ﬁw(é‘)v‘g? h)7W€<m7§;57 h)}M +V€(x7Lw(§);57 h) :M(ﬁw(€>7€7 h) (5'26)

+ Vi = Ny(Ly, €) (5.25)

admits a unique solution (Wy, Ny) of Weyl symbols Wy(L,, (), x;€,h), No(Lw(§), e, h) such that
(1) Wy = W; € Ji(pe), with:

IWellpesr ke = IWllprir b < AW K €) Vel oy (5.27)

T - 2k+1(k. + 1)2(k+1)kk 1
(edy)™ (edg)k[l — 64N, 6)]k+1 Lk

Al kye) = (5.28)
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(2) Ne = Ve, therefore Ny € Ji(pe) and | Nllp.p < [IVell pe.e

Proof. The proof of (2) is obvious and follows from the definition of the norms |||, and ||-||,x. The
self-adjointess property W = W* is implied by the construction itself, which makes W symmetric
and bounded.

Consider Wy as defined by (5.7). Under the present assumptions, by Lemma 5.2 we have:

1 ihVe(Lo(§);q5€,h)

Wi(Le(§), g5 €, ) == (W, q) 1+ go(L(€); (w, @dh,e, h)’

q#0; W(,0;h) =0.

By the || - || ,,-convergence of the series (5.24) we can write
TWL€), a3, 1) = f% ()" O Wen(Lu(€), 452, 1), (5.29)
Win(£ul):tie.1) = T VHLalO) e Mlan(Lal@s (e )" (530
RWen(Lo(§), q:6,h) = (5.31)
io (1) 3 Witu(€riase ) Dilan(£ufe)s (vt
<

where Dj denotes the total derivative with respect to h. We need the following preliminary result.

Lemma 5.4. Let ((h) := (w, q)h. Then:
(1)
[D3ge(Lu(€),C(h), &, W)p, < (F + 1)(2lal 6oV, €)? (5.32)
(2)

| D796 (Lo (€); C(h), &, W], < 207 (00(N, €))7 [2(5 + 1)lal}003(N, €)% (5.33)

Proof. The expression of total derivative Dyg is:

0 0
DhQ(? <w7 q>h7 €, h) = ((wa Q> aic + %) gf(a <7 g, h)|(:<w,q>h (534)
By Leibnitz’s formula we then have:
: J 0" "'909"ge
Dhge( (w, e, h) =) (Z) L =TT (5.35)
i=0

Apply now (3.46) with & =0, (5.20) and (5.22). We get:

g, 9 gy

I < (4 70, . 2
ac— oni| = (j+1)276, (N, e)

pe
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whence, since |w| < 1:

‘ngz

S| S @+HD@Y gl 005N e)? (5.36)
p.

This proves Assertion (1). To prove Assertion (2), let us first note that

(5.37)

Dgy Dig,
Dh’ " Dhi )

Dige(£u(€): (w0, )2 1)) = P <%

where P, j(z1,..., ;) is a homogeneous polynomial of degree n with n/ terms. Explicitly:

Dgg D]gg ! Djkgf
P, . i
5 (o0 zge [ 2

Now (5.32), (5.36) and Proposition 3.11 (3) entail:

DI 1ge(La () (w )by )" < 0/lglp? T 200k + 1) 2la)™ 0, (W )?

k=1

1t tig=
< 207 (0N, €))7 25 + 1)|all? 0,5 (N, €)
This concludes the proof of the Lemma. O
To conclude the proof of the theorem, we must estimate the [ - ||,,,, » norm of the derivatives
IIWi (Lo (€), 236, k). Obviously:
oo
W€, @58, m)llpprie < D IWen(€, 238, 1) gy - (5.38)

n=0

For n = 0:

IWeo (&, w58, 1)l gy s < ’VZ/ 107 Weo(p, 53 )| 1tr—r (pw, 5) el (EIFED g\ (p, 5)
RXR!

T

-~ T
<7 E / 100 Ve0(ps 53 )| |8| by (w0, 5) €1 IPIHID G (p, ) <y Vel pe i
RXR! (edl)T

where the inequality follows again by the standard majorization

ePer1(lpl+ls) — epe(|p|+|8|)e—de(|p|+|8|)’ sup[|s|Te_d‘3|5|] <~ _
sER! (edy)
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on account of the small denominator estimate (1.25). For n > 0 we can write, on account of
(2.5,2.6):

k
W65 M = 3= [ 101 sl by i ) 20 P A, 3) <
—_ X

sk

< 53 () f e tians

v=0 7=0

where
— [0 Datos 551 (D4 (0 s g s 5) 17 iy
R

Here % denotes convolution with respect only to the p variable, and g,”"(p,(,-) denotes the
n—th convolution of g, with itself, i.e. the p-Fourier transform of g;. Now, by Assertion (3) of

Proposition (3.11) and the above Lemma:
/ (s, eIl du(s) =
= [ 1Pt si e 1D 0 o, s (2, 9) 2P )
</ [ JBEDut 5500 1405 53 Ml s 5) P dp | 1 (e
< 2G0T [ [ 10 Duls s s 5) P dpn(s),
with
A(j) == 2n(j + 10N, €)°.

This yields, with d; defined by (5.13):

sk
T —~ s
HWZ,n@vﬂ?; ')HpeJrl,k < ’YWZ/ l !(?;ZWe,n(p,S; ')Mk—w(pwvs) epf(‘pm D d)\(l% 3) <
S=0 JRXR
k

77 (k 4+ 1)(2A(k))*

BN €)Y / 0 Ve(p: 53 )] - s (peo, 5) € Pl s el A (p, )
RXR

- (edg)T =0
L IR DCARYE B V(3 53 ) 1k (pw, ) Ple?* A (p, s)
< i) Ak ;)/Rz/R (3 85 )| k—r (P p

7 (k+ 1)kk
=Tled)) ™ (edy)F

2(2n)* (0:(N, €)™~ (k + 1)* 675 Vel .
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Therefore, by (5.38):

oo
||Wg(§;$;5, h)Hpg.;_hk < Z Wf,n(g;x;gv h)||pg+1,k <

n=0
77 [ 2/€+1(k, + 1)k+1kk 0 )
< 1 02k k 4 n—j
(ed) || ZHPZIC + (eég)k K,kr;n ( g(N,S))
7 2R DRk &
<7 1 0% 4 "
(ed ) || [Hﬂb + (66{)’6 0k n:1 n ( Z(N,E))
T [ ok+1(f 4+ 1)2(k+1) k
T Vel |1+ i ( ) e
" edo) T (eI — 0N )]
because j < k, and
n+k
3 et 3t )R S
n=1 n=1
dk’ k+1 k+1 E+1—3 k+1—j 2k+1 E+1)!
= = k1Y gy 2 kl)
dzk 1 —x = J (1—2x) (1 —x)kt
By the Stirling formula this concludes the proof of the Theorem. O

5.2. Towards KAM iteration. Let us now prove the estimate which represents the starting

point of the KAM iteration:

Theorem 5.5. Let Fy and Vy be as in Theorem 5.3, and let Wy be the solution of the homological
equation (5.1) as constructed and estimated in Theorem 5.3. Let (5.18) hold and let furthermore

dy 2
le| <&, Ep:= <> . (5.39)
||W€||pe+1,k:
Then we have:
S WM (Fy(Ly) + eVe)e BWe/h = (Fy + 4Ny (L) + €3Viy1 (5.40)
where, V0 < 2dy < pp and k =0,1,...:
Vell2, &
va+l,8||p£*2d£,k < C(& k, 6) (5'41)

1= [ed A6, R, ) [Vl pp.k/ de

(k‘ + 1)24%
(ede)?

Here A(C,k,¢) is defined by (5.28).

k+ 1)4k

C(l, k) = A, k.c) 2—|—|€z|(( 07 A k) Vel gy (5.42)

Remark 5.6. We will verify in the next section (Remark 6.26 below) that (5.39) is actually fulfilled
for |e| < 1/|V|,.
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Proof. To prove the theorem we need an auxiliary result, namely:

Lemma 5.7. For { = 0,1,... let py > 0,p0 := p, A € Jp(p), Wo € Jr(pe), K = 0,1,.... Let
W, =Wy, and define:

Ao (h) = el=eWelh pe=iecW/n, (5.43)
Then, for |e| < (dp/|Wllpe 4)? > and YO < dj < pg, k= 0,1,...:

(k +1)4k [Allpe
€d2 1- ’5€|||WHPZ+17k/d/E

[Ae (W)l p—ay e < (5.44)

Proof. Since the operators W, and A are bounded, there is €9 > 0 such that the commutator

expansion for A.(h):

N
)
>t
~
I
(]2
—~
N
Q)
~
~—

W, [We - [We AL ]
m=0 ’

is norm convergent for |e| < gg if h €]0, 1] is fixed. The corresponding expansion for the symbols

is

A =3 o v A
m=0 :

Now we can apply once again Corollary 3.13. We get, with the same abuse of notation of Theorem

4.1:

1 (k + 14" [ [Wellp s \™
m”{wfa{wﬁ'--7{W€7~’4}M'-~}M”p—d’,k S ed1 < dzpk HAHPz,k (545)
Therefore
(k +1)4* - ’ (k +1)4" [[A] e
A:(h e < —||A ™ dm = 05
1A (P) | pp—a o I ||PZ7anZ::O| "IN g/ i) ed) 1= |eg|Wllpps k/d,
and this concludes the proof. O

Wy solves the homological equation (5.1). Then by Theorem 5.3 W, = W/ € Ji(p; — dy),
k=0,1,...;in turn, by Assertion (3) of Corollary 3.8 the unitary operator e tWe/h Jeaves H'(TY

iegW/h

invariant. Therefore the unitary image of H. under e is the real-holomorphic operator family

in L2(T!)
£ Se = WM (Fy(Ly) + egVp)e =R D(S(e)) = HY(TY (5.46)

Computing its Taylor expansion at €y = 0 with second order remainder we obtain:

Seu = Fy(Ly)u + e¢No(Ly)u + €%Vé+175u, we H! (Tl) (5.47)

Lo awon ([N Wel - We, Vil We, We, VAT i
Vz+1,e—2/0 (ee —t)e et (i1)? e dt (5.48)
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To see this, first remark that Sy = F(L,). Next, we compute, as equalities between continuous

operators in L%(T'):

SL = e WIN(Fy(Ly), Wl /ih+ Vi + [V, W) Jik)e W/t =
ei&éW/h(NZ + 8@[‘/@7 We]/ih)eiagWg/h; Sé) _ NE
SY = Wi [Ny, W il + [Ve, Wil fih + o[ W, [We, Vi) / (ih)?)e =t Welm,

and this proves (5.47) by the second order Taylor’s formula with remainder:
1 [e
&zsmﬂw%+2/‘@—0§ﬁyﬁ
0

The above formulae obviously yield

Vi < leyl? S (t 4
IVigrel < led] 0B 15" @)l (5.49)
Set now:
Rpyre = [No, Wil fih 4 [Vo, W [ih 4 eo[We, [We, Vel]/(ih)? (5.50)

Ry . is a continuous operator in L?, corresponding to the symbol
+1, P 3 1% g Yy

Roy1,e(Lo(&), z3h) = {Ne, Wetkar + {Ve, Wit mr + eedWe, (IWe, Vet b (5.51)

Let us estimate the three terms individually. By Theorems 5.3 and 3.11 we can write, with

A(l, k) given by (5.28):

. k+ 1)4F
VNG Wil il gy < NG Wedatll ey < ((edwl||wg||pg+l,k|uw||m,k
(k+ 1)4k 5
< WA(& k,é‘)HWle,k
. k+1)4%
Ve Wl fitl e < Ve Wbt s < ((ede))ﬂrvellm,klrwellpul,k <
(k+ 1)4k 5
~ A .
(edg)Q (&k g)”vf”pg,k

’ ? (4 0 — ’ ’ (4 O — l 4 Pel+1, (2]

e A keI

pesk

We can now apply Lemma 5.7, which yields:



36 SANDRO GRAFFI AND THIERRY PAUL

, » , k4 1)%42k
iegWy/h N, W iegWy/n h g < (7
||6 [ 12 f]e /Z Hpg—dz—dzyk — (edé)ZedZ

iegWy/h —ieWy/h /; (k+ 1)242k
”6 l Z/ [W7We]€ E Z/ /Zthg—dZ_dsz S W

| 3 | ko4 1)343
le™=e Vel M Wy, (W, Ville™ Vel [ (ih)? | py—dy—a e < St

=(¢, k)

2(4, k)

=214,k
(edy)ied, 16 k)
where
IVellZ,
2, k) = A, k) - pe. 5.52
B = AR T Wyl 52
i1l k) = A(L, K, e)? - Vs, (5.53)
’ R S 2 Py
Therefore, summing the three inequalities we get
(k 4 1)24%
IVert,ellpp—dg—ay 1 < WA(& k,e) x
Vell?, s (k+ 1)4*

% 2+ leel=——=7— Ak, )|Vl e
1- ’€£|||W€Hpg+1,k/d/g (€d£)2 pe

If we choose dj = dy this is (5.41) on account of Theorem 5.3. This concludes the proof of Theorem
5.5.

0

6. RECURSIVE ESTIMATES

Consider the ¢-th step of the KAM iteration. Summing up the results of the preceding Section
we can write:

° Sés = e’L'EgW[/h .. eiszwl/ﬁeiEWQ/h(f(Lw) + E‘/)efiEVV()/ﬁefiEzVV]/ﬁ .. e*’ingg/h
. e _
= eweWZ/h(‘FZ,e(Lw) + 52 W,a)e ieeWe/h — fﬁ—&—l,e(Lw) + 5€+1W+1,€a

/—1
o Fro(Lo) = F(Luw) + Y exNi(Lo),  [FelLyw), Wil/ih+ Vie = Ny(Lay €)
k=1

1 [ee , .
Vi1 = 3 / (e¢ — t)eZtW‘/hRgH’te*”Wé/h dt
0

® Rpv1c:=[No,Wil/h+ Wy, Viel /b + ed[We, [We, Vi o] /1

We now proceed to obtain recursive estimates for the above quantities in the || - ||,, » norm.
Consider (5.41) and denote:
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~(k+1)%4" _ [2(k+ 1)2)RER
\P(Ev k) - (Gdg)g H(£7 k)a H(Ev k) T 6’655
k+1
Pt kye) = —2eb N E)

[1 = 0,V )]
where 6y (N, €) is defined by (5.16). (6.1) and (6.2) yield

T

-
Al k,e) = 7(6@)7

[+ TI(¢, k) P(4, kb, )]

Set furthermore:
\I[(& k})B(f, ka 5)[2 + |€g|e\lf(£, ]{,‘)A(& ka g)HVE,EHpg,k]

Bt.k,e) = T |edA(L k) o/ ds
Then we have:
Lemma 6.1. Let:
lee| AL, K, €)
Then:
Verrellppn ke < Bk, e)[Veel, i

Remark 6.2. The validity of the assumption (6.5) is to be verified in Proposition 6.3 below.

Proof. Since dy < 1, by (5.42), (6.1) and (6.3) we can write:
C(l,k,e) <UL R)A(L Fy€) 2+ [ecleW (€, k)AL K, €) [ Veellpe k]

and therefore, by (5.41):

Vil
1 — |ee] AL K, €)|| V| py i/ de

k < C(Ea ka 8)

V(L k)AL K €) 24 |eceV (C, k)AL k,€)[[Veellpy k]
B 1- |€€|A(£7 ka‘g)HVZ,SHp[,k/dﬁ

VellZ, i =

This yields (6.6) and proves the Lemma.
Now recall that the sequence {p;} is decreasing. Therefore:

INGellpek < INGellosk = Wicllojk < IWViellpjer G=0,...,£—1.

At this point we can specify the sequence dp, £ = 1,2, ..., setting:

p

dp = ——

(=0,1,2,...

Remark that (6.9) yields
2

d— ng p—— g

E(L k)| Vell3

(6.7)

pek:
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as well as the following estimate

2(k + 11

TI(¢, k) < 4 (6.10)

ekp

We are now in position to discuss the convergence of the recurrence (6.6).

Proposition 6.3. Let:

1
<e*(y, 1, k) = 6.11
p > NE) :=1+8y77[2(k + 1)?]. (6.12)
Then the following estimate holds:
2@ 2[
Veellpok < (e8(3+27>||vo||p7k) = (68(3+27)||V0\|p7k) . £=0,1,2,... Vo:=V.  (6.13)
Proof. We proceed by induction. The assertion is true for £ = 0. Now assume inductively:
il Viellps e < (k+2)7270+D, 0<j<t (6.14)

Out of (6.14) we prove the validity of (6.13) and of (6.5); to complete the induction it will be
enough to show that (6.13) implies the validity of (6.14) for j = ¢+ 1.

Let us first estimate 6;(N,e) as defined by (5.15) assuming the validity of (6.14) . We obtain:

-1 -1
1
BN €) < BN e) <Y lesl VIl p/ds = ;Z (s +1)%(k +2)770FY =
s=0 5=0
1 Z arory 2 L@ g e 1 (B2 2)r Yhvoy2 <t
4p d7'2 4p dr? 1—(k+2)72" —p p
because 7 > [ —1 2 1. Now p > 1 entails that
1 p
1
19, < o1 (6.15)
Hence we get, by (6.2) and (5.16), the further (¢,e)—independent estimate:
k+1 k+1
P 2 \~k-1 1
P < ——m 2 = —F—= . 1
(k) < 1 g (420%™ = (=7 (010
whence, by (6.3):
T(f 1 2T _
Atk,2) <2 T o+ 0P (G- 1300+ 27 ()
(1) >
<~ 14 e . 6.17
P ()™ (617)

Upon application of the inductive assumption we get:
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AF2(k + 1)%)F+3

lee| W ALK, )|Vl ppke/de < ek FB

(€ + 1> ee AL b, )V ]l

770+ 1)27 )
(ep)”

7

2r+4) \2Y _ G 4F[9(k 4 1)2F8 477 2 .

2710 (k + 2) (k+2) =m0 — s e St oy (ee)
TIn (k+ et t3p (ep) (p—1)

4k 2k 4+ 1)2 k+3
(p — 1)k+1 (ep”) ] [e(k—i-;_pkz-zl]

IN

[1+ (k4 2)72+Dr

IN

because

_ 2r +4) 2T e
0+ 1)20+4) (] 4 920D 2)” 27 In (h+2) |
P+ 7R+ 2) o710 (k + 2) (k+2)

Hence:

el W AL, ks )|V |y /de <

<5 (6.18)

provided
p>MNE);  AE)=1+8y77[2(k 4 1)2). (6.19)

Since Wy > 1, if (6.19) holds, (6.18) a fortiori yields
1

‘Ef’A(£7 kv 6)”])Hpg,k/d£ < 5

Therefore, by (6.4):
T+ 1)%7

E(ﬁ, k, 6) < 3\Ifg7kA(€, k, 5) < 6y (ep)T

Yok

and (6.6) in turn entails:

770+ 1)27
|mems®mm@mém:mbw>wk

This last inequality immediately yields

l+1
Vertllonk < V1ol H LT (6.20)

m=0

Now:

T 27 2 12k 21k+1
T (e DR

Dy =6
&k =27 (ep)™ ed; ebtrdrel  —

)

TT42k[2(k‘ + 1)2]k+2 - 67T42k[2(k + 1)2]k+2 _
€k+’r+1pk+7+3 - ek+7’+1/\(k)k+’r+3 —
TTA2R[2(k + 1))+ o <2>’“ 1 _
6k+7—+1[8’yT7'2(k 4 1)2]k+7'+3 - e eT+1’yk+T+3[2(k + 1)2]7’—}—1 -
6
- ,YT+3T72+2(26)T+1

v(k,7,p):=6

Therefore
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6
yv(k, T, p) < s <1 (6.21)

because 7 > 1 and v > 1. As a consequence, since @, < &1, 5 =1,..., we get:
‘77 b}
H (I)f—i-l mk < <I>£ k] L(6+1) < [’71/(]6',7', p)]Z(€+1)(€+ 1)(6—}—47)4(4—&-1) < (£+ 1)(6+4T)€(€+1)
Now £(¢£+1) < 21 V¢ € N. Hence we can write:
0+ 1)(6+4T)z(z+1) < [6(24+167—)]2£+1'
The following estimate is thus established
¢
T w2, < [SEH202 (6.22)

If we now define:

then (6.20) and (6.22) yield:

24+1

2
Vertellerir < (el Vellpek]” < IV poke 1]

2Z+1

<[V llppk pegel® < 1Vl oyp pie]

Let us now prove out of (6.24,6.25) that the condition (6.14) preserves its validity also for j = ¢+1.
We have indeed, by the inductive assumption (6.14) and (6.24):

leer1Vestellerin < UVl ook tege]® < (k4 2) 7 E Dy (1) |V g i
4
< (k+2) 77D [ V)] < (k42) 7

provided

el < . . £ (3, k) (6.26)
= 77— *
PV a2 B ko

where the last expression follows from (6.23). This proves (6.11), and concludes the proof of the
Proposition. O

Theorem 6.4. [Final estimates of Wy, Ny, V]
Let V fulfill Assumption (H2-H/). Then the following estimates hold, V¢ € N:

T\T T T —T ¢
et Weellppsr e <7 (g) L+ D)7 A48y 2k + 1)) 77 - (el VIl,)? (6.27)

14
k < eelVeelloes < IVlpen]® . (6.28)
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2[+1

eentlVerrelloe ke < IV Il ep] (6.29)

Proof. Since V does not depend on %, obviously |V|,x = [|V|,- Then formula (5.27) yields,
on account of (6.17), (6.15), (6.19), (6.24), (6.25) and of the obvious inequalities ep™3 < 1,
p/(p—1) >1 when p > A(k):

T+ 1) 2

e T o

(el < (Z) @+ 177 (1 + 83720k + 1) 7 (el V],

1 (en®) el )%

5€HWZ,€”pe,k <7z

TT(€+ 1)27’

<2y—F——
(ep)”

because of the straightforward inequality

1+ (ep®) ] < 1

2
(p— 1)FH!
which in turn follows from > 1. This proves (6.27). Moreover, since Ny = Vy ., again by (6.24),
(6.25):

— 4
eellNeellpek = erllVeellop < [Vl
The remaining assertion follows once more from (6.25). This concludes the proof of the Theorem.
O
Remark 6.5. (6.27) yields, with K := (Z)T (1+ 8y77[2(k + 1)2)) 7
e
W,
el Weelaent o gece (g 4 ey
¢
This yields:
[Weellpiar i) *
o (Rt )< [ DRIVl Yl £ o0
l
. 1
so that (5.39) is actually fulfilled for |e| < L
p
Corollary 6.6. In the above assumptions set:
n .
Une(h) = [J "=, n=0,1,.... (6.30)

s=0
Then:

(1) Une(h) is a unitary operator in L*(TY), with

n

Une(h)* = Upe(n)™" = J[e "
s=0
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(2) Let:
Spe(h) := Upne(h)(Ly +V)Upne(h)7! (6.31)
Then:
Sn = Dn7€(h) + €n+1Vn+1,5 (632)
Dne(h) = Lo+ Y esNae (6.33)
s=1

The corresponding symbols are:

Sn(& 23h) = Dne(Lo(§), 1) + ent1Var1,e(Lu(§), 25 1) (6.34)
Die(Lu(£),h) = Lo(§) + Y esNee(Lu(©), h). (6.35)
s=1
Here the operators W o, N, Viy1,. and their symbols Ws o, Ngc, Voy1, fulfill the above
estimates.
(3) Let £* be defined as in (6.11). Remark that €*(-, k) > e*(-,k+ 1), k = 0,1,.... Then, if
le] < e(k,-):
nh~>nolo Dn,a (ﬁw (5)7 h) = Doo,a (ﬁw (5)7 h) (636)

where in the convergence takes place in the C*([0,1];C*(p/2)) topology, namely
nh—{{)lo HDn,s(ﬁw <£)7 h) - Doo,a([’w (f)a h)”p/2,k =0. (6'37)

Proof. Since Assertions (1) and (2) are straightforward, we limit ourselves to the simple verifica-
tion of Assertion (3). If |e| < €*(-, k) then ||V, rpue < A < 1. Recalling that || - ||, x < || - ||%
whenever p < o/, and that py < p/2, V¢ € N, (6.29) yields:

8nJrl||Vn+1,€Hp/2,k < 8n+l||Vn+l,zs||pn+1,k: <

WV [l rpe]

2n+1
— 0, n— oo, kfixed.

In the same way, by (6.28):

”Nn,sHp/Z,k < HNn,a”pn,k = vasHpn,k < HVms’

prk =

[HVHp,kus]W — 0, n— oo, kfixed. -0, n — oo, kfixed.

This concludes the proof of the Corollary. (|
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7. CONVERGENCE OF THE ITERATION AND OF THE NORMAL FORM.
Let us first prove the uniform convergence of the unitary transformation sequence as n — oo.
Recall that €*(-, k) > e*(-,k+1), k=0,1,..., and recall the abbreviation || - ||,0 := || - || ,- Define

moreover:
(7.1)

where ¢*(7y, 7,0) is defined by (6.26). Then:

Lemma 7.1. Let h be fized, and |e| < ;. Consider the sequence {Un(h)} of unitary operators

in L2(T') defined by (6.30). Then there is a unitary operator Us (k) in L?(T') such that

lim ||Un,€(h) - Uoo,E(h)HL?aL? =0
n—oo

Proof. Without loss we can take h = 1. We have, for p =1,2,.. .

Anpipe = (ei€n+an+p coetEn+t1Wapr I

ienWn | gieW1
)

Un—i—p,e - Un,a = An+P76€

1212 < QHATL'H?,&”L2—>L2

H Un—f—p,e - Un,a

Now we apply the mean value theorem and obtain

&y
. ) .
eznge,e =14+ 5@,5 ﬁ@,z—: — ZEKWZ,E/ e’LEEWé,E d€’£7
0

whence, by (6.27) in which we make k = 0:

. (1 +8yTT[2(k + 1)2))2 7 ¢
80l < 2ellWeellp < eelWeellpt S 77 (€ + 1P 0o S (V)™ < 4°
(7.2)

for some A < 1. Now:

p
An+p,e = [(1 + 5n+p,55n+p)(1 + 5n+p—1,55n+p—1) ce (1 + ﬂn—f—l,egn—&-l)] = Z/Bn+j,55n+j

Jj=1
p p
+ § 6n+j1,85n+j16n+j2,85n+j2 + § ﬂn—&—jl,65n+j1ﬂn—&—jg,agn-i-jzﬂn—&-jg,agn-i-jg
J1<j2<js=1

J1<j2=1
+.ooF Bat1e Brtpentl Entp
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Therefore, by (7.2):

p P p
Anipellproge €S A4 ST Amtiantiz g 3T Anh gt gnts 4
Jj=1 J1<jz2=1 J1<j2<js=1

A ) A \? A P
< n n pn —
<a Ay (1_An> ftA (1_An>

A A p—1
n (p—1)n _
1+ A (1 >+...+A (1 n> ]—

A" 1
A A

—0, n—oo, Vp>0

Hence {Uy, < () }nen is a Cauchy sequence in the operator norm, uniformly with respect to |e| < &,

and the Lemma is proved. O

We are now in position to prove existence and analyticity of the limit of the KAM iteration,

whence the uniform convergence of the QNF.

Proof of Theorems 1.6 and 1.7
The operator family H. is self-adjoint in L?(T l) with pure point spectrum Ve € R because V is
a continuous operator. By Corollary 6.6, the operator sequence {D,, c(h)}nen admits for |e| < &

the uniform norm limit

S
Doo,h(Lwa h) = Lw + Z 52mNm,s(Lwa h)
m=0

of symbol Dy 1 (L(§)). The series is norm-convergent by (6.28). By Lemma (7.1), Do 1 (Lw, h)
is unitarily equivalent to H.. The operator family € + Dy o(h) is holomorphic for |e] < &,
uniformly with respect to 4 € [0,1]. As a consequence, Do (h) admits the norm-convergent
expansion:
(0.9]
Dooe(Luh) = Ly + > Bo(Lu, D)e®, e <

s=1

which is the convergent quantum normal form.
On the other hand, (6.37) entails that the symbol Do (Lo (), h) is a J(p/2)-valued holo-
morphic function of ¢, || < g, continuous with respect to & € [0,1]. Therefore it admits the

expansion
Dooe(Lu(§),h) = L(§) + ZBS([W(@a h)e®, el <¢&” (7.3)
s=1

convergent in the || - || ,jp-norm, with radius of convergence . Hence, in the notation of Theorem
1.6, Doo e (Lw(§),h) = Booe(Lw(§), ). By construction, Bs(Ly(§), ) is the symbol of Bg(Ly,, k).

Boo s (Ly(€), h) is the symbol yielding the quantum normal form via Weyl’s quantization. Likewise,
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the symbol Wx (€, x, 1) is a J(p/2)-valued holomorphic function of ¢, |¢| < €*, continuous with

respect to h € [0, 1], and admits the expansion:

o0
Weoe(&,2,h) = (§,2) + > Wa(& 2, h)e",  ef < & (7.4)
s=1
convergent in the || - || ,/o-norm, once more with radius of convergence . Since Since [|B;||1 <

1Bsllp2s Vsl < [Wsllpj2 ¥ p > 0. By construction, Beo s (€@, h) = Booe(t, @, h)|i=c,(¢). The-
orem 1.6 is proved . Remark that the principal symbol of Bu (L4 (€), ) is just the convergent

Birkhoff normal form:
Booe = Lu(§) + ZBS<£w(f))gsa le| < &g
s=1

Theorem (1.7) is a direct consequence of (6.37) on account of the fact that
T

max |0, Boo(t:,1)[l572 < [ Booll o2k
o hel0,1]

Remark indeed that by (6.37) the series (7.3) converges in the || - [|,/5, norm if |g] < &*(-,7).
Therefore Bs(t,h) € C"([0,1]; C¥({t € C||St| < p/2}) and the formula (1.31) follows from (7.3)

upon Weyl quantization. This concludes the proof of the Theorem.

APPENDIX A. THE QUANTUM NORMAL FORM

The quantum normal form in the framework of semiclassical analysis has been introduced by

Sjostrand [Sj]. We follow here the presentation of [BGP].

1. The formal construction Given the operator family ¢ — H. = L, 4+ €V, look for a unitary

transformation U(w, e, k) = ¢V E/" . L2(T!) « L2(TY), W(e) = W*(e), such that:

S(e) :=UH.U ' = L(w) +eB; + 2By + ... + " Ry (¢) (A1)
where [Bp, Lo] =0, p=1,...,k — 1. Recall the formal commutator expansion:
§(e) = WO O =S Hy =i, He= e sy (a0
)

1=0
and look for W (e) under the form of a power series: W(e) = Wy + €2Ws + .... Then (A.2)

becomes:

k—1
S(e) = ZesPS + eFR) (A.3)
s=0
where
s, Hi
Py=L,; PS::M—I—VS, s>1, 1=V (A.4)

1h
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-1
V, = 1 Z Wi, Wiy, ..., (W, Hol . 22 l' Z (Wi, (Wi, (m;T[W]T, V]..]

! ih !
r=2 J1+-+ir=s ( ) J1t..tir=s—1
J1=1 Ji1=1

=1 Wit Wiy Wi Lol -] = 1 Wiy Wiy [W, V] ..
R(k):Z* Z J1 729 -7 Jro Hw + Z - Z 710 J29 - 9 Iro
r=k = d1+.+ir=k (lh) r=k—1 = ji1+..+ir=k-1 (lh)
Since V depends on Wy,...,Ws_1, (Al) and (A3) yield the recursive homological equations:
[Wg, PO]
ih
To solve for S, Wy, B, we can equivalently look for their symbols. The equations (A.2), (A.3),

+ ‘/S == BS? [LO') BS] = 0 <A5)

(A.4) become, once written for the symbols:

{w, Hi—1}mr

ZHZ, Ho =L, +eV, Hj:= z 1> (A.6)
=0
k
6) _ ngps + €k+1R(k+1) (A?)
s=0
where
P():ﬁw; Ps = {WS7PO}M+V87 s = 17---> Vi=VW=V (AS)

le Z {lej{wjzw"7{ij£w}M~-~}M+

Y1t ir=s
i>1

+Z Z Wi, Wigs oo e W Vv S, s>1

. Ji+-Hir=s—1
q>1

k)_z S Wi Wi Wy Lt Y+

. J1+-+ir=k
jl>1
1
Z 7l Z {Wj17{wj27'~a{wj7.,V}M...}M
r=k—1 " j1+ -+ir=k-1
J1=>1

In turn, the recursive homological equations become:

{W57 ﬁw}M + Vs = 337 {['wa BS}M =0 (AQ)

2. Solution of the homological equation and estimates of the solution
The key remark is that {A, L,}y = {A, L,} for any smooth symbol A(;x;h) because L, is

linear in £. The homological equation (A.9) becomes therefore

{Ws, Lo} + Vs = Bs, {L,,Bs} =0 (A.10)
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We then have:

Proposition A.1. Let Vi(&,x;h) € J(ps). Then the equation

{W&Ew}"‘vs 2857 {ﬁwaBs}:O (A‘ll)
admits V0 < ds < ps the solutions Bs(Ly,(&;)h) € T(ps), W € T(p—ds) given by:
By(&:h) =Vs; Wil&aih) = L5Vs, L5Ws= ) VS"Q(E“(f))e“q’”- (A-12)
ogent i
Moreover: i
.
I, < Wils Wl < () (A13)

Proof. Bs and W, defined by (A.12) clearly solve the homological equation (A.11). The estimate
for B, is obvious, and the estimate for W; follows once more by the small denominator inequality
(1.25). 0

By definition of || - ||, norm:
IBsll2—r2 < IBsllp < Vsllps;  1Bsllz—c2 < 1IBsllp < [[Vsllp, (A.14)

Hence all terms of the quantum normal form and the remainder can be recursively estimated in
terms of ||V||, by Corollary 3.11. Setting now, for s > 1:

P
=p—sds, dy < ——; =
Ps p — Sas s s+ 1 £0 p

E
ps =81 —=, E:=|V|,.
’ d;0; ’

we actually have, applying without modification the argument of [BGP], Proposition 3.2:

Proposition A.2. Let us < 1/2,s=1,...,k. Set:

[ 8. 27’4-5,77.7'
T p2+7'
Then the following estimates hold for the quantum normal form:
k k k
B &5 < B &8 < ESKSS(T+2)S€8
D ABsllo2e® <D 11Bsllye
s=1 s=1 s=1

1Risallpa < IRis1llpjo < (BK)HH (k4 1) 72D
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